
2026/01/31 17:39 1/6 MicroPython sur ESP8266 ou ESP32

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

MicroPython sur ESP8266 ou ESP32

Premiers pas avec MicroPython sur l'ESP32
Reference Micropython

L'utilisation de MicroPython est un excellent moyen de tirer le meilleur parti de votre carte ESP32.
vice versa, la puce ESP32 est une excellente plate-forme pour utiliser MicroPython. Le didacticiel vous
guidera dans la configuration de MicroPython, l'obtention d'une invite et l'utilisation WebREPL,
connexion au réseau et communication avec Internet, en utilisant les périphériques matériels et le
contrôle de certains composants externes.

C'est parti !

Exigences
La première chose dont vous avez besoin est une carte avec une puce ESP32. Le MicroPython Le
logiciel prend en charge la puce ESP32 elle-même et n'importe quelle carte devrait fonctionner. la
caractéristique d'une carte est la façon dont les broches GPIO sont connectées à l'extérieur monde, et
s'il comprend un convertisseur USB-série intégré pour rendre le UART disponible sur votre PC.

Les noms des broches seront donnés dans ce tutoriel en utilisant les noms des puces (par exemple
GPIO2) et il devrait être simple de trouver à quelle broche cela correspond sur votre conseil
particulier.

Alimentation de la carte
Si votre carte est équipée d'un connecteur USB, il est fort probable qu'elle soit alimentée par ceci
lorsqu'il est connecté à votre PC. Sinon, vous devrez l'alimenter directement. Veuillez vous référer à la
documentation de votre carte pour plus de détails.

Obtenir le firmware
La première chose à faire est de télécharger le firmware MicroPython le plus récent .bin à charger sur
votre appareil ESP32. Vous pouvez le télécharger à partir du Page de téléchargement de MicroPython
À partir de là, vous avez 3 choix principaux :

Versions de firmware stables
Versions quotidiennes du firmware
Versions quotidiennes du firmware avec prise en charge de SPIRAM

Si vous débutez avec MicroPython, le mieux est d'opter pour la version Stable versions de firmware. Si
vous êtes un utilisateur avancé et expérimenté de MicroPython ESP32 qui aimerait suivre de près le
développement et aider à tester de nouveaux fonctionnalités, il y a des builds quotidiennes. Si votre
carte prend en charge SPIRAM, vous pouvez utilisez soit le firmware standard, soit le firmware avec
support SPIRAM, et dans dans ce dernier cas, vous aurez accès à plus de RAM pour les objets Python.

https://docs.micropython.org/en/latest/esp32/quickref.html
https://micropython.org/download/ESP32_GENERIC/

Last
update:
2024/11/09
16:21

debuter_en_python:micropython2 https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:micropython2&rev=1731165671

https://chanterie37.fr/fablab37110/ Printed on 2026/01/31 17:39

Déploiement du firmware
Une fois que vous avez le firmware MicroPython, vous devez le charger sur votre appareil ESP32. Il y a
deux étapes principales pour ce faire : vous devez d'abord mettre votre appareil en mode bootloader,
et deuxièmement, vous devez copier le firmware. Le mode exact la procédure pour ces étapes
dépend fortement de la carte en question et vous il faut se référer à sa documentation pour plus de
détails.

Heureusement, la plupart des cartes disposent d'un connecteur USB, d'un convertisseur USB-série et
du DTR et les broches RTS câblées d'une manière spéciale, le déploiement du firmware devrait être
aussi simple que toutes les étapes peuvent être effectuées automatiquement. Les cartes qui ont de
telles fonctionnalités incluent les Adafruit Feather HUZZAH32, M5Stack, Wemos LOLIN32 et TinyPICO
cartes, ainsi que les kits de développement Espressif DevKitC, PICO-KIT, WROVER-KIT.

Pour de meilleurs résultats, il est recommandé d'effacer d'abord l'intégralité du flash de votre appareil
avant d'installer le nouveau firmware MicroPython.

Actuellement, nous ne prenons en charge que la copie d'esptool.py dans le firmware. Vous pouvez
trouver cet outil ici

en utilisant pip::

pip installe esptool

Les versions commençant par 1.3 prennent en charge Python 2.7 et Python 3.4 (ou plus récent). Une
version plus ancienne (au moins 1.2.1 est nécessaire) fonctionne bien mais nécessitera Python 2.7.

En utilisant esptool.py, vous pouvez effacer le flash avec la commande :

esptool.py --port /dev/ttyUSB0 effacer_flash

Et puis déployez le nouveau firmware en utilisant ::

esptool.py --chip esp32 --port /dev/ttyUSB0 write_flash -z 0x1000
esp32-20180511-v1.9.4.bin

Remarques :

Vous devrez peut-être modifier le paramètre « port » en quelque chose d'autre adapté à votre
PC
Vous devrez peut-être réduire le débit en bauds si vous obtenez des erreurs lors du flashage
(par exemple jusqu'à 115200 en ajoutant « --baud 115200 » dans la commande)
Pour certaines cartes avec une configuration FlashROM particulière, vous devrez peut-être
changer le mode flash (par exemple en ajoutant `-fm dio` dans la commande)
Le nom de fichier du firmware doit correspondre au fichier que vous avez

Si les commandes ci-dessus s'exécutent sans erreur, MicroPython doit être installé sur votre planche !

https://github.com/espressif/esptool/

2026/01/31 17:39 3/6 MicroPython sur ESP8266 ou ESP32

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

Invite série
Une fois que vous avez le firmware sur l'appareil, vous pouvez accéder au REPL (invite Python) via
UART0 (GPIO1=TX, GPIO3=RX), qui peut être connecté à un port USB-série convertisseur, selon votre
carte. Le débit en bauds est de 115200.

À partir de là, vous pouvez maintenant suivre le tutoriel ESP8266, car ces deux puces Espressif sont
très similaires lorsqu'il s'agit d'utiliser MicroPython sur eux. Le tutoriel ESP8266 se trouve dans
:ref:esp8266_tutorial (mais ignorez la section Introduction).

Dépannage des problèmes d'installation
Si vous rencontrez des problèmes lors du flashage ou de l'exécution immédiate du firmware après
cela, voici des recommandations de dépannage :

Soyez attentif et essayez d'exclure les problèmes matériels. Il existe 2 problèmes courants
Problèmes : mauvaise qualité de la source d'alimentation et FlashROM usée/défectueuse. En
parlant de source d'alimentation, non seulement l'ampérage brut est important, mais aussi son
faible ondulation et bruit/EMI en général. L'alimentation la plus fiable et la plus pratique la
source est un port USB.

Les instructions de clignotement ci-dessus utilisent une vitesse de clignotement de 460800
bauds, ce qui est bon compromis entre vitesse et stabilité. Cependant, selon votre
module/carte, convertisseur USB-UART, câbles, système d'exploitation hôte, etc., le débit ci-
dessus Le débit peut être trop élevé et entraîner des erreurs. Essayez un débit plus courant de
115 200 bauds. Dans de tels cas, il est préférable d'utiliser un tarif plus élevé.

Pour détecter un contenu flash incorrect (par exemple provenant d'un secteur défectueux sur
une puce), ajoutez le commutateur « --verify » aux commandes ci-dessus.

Si vous rencontrez toujours des problèmes lors du flashage du firmware, veuillez se référer à la
page du projet esptool.py pour une documentation supplémentaire et un outil de suivi des
bogues où vous pouvez signaler les problèmes.

Si vous parvenez à flasher le firmware mais que l'option `--verify` renvoie des erreurs
même après plusieurs tentatives peuvent survenir, vous avez peut-être une puce FlashROM
défectueuse.

Modulation de largeur d'impulsion
La modulation de largeur d'impulsion (PWM) est un moyen d'obtenir une sortie analogique artificielle
sur un broche numérique. Cela se fait en basculant rapidement la broche de bas en haut. Il y a deux
paramètres associés à cela : la fréquence du basculement, et le cycle de service. Le cycle de service
est défini comme la durée pendant laquelle la broche est haute par rapport à la durée d'une seule
période (temps bas et temps haut). Maximum le cycle de service est lorsque la broche est haute tout

https://github.com/espressif/esptool
https://github.com/espressif/esptool

Last
update:
2024/11/09
16:21

debuter_en_python:micropython2 https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:micropython2&rev=1731165671

https://chanterie37.fr/fablab37110/ Printed on 2026/01/31 17:39

le temps, et le minimum est lorsqu'elle est bas tout le temps.

Exemple plus complet avec les 16 canaux PWM et les 8 temporisateurs ::

à partir de l'importation de la machine Pin, PWM essayer:

 f = 100 # Hz
 d = 1024 // 16 # 6,25%
 broches = (15, 2, 4, 16, 18, 19, 22, 23, 25, 26, 27, 14, 12, 13, 32,
33)
 pwms = []
 pour i, épingle dans enumerate(pins) :
 pwms.append(PWM(Pin(pin), freq=f * (i // 2 + 1), duty= 1023 si
i==15 sinon d * (i + 1)))
 imprimer(pwms[i])

enfin:

 pour pwm dans pwms :
 essayer:
 pwm.deinit()
 sauf:
 passer

La sortie est :

* PWM (Pin (15), fréquence = 100, service = 64, résolution = 10, mode =
0, canal = 0, minuterie = 0)

PWM (Pin (2), fréquence = 100, service = 128, résolution = 10, mode = 0, canal = 1,
minuterie = 0)
PWM (Pin (4), fréquence = 200, service = 192, résolution = 10, mode = 0, canal = 2,
minuterie = 1)
PWM (broche (16), fréquence = 200, service = 256, résolution = 10, mode = 0, canal = 3,
minuterie = 1)
PWM (Pin (18), fréquence = 300, service = 320, résolution = 10, mode = 0, canal = 4,
minuterie = 2)
PWM (broche (19), fréquence = 300, service = 384, résolution = 10, mode = 0, canal = 5,
minuterie = 2)
PWM (Pin (22), fréquence = 400, service = 448, résolution = 10, mode = 0, canal = 6,
minuterie = 3)
PWM (Pin (23), fréquence = 400, service = 512, résolution = 10, mode = 0, canal = 7,
minuterie = 3)
PWM (Pin (25), fréquence = 500, service = 576, résolution = 10, mode = 1, canal = 0,
minuterie = 0)
PWM (Pin (26), fréquence = 500, service = 640, résolution = 10, mode = 1, canal = 1,
minuterie = 0)
PWM (broche (27), fréquence = 600, service = 704, résolution = 10, mode = 1, canal = 2,
minuterie = 1)

2026/01/31 17:39 5/6 MicroPython sur ESP8266 ou ESP32

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

PWM (broche (14), fréquence = 600, service = 768, résolution = 10, mode = 1, canal = 3,
minuterie = 1)
PWM (broche (12), fréquence = 700, service = 832, résolution = 10, mode = 1, canal = 4,
minuterie = 2)
PWM (broche (13), fréquence = 700, service = 896, résolution = 10, mode = 1, canal = 5,
minuterie = 2)
PWM (Pin (32), fréquence = 800, service = 960, résolution = 10, mode = 1, canal = 6,
minuterie = 3)
PWM (Pin (33), fréquence = 800, service = 1023, résolution = 10, mode = 1, canal = 7,
minuterie = 3)

Exemple de changement de fréquence en douceur ::

from time import sleep from machine import Pin, PWM

DUTY_MAX = 2**16 - 1

duty_u16 = 0 delta_d = 16

p = PWM(Pin(5), 1000, duty_u16=duty_u16) print(p)

while True:

p.duty_u16(duty_u16)

sleep(1 / 1000)

duty_u16 += delta_d
if duty_u16 >= DUTY_MAX:
 duty_u16 = DUTY_MAX
 delta_d = -delta_d
elif duty_u16 <= 0:
 duty_u16 = 0
 delta_d = -delta_d

Voir l'onde PWM sur la broche (5) avec un oscilloscope.

Exemple de changement de service en douceur ::

à partir du temps importer le sommeil à partir de l'importation de la machine Pin, PWM

SERVICE_MAX = 2**16 - 1

duty_u16 = 0 delta_d = 16

p = PWM(Pin(5), 1000, duty_u16=duty_u16) imprimer(p)

tant que Vrai :

 p.duty_u16(duty_u16)

 dormir (1 / 1000)

Last
update:
2024/11/09
16:21

debuter_en_python:micropython2 https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:micropython2&rev=1731165671

https://chanterie37.fr/fablab37110/ Printed on 2026/01/31 17:39

 duty_u16 += delta_d
 si duty_u16 >= DUTY_MAX :
 duty_u16 = DUTY_MAX
 delta_d = -delta_d
 elif duty_u16 <= 0:
 duty_u16 = 0
 delta_d = -delta_d

Voir l'onde PWM sur la broche (5) avec un oscilloscope.

Remarque : il n'est pas nécessaire de spécifier le mode Pin.OUT. Le canal est initialisé en mode PWM
en interne une fois pour chaque broche transmise au constructeur PWM.

Le code suivant est erroné ::

pwm = PWM(Pin(5, Pin.OUT), freq=1000, duty=512) # Pin(5) en mode PWM ici
pwm = PWM(Pin(5, Pin.OUT), freq=500, duty=256) # Pin(5) en mode OUT ici, PWM
est désactivé

Utilisez plutôt ce code ::

pwm = PWM(Pin(5), freq=1000, duty=512)
pwm.init(fréquence=500, service=256)

From:
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Château-Renault

Permanent link:
https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:micropython2&rev=1731165671

Last update: 2024/11/09 16:21

https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:micropython2&rev=1731165671

	MicroPython sur ESP8266 ou ESP32
	Premiers pas avec MicroPython sur l'ESP32
	Exigences
	Alimentation de la carte
	Obtenir le firmware
	Déploiement du firmware
	Invite série
	Dépannage des problèmes d'installation

	Modulation de largeur d'impulsion

