
2025/10/25 15:02 1/16 STM32

STM32

STM32 NUCLEO 144

STM32 pour l'éducation

Achat Kits et STM32

Les Kits STM32

Introduction Debogueur Arduino

Premiers pas avec STM32 Nucleo dans Arduino IDE - LED clignotante

 $premiers_pas_avec_stm32_nucleo_dans_arduino_ide_-_led_clignotante.pdf$

Debuter avec la carte STM32 Nucleo F334R8

Connexion à la carte

Via un câble USB connecté sur CN1

Logiciel

Arduino IDE2

Last update: 2024/01/22 11:20

Ajouter la bibliothèque de cartes complémentaires dans "préférences" Ajouter ce lien dans "Additional Boards Managers URLs":

https://github.com/stm32duino/BoardManagerFiles/raw/main/package_stmicroelectronics_index.json

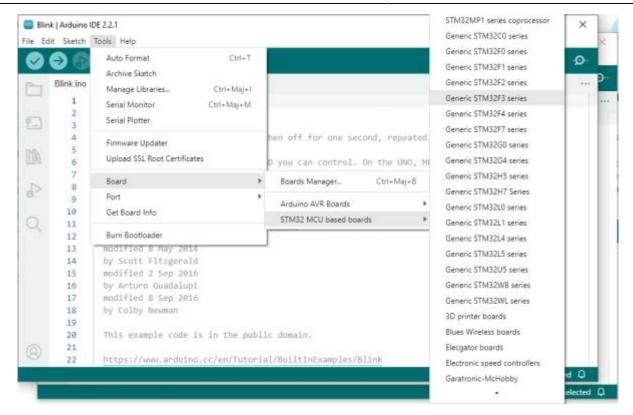
Télécharger et installer Cube32Programmer

Au 21/01/2024, note de JPD : Il existe peut être une autre méthode pour transférer un programme fait depuis Arduino IDE dans la carte STM32 nucléo, mais à aujourd'hui, je n'ai essayé qu'avec l'upload via STM32CubeProgrammer.

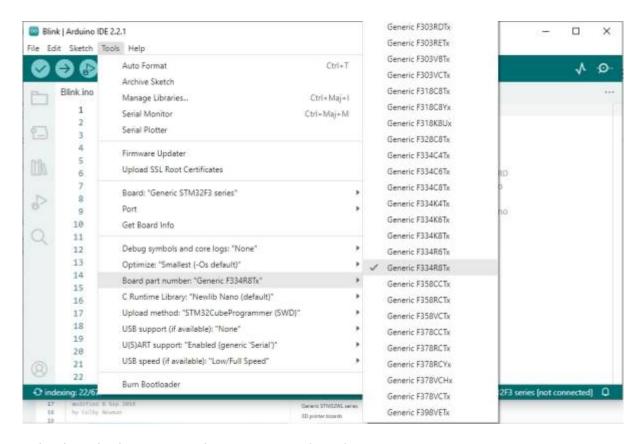
Cette application est très probablement utilisée en arrière plan pour compiler et/ou transférer le programme. C'est masqué, il suffit juste d'installer STM32CubeProg sur le PC où Arduino IDE est utilisé. Attention à bien l'installer à l'emplacement par défaut, sinon j'ai cru lire qu'il fallait ajouter manuellement le lien dans un fichier (lequel ??).

Pour télécharger STM32CubeProg.

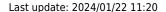
Lien site STM32: https://www.st.com/en/development-tools/stm32cubeprog.html#get-software

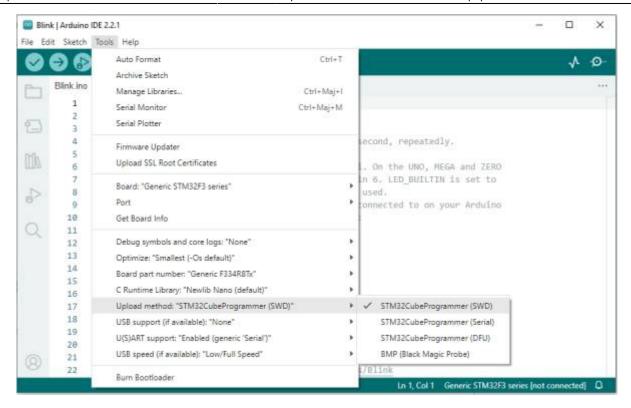

Lien Drive CastelLab (version pas forcement à jour, version 2.15 au moment de la création): https://drive.google.com/file/d/1mh0SZxBggXplmLCxyDhg-fykKXA28RM0/view?usp=drive link

Configuration Arduino IDE 2 pour programmer F334R8

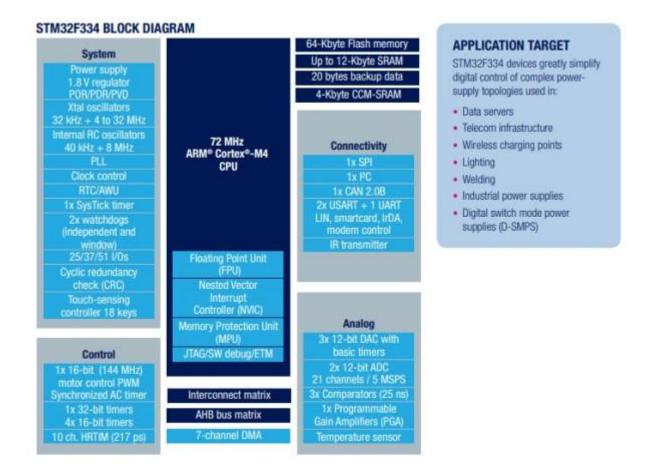

Dans Arduino IDE2, choisir la carte et vérifier les méthodes d'UpLoad :

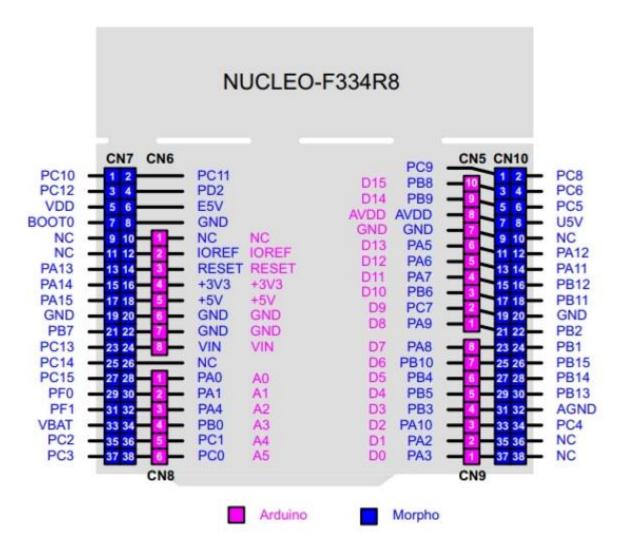
Choisir Generic STM32F3Series dans Board:


2025/10/25 15:02 3/16 STM32



Dans les nouveaux sous-menu dans Tools, Choisir la carte F334R8Tx :


Dans Upload method: "STM32CubeProgrammer (SWD)"


Caracteristiques de la carte F334R8

Vue d'ensemble

2025/10/25 15:02 5/16 STM32

Broche GPIO Pinout

Pour piloter la led intégrée qui est connue comme "D13" sur Arduino, il faut sur la carte STM32334R8, piloter la sortie "PA5", ou "PA 5" comme illustré dans le tableau de correspondance ci-dessous :

Last update: 2024/01/22 11:20

Table 15. ARDUINO® connectors on NUCLEO-F334R8

Connector Pin		Pin name	STM32 pin	Function	
		9	Left connectors	7	
CN6 power	1	NC	E .		
	2	IOREF	120	3.3V Ref	
	3	RESET	NRST	RESET	
	4	+3.3V		3.3V input/output	
	5	+5V	- 2	5V output	
	6	GND	THE STATE OF	ground	
	7	GND	152	ground	
	8	VIN	28	Power input	
	1	A0	PA0	ADC1_IN1	
1	2	A1	PA1	ADC1_IN2	
CNO analas	3	A2	PA4	ADC2_IN1	
CN8 analog	4	A3	PB0	ADC1_IN11	
	5	A4	PC1 or PB9 ⁽¹⁾	ADC_IN7 (PC1) or I2C1_SDA (PB9	
	6	A5	PC0 or PB8 ⁽¹⁾	ADC_IN6 (PC0) or I2C1_SCL (PB8	
100		19 9e	Right connectors	£	
	10	D15	PB8	I2C1_SCL	
1	9	D14	PB9	I2C1_SDA	
	8	AREF	-	AVDD	
CNE digital	7	GND	- ground		
CN5 digital	6	D13	PA5 SPI1_SCK		
	5	D12	PA6	SPI1_MISO	
	4	D11	PA7	TIM17_CH1 or SPI1_MOSI	
	3	D10	PB6	TIM16_CH1N or SPI1_CS	

Table 15. ARDUINO® connectors on NUCLEO-F334R8 (continued)

Connector	Pin	Pin name	STM32 pin	Function	
CN5 digital	2	D9	PC7	TIM3_CH2	
	1	D8	PA9		
CN9 digital	8	D7	PA8		
	7	D6	PB10	TIM2_CH3	
	6	D5	PB4	TIM3_CH1	
	5	D4	PB5		
	4	D3	PB3	TIM2_CH2	
	3	D2	PA10		
	2	D1	PA2	USART2_TX	
	1	D0	PA3	USART2_RX	

^{1.} Refer to Table 10: Solder bridges for details.

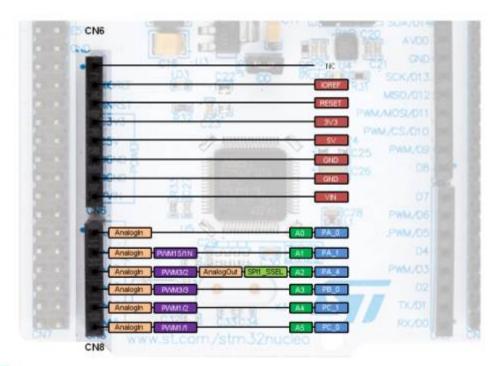
2025/10/25 15:02 7/16 STM32

Table 26. ST morpho connector on NUCLEO-F072RB, NUCLEO-F091RC, NUCLEO-F303RE, NUCLEO-F334R8

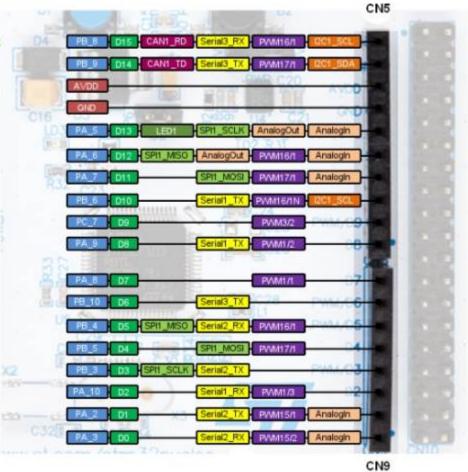
CN7 odd pins		CN7 even pins		CN10 odd pins		CN10 even pins	
Pin	Name	Name	Pin	Pin	Name	Name	Pin
1	PC10	PC11	2	1	PC9	PC8	2
3	PC12	PD2	4	3	PB8	PC6	4
5	VDD	E5V	6	5	PB9	PC5	6
7	BOOT0 ⁽¹⁾⁽²⁾	GND	8	7	AVDD	U5V ⁽³⁾	8
9	74	2	10	9	GND	-	10
11	-	IOREF	12	11	PA5	PA12	12
13	PA13 ⁽⁴⁾	RESET	14	13	PA6	PA11	14
15	PA14 ⁽⁴⁾	+3.3V	16	15	PA7	PB12	16
17	PA15	+5V	18	17	PB6	PB11	18
19	GND	GND	20	19	PC7	GND	20
21	PB7	GND	22	21	PA9	PB2	22
23	PC13	VIN	24	23	PA8	PB1	24
25	PC14	2	26	25	PB10	PB15	26
27	PC15	PA0	28	27	PB4	PB14	28
29	PF0	PA1	30	29	PB5	PB13	30
31	PF1	PA4	32	31	PB3	AGND	32
33	VBAT	PB0	34	33	PA10	PC4	34
35	PC2	PC1 or PB9 ⁽⁵⁾	36	35	PA2	7.	36
37	PC3	PC0 or PB8 ⁽⁵⁾	38	37	PA3	-	38

The default state of BOOT0 is LOW. It can be set to HIGH when a jumper is on pin5-7 of CN7. Two unused jumpers are available on CN11 and CN12 (bottom side of the board).

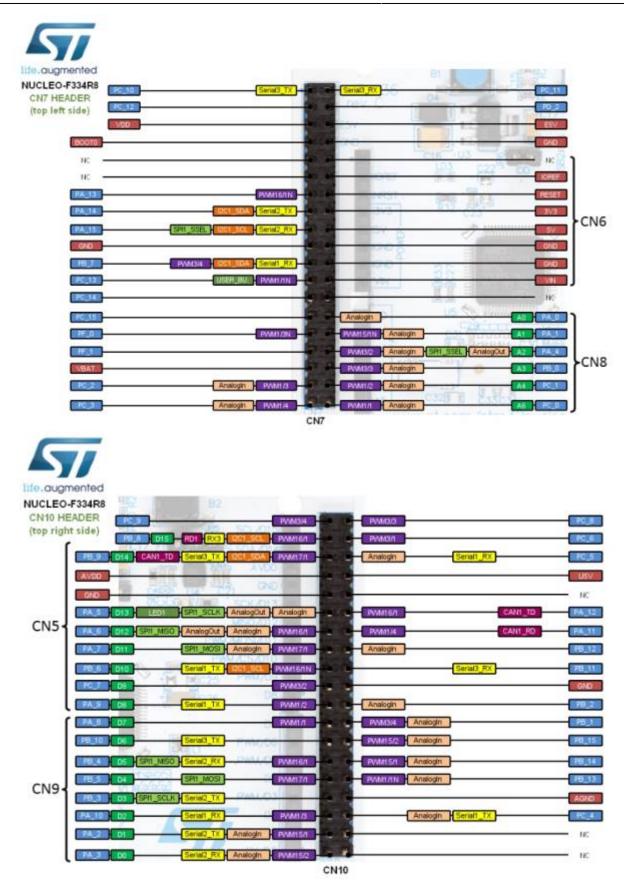
Numérotation des broches et fonctionnalités

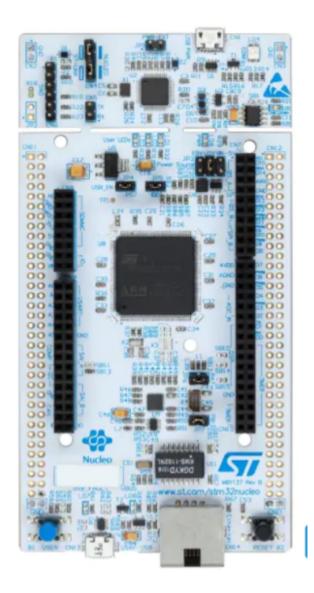

^{2.} CN7 pin 7 (BOOT0) can be configured by engineering byte as PF11 on NUCLEO-F091RC.

^{3.} U5V is 5 V power from ST-LINK/V2-1 USB connector and it rises before +5V.

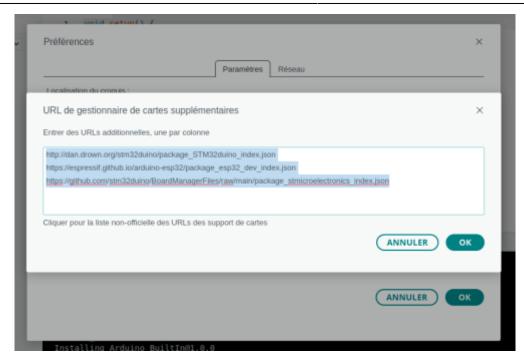

PA13 and PA14 share with SWD signals connected to ST-LINK/V2-1, it is not recommended to use them as IO pins if the ST-LINK part is not cut.

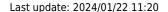
^{5.} Refer to Table 10: Solder bridges for details.

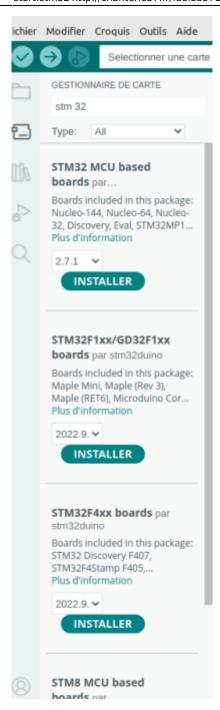



2025/10/25 15:02 9/16 STM32

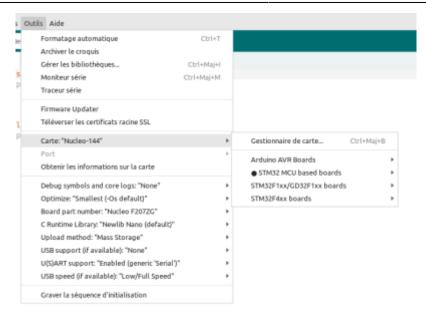
/!\ Dans le programme il faut spécifier uniquement les noms de broches inscrites en Bleu/blanc dans les figures ci-dessus.

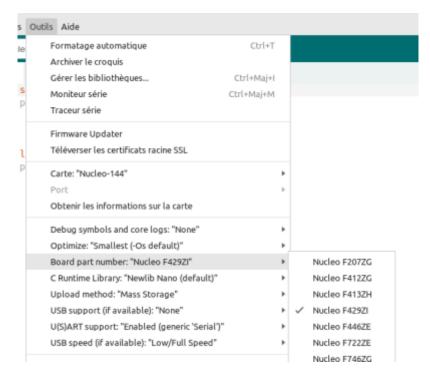

Debuter avec le STM32 144 NUCLEO-F429ZI


-1-Dans I IDE arduino version 2.x.x, inserer les deux lignes suivantes :

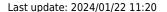

http://dan.drown.org/stm32duino/package_STM32duino_index.json
https://github.com/stm32duino/BoardManagerFiles/raw/main/package_stmicroelec
tronics_index.json

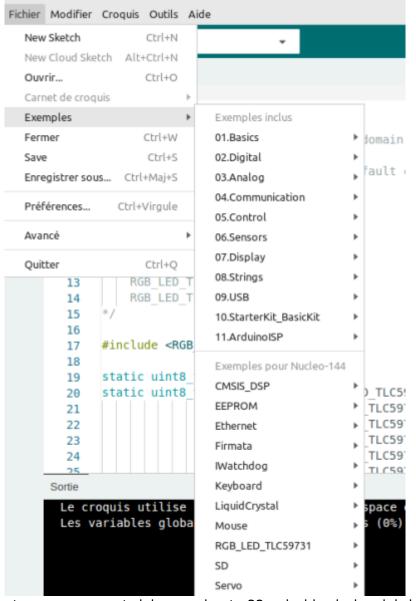
2025/10/25 15:02 11/16 STM32


-2- Dans le gestionaire de carte installer toutes les cartes STM32



-3- Dans "Outils" -> "Carte" choisir "STM32 MCU Based Board" et "Nucleo 144"

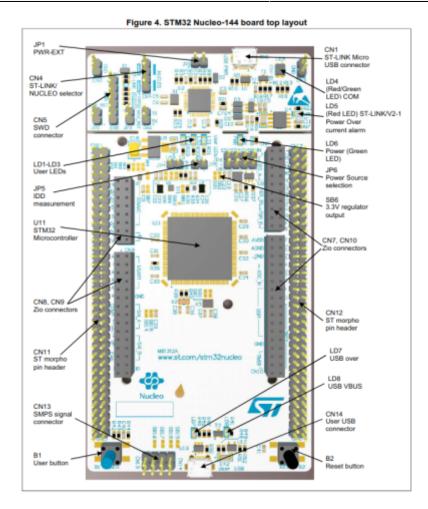

2025/10/25 15:02 13/16 STM32



-4- Dans l'option "Board part number" choisir ; "Nucleo F429ZI"

-5- On peut pour tester la carte , envoyer le programme exemple : "RGB_LED_TLC59731" ou le programme "Blink"

comment programmer et deboguer le stm32 a l aide de l ardui. led.pdf


Debuter avec Un STM32 144 NUCLEO-L4P5ZG

Carte Pour l'instant ... non comparible IDE arduino

Suivez la séquence ci-dessous pour configurer la carte Nucleo-144 et lancer la démonstration application (pour l'emplacement des composants, reportez-vous à la Figure 4 : Disposition du dessus de la carte STM32 Nucleo-144).

2025/10/25 15:02 15/16 STM32

- Vérifiez la position du cavalier sur la carte : JP1 (PWR-EXT) OFF (voir Section 5.5.1 : Entrée d'alimentation de ST-LINK/V2-1 USB connecteur pour plus de détails) JP6 (source d'alimentation) côté STLK (pour plus de détails, voir le tableau 7 : cavalier lié à l'alimentation) JP5 (IDD) ON (pour plus de détails, voir Section 5.8 : JP5 (IDD))CN4 ON sélectionné (pour plus de détails, voir Tableau 4 : états CN4 des cavaliers).
- Pour l'identification correcte des interfaces de l'appareil à partir du PC hôte et avant connectant la carte, installez le pilote Nucleo USB disponible sur le Site Web www.st.com/stm32nucleo.
- 3. -. Pour alimenter la carte, connectez la carte STM32 Nucleo-144 à un PC avec un port USB de type A. au câble Micro-B' via le connecteur USB CN1 sur le ST-LINK. En conséquence, le les LED vertes LD6 (PWR) et LD4 (COM) s'allument et la LED rouge LD3 clignote.
- 4. -. Appuyez sur le bouton B1 (bouton gauche).
- 5. -. Observez que la fréquence de clignotement des trois LED LD1 à LD3 change, en cliquant sur sur le bouton B1.
- La démonstration du logiciel et les nombreux exemples de logiciels, qui permettent à l'utilisateur de utiliser les fonctions Nucleo, sont disponibles sur la page Web www.st.com/stm32nucleo.
- 7. -. Développez une application en utilisant les exemples disponibles.

Flipper zero

Flipper Zero

Last update: 2024/01/22 11:20

From:

http://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Château-Renault

Permanent link:

http://chanterie37.fr/fablab37110/doku.php?id=start:stm32&rev=1705918816

Last update: 2024/01/22 11:20

