2026/01/18 00:58 1/7 Programmation orientée objet en python / classes

Programmation orientée objet en python/
classes

La programmation orientée objet (POO) permet de créer des entités (objets) que I'on peut manipuler .
La programmation orientée objet impose des structures solides et claires. Les objets peuvent interagir
entre eux, cela facilite grandement la compréhension du code et sa maintenance. On oppose souvent
la programmation objet a la programmation procédurale , la premiere étant plus “professionnelle”
que l'autre car plus fiable et plus propre. Les classes

Une classe regroupe des fonctions et des attributs qui définissent un objet. On appelle par ailleurs les
fonctions d'une classe des “ méthodes ".

Créons une classe Voiture :
class001.py
coding: utf-8
Voiture:
__init (self

self.nom "Ferrari"

Notre classe Voiture est une sorte d'usine a créer des voitures.
La méthode _init_ () est appelée lors de la création d'un objet.

self.nom est une maniere de stocker une information dans la classe. On parle d'attribut de classe.
Dans notre cas, on stock le nom dans l'attribut nom .

Les objets
Un objet est une instance d'une classe . On peut créer autant d'objets que I'on désire avec une classe

Créons maintenant notre voiture:

>>> ma_voiture = Voiture()

Les attributs de class

Les attributs de classe permettent de stocker des informations au niveau de la classe. Elle sont
similaires aux variables.

Dans notre exemple:

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=0

Last update:

. . i 2id= . =
2024/09/10 16:07 debuter_en_python:poo https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:poo&rev=1725977269

>>> ma_voiture = Voiture()
>>> ma_voiture.nom
'Ferrari’
Vous pouvez a tout moment créer un attribut pour votre objet:
>>> ma_voiture.modele = "250"

Et le lire ainsi:

>>> ma_voiture.modele
250"

Les méthodes

Les méthodes sont des fonctions définies dans une classe.

Créons une nouvelle méthode dans notre classe voiture:

class002.py
coding: utf-8
Voiture:

__init (self
self.nom "Ferrari"

donne _moi le modele(self
II250II

Utilison cette méthode:

>>> ma_voiture=Voiture()
>>> ma voiture.donne moi le modele()
‘250"

Les propriétés

Quelque soit le langage, pour la programmation orientée objet il est de préférable de passer par des
propriétés pour changer les valeurs des attributs. Alors bien que cela ne soit pas obligatoire, il existe
une convention de passer par des getter (ou accesseur en francais) et des setter (mutateurs) pour
changer la valeur d'un attribut. Cela permet de garder une cohérence pour le programmeur, si je
change un attribut souvent cela peut également impacter d'autres attributs et les mutateurs
permettent de faire cette modification une fois pour toute.

https://chanterie37.fr/fablab37110/ Printed on 2026/01/18 00:58

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=1

2026/01/18 00:58 3/7 Programmation orientée objet en python / classes

Un exemple d'utilisation de propriétés:
class003.py

coding: utf-8

class Voiture(object):

def init (self):
self. roues=4

def get roues(self):
print "Récupération du nombre de roues"
return self. roues

def set roues(self, v):
print "Changement du nombre de roues"

self. roues = v

roues=property(get roues, set roues)

Quand on changera la valeur du nombre de roues, un message apparaitra. En soi cela n'apporte rien
mais au lieu de faire un simple print , vous pouvez par exemple envoyer un mail, etc.

Testons notre classe:

>>> ma_voiture=Voiture()
>>> ma_voiture.roues=5

Changement du nombre de roues
>>> ma_voiture.roues
Récupération du nombre de roues
5
Il existe une autre syntaxe en passant par des décorateurs:
class004.py
class Voiture(object):

def init (self):
self. roues=4

@property
def roues(self):
print "Récupération du nombre de roues"

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=2
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=3

Last update:

: . i 2id= . =
2024/09/10 16:07 debuter_en_python:poo https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:poo&rev=1725977269

return self. roues
@roues.setter
def roues(self, v):

print "Changement du nombre de roues"
self. roues = v

Le résultat sera le méme, mais la lecture du code se trouve amélioré.
La fonction dir

Parfois il est intéressant de decortiquer un objet pour résoudre a un bug ou pour comprendre un
script

La fonction dir vous donne un apercu des méthodes de I'objet:
>>> dir(ma_voiture)

[' doc_',' init_' ' module_' 'donne_moi_le_modele', 'nom']
%%L'attribut spécial _dict_ %%

Cet attribut spécial vous donne les valeurs des attributs de I'instance:

>>> ma_voiture. dict
{'nom': 'Ferrari'}

L'héritage de class

L'héritage est un concept tres utile. Cela permet de créer de nouvelles classes mais avec une base
existante.

Gardons I'exemple de la voiture et créons une classe VoitureSport :
class005.py
class Voiture:

roues = 4
moteur =1

def init (self):
self.nom = "A déterminer"

class VoitureSport(Voiture):

https://chanterie37.fr/fablab37110/ Printed on 2026/01/18 00:58

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=4

2026/01/18 00:58 5/7 Programmation orientée objet en python / classes

def init (self):
self.nom = "Ferrari"

On a indiqué que VoitureSport a hérité de classe Voiture , elle recupere donc toutes ses méthodes et
ses attributs.

On peut toujours instancier la classe Voiture si on le désire:

>>> ma_voiture=Voiture()
>>> ma_voiture.nom

‘A déterminer!’

>>> ma_voiture.roues

4

Instancions maintenant la classe VoitureSport :

>>> ma_voiture sport=VoitureSport()
>>> ma_voiture sport.nom

‘Ferrari’

>>> ma_voiture sport.roues

4

On remarque tout d'abord que I'attribut roues a bien été hérité. Ensuite on remarque que la méthode
init a écrasé la méthode de la classe Voiture . On parle alors de surcharge de méthode.

Polymorphisme / surcharge de méthode

Comme nous l'avons vu plus haut si une classe hérite d'une autre classe, elle hérite les méthodes de
son parent.

Exemple:

class006.py
coding: utf-8
class Voiture:

roues = 4
moteur =1

def init (self):
self.nom = "A déterminer"

def allumer(self):
print "La voiture démarre"

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=5

Last update:

. . i 2id= . =
2024/09/10 16:07 debuter_en_python:poo https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:poo&rev=1725977269

class VoitureSport(Voiture):

def init (self):
self.nom = "Ferrari"

ma_voiture sport = VoitureSport()
ma_voiture sport.allumer()
Le résultat:
La voiture démarre

Il est cependant possible d' écraser la méthode de la classe parente en la redéfinissant. On parle alors
de surcharger une méthode .

class007.py
coding: utf-8
Voiture:

roues
moteur

__init (self
self.nom "A déterminer"

allumer (self
"La voiture démarre"

VoitureSport (Voiture

__init (self
self.nom "Ferrari"

allumer(self
"La voiture de sport démarre"

ma_voiture sport = VoitureSport
ma_voiture sport.allumer
Le résultat:
La voiture de sport démarre

Enfin dernier point intéressant: il est possible d'appeler la méthode du parent puis de faire la
spécificité de la méthode. On peut d'ailleurs appeler n'importe quelle autre méthode.

https://chanterie37.fr/fablab37110/ Printed on 2026/01/18 00:58

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=6

2026/01/18 00:58 717 Programmation orientée objet en python / classes

class008.py
coding: utf-8
Voiture:

roues
moteur

__init (self
self.nom "A déterminer"

allumer (self
"La voiture démarre"

VoitureSport (Voiture

__init (self
self.nom "Ferrari"

allumer(self
Voiture.allumer(self
"La voiture de sport démarre"

ma_voiture sport = VoitureSport
ma_voiture sport.allumer

Le résultat:

La voiture démarre
La voiture de sport démarre

Les classes Voiture et VoitureSport possédent donc chacune une méthode de méme nom mais ces
méthodes n'éffectuent pas les mémes taches. On parle dans ce cas de polymorphisme . Conventions

Prenez I'habitude de nommer votre classe uniquement avec des caracteres alphanumériques et
commencant par une majuscule. Et a l'inverse l'instance peut étre nommée sans majuscule.

voiture sport = VoitureSport()

From:
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Chateau-Renault

Permanent link:
https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:poo&rev=1725977269 I r-I-

Last update: 2024/09/10 16:07

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=7
https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:poo&rev=1725977269

	Programmation orientée objet en python / classes
	Les objets
	Les attributs de class
	Les méthodes
	Les propriétés
	La fonction dir
	%%L'attribut spécial __dict__%%
	L'héritage de class
	Polymorphisme / surcharge de méthode

