
2026/01/17 23:27 1/8 Programmation orientée objet en python / classes

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

Programmation orientée objet en python /
classes

La programmation orientée objet (POO) permet de créer des entités (objets) que l'on peut manipuler .
La programmation orientée objet impose des structures solides et claires. Les objets peuvent interagir
entre eux, cela facilite grandement la compréhension du code et sa maintenance. On oppose souvent
la programmation objet à la programmation procédurale , la première étant plus “professionnelle”
que l'autre car plus fiable et plus propre.

Les classes

Une classe regroupe des fonctions et des attributs qui définissent un objet. On appelle par ailleurs les
fonctions d'une classe des “ méthodes ”.

Créons une classe Voiture :

class001.py

coding: utf-8

class Voiture:

 def __init__(self):
 self.nom = "Ferrari"

Notre classe Voiture est une sorte d'usine à créer des voitures.

La méthode __init__() est appelée lors de la création d'un objet.

self.nom est une manière de stocker une information dans la classe. On parle d'attribut de classe.
Dans notre cas, on stock le nom dans l'attribut nom .

Les objets

Un objet est une instance d'une classe . On peut créer autant d'objets que l'on désire avec une classe
.

Créons maintenant notre voiture:

 >>> ma_voiture = Voiture()

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=0

Last update:
2024/09/10 16:11 debuter_en_python:poo https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:poo&rev=1725977490

https://chanterie37.fr/fablab37110/ Printed on 2026/01/17 23:27

Les attributs de class

Les attributs de classe permettent de stocker des informations au niveau de la classe. Elle sont
similaires aux variables.

Dans notre exemple:

 >>> ma_voiture = Voiture()
 >>> ma_voiture.nom
 'Ferrari'

Vous pouvez à tout moment créer un attribut pour votre objet:

 >>> ma_voiture.modele = "250"

Et le lire ainsi:

 >>> ma_voiture.modele
 '250'

Les méthodes

Les méthodes sont des fonctions définies dans une classe.

Créons une nouvelle méthode dans notre classe voiture:

class002.py

coding: utf-8

class Voiture:

 def __init__(self):
 self.nom = "Ferrari"

 def donne_moi_le_modele(self):
 return "250"

Utilison cette méthode:

 >>> ma_voiture=Voiture()
 >>> ma_voiture.donne_moi_le_modele()
 '250'

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=1

2026/01/17 23:27 3/8 Programmation orientée objet en python / classes

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

Les propriétés

Quelque soit le langage, pour la programmation orientée objet il est de préférable de passer par des
propriétés pour changer les valeurs des attributs. Alors bien que cela ne soit pas obligatoire, il existe
une convention de passer par des getter (ou accesseur en francais) et des setter (mutateurs) pour
changer la valeur d'un attribut. Cela permet de garder une cohérence pour le programmeur, si je
change un attribut souvent cela peut également impacter d'autres attributs et les mutateurs
permettent de faire cette modification une fois pour toute.

Un exemple d'utilisation de propriétés:

class003.py

coding: utf-8

class Voiture(object):

 def __init__(self):
 self._roues=4

 def _get_roues(self):
 print "Récupération du nombre de roues"
 return self._roues

 def _set_roues(self, v):
 print "Changement du nombre de roues"
 self._roues = v

 roues=property(_get_roues, _set_roues)

Quand on changera la valeur du nombre de roues, un message apparaîtra. En soi cela n'apporte rien
mais au lieu de faire un simple print , vous pouvez par exemple envoyer un mail, etc.

Testons notre classe:

 >>> ma_voiture=Voiture()
 >>> ma_voiture.roues=5

Changement du nombre de roues

 >>> ma_voiture.roues

Récupération du nombre de roues

 5

Il existe une autre syntaxe en passant par des décorateurs:

class004.py

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=2
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=3

Last update:
2024/09/10 16:11 debuter_en_python:poo https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:poo&rev=1725977490

https://chanterie37.fr/fablab37110/ Printed on 2026/01/17 23:27

class Voiture(object):

 def __init__(self):
 self._roues=4

 @property
 def roues(self):
 print "Récupération du nombre de roues"
 return self._roues

 @roues.setter
 def roues(self, v):
 print "Changement du nombre de roues"
 self._roues = v

Le résultat sera le même, mais la lecture du code se trouve amélioré.

La fonction dir

Parfois il est intéressant de decortiquer un objet pour résoudre à un bug ou pour comprendre un
script.

La fonction dir vous donne un aperçu des méthodes de l'objet:

 >>> dir(ma_voiture)

['__doc__', '__init__', '__module__', 'donne_moi_le_modele', 'nom']

L'attribut spécial __dict__

Cet attribut spécial vous donne les valeurs des attributs de l'instance:

 >>> ma_voiture.__dict__
 {'nom': 'Ferrari'}

L'héritage de class

L'héritage est un concept très utile. Cela permet de créer de nouvelles classes mais avec une base
existante.

Gardons l'exemple de la voiture et créons une classe VoitureSport :

class005.py

class Voiture:

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=4

2026/01/17 23:27 5/8 Programmation orientée objet en python / classes

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

 roues = 4
 moteur = 1

 def __init__(self):
 self.nom = "A déterminer"

class VoitureSport(Voiture):

 def __init__(self):
 self.nom = "Ferrari"

On a indiqué que VoitureSport a hérité de classe Voiture , elle recupère donc toutes ses méthodes et
ses attributs.

On peut toujours instancier la classe Voiture si on le désire:

 >>> ma_voiture=Voiture()
 >>> ma_voiture.nom
 'A déterminer'
 >>> ma_voiture.roues
 4

Instancions maintenant la classe VoitureSport :

 >>> ma_voiture_sport=VoitureSport()
 >>> ma_voiture_sport.nom
 'Ferrari'
 >>> ma_voiture_sport.roues
 4

On remarque tout d'abord que l'attribut roues a bien été hérité. Ensuite on remarque que la méthode
init a écrasé la méthode de la classe Voiture . On parle alors de surcharge de méthode.

Polymorphisme / surcharge de méthode

Comme nous l'avons vu plus haut si une classe hérite d'une autre classe, elle hérite les méthodes de
son parent .

Exemple:

class006.py

coding: utf-8

class Voiture:

 roues = 4

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=5

Last update:
2024/09/10 16:11 debuter_en_python:poo https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:poo&rev=1725977490

https://chanterie37.fr/fablab37110/ Printed on 2026/01/17 23:27

 moteur = 1

 def __init__(self):
 self.nom = "A déterminer"

 def allumer(self):
 print "La voiture démarre"

class VoitureSport(Voiture):

 def __init__(self):
 self.nom = "Ferrari"

 ma_voiture_sport = VoitureSport()
 ma_voiture_sport.allumer()

Le résultat:

 La voiture démarre

Il est cependant possible d' écraser la méthode de la classe parente en la redéfinissant. On parle alors
de surcharger une méthode .

class007.py

coding: utf-8

class Voiture:

 roues = 4
 moteur = 1

 def __init__(self):
 self.nom = "A déterminer"

 def allumer(self):
 print "La voiture démarre"

class VoitureSport(Voiture):

 def __init__(self):
 self.nom = "Ferrari"

 def allumer(self):
 print "La voiture de sport démarre"

 ma_voiture_sport = VoitureSport()
 ma_voiture_sport.allumer()

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=6

2026/01/17 23:27 7/8 Programmation orientée objet en python / classes

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

Le résultat:

 La voiture de sport démarre

Enfin dernier point intéressant: il est possible d'appeler la méthode du parent puis de faire la
spécificité de la méthode. On peut d'ailleurs appeler n'importe quelle autre méthode.

class008.py

coding: utf-8

class Voiture:

 roues = 4
 moteur = 1

 def __init__(self):
 self.nom = "A déterminer"

 def allumer(self):
 print "La voiture démarre"

class VoitureSport(Voiture):

 def __init__(self):
 self.nom = "Ferrari"

 def allumer(self):
 Voiture.allumer(self)
 print "La voiture de sport démarre"

 ma_voiture_sport = VoitureSport()
 ma_voiture_sport.allumer()

Le résultat:

 La voiture démarre
 La voiture de sport démarre

Les classes Voiture et VoitureSport possédent donc chacune une méthode de même nom mais ces
méthodes n'éffectuent pas les mêmes tâches. On parle dans ce cas de polymorphisme . Conventions

Prenez l'habitude de nommer votre classe uniquement avec des caractères alphanumériques et
commençant par une majuscule. Et à l'inverse l'instance peut être nommée sans majuscule.

 voiture_sport = VoitureSport()

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=debuter_en_python:poo&codeblock=7

Last update:
2024/09/10 16:11 debuter_en_python:poo https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:poo&rev=1725977490

https://chanterie37.fr/fablab37110/ Printed on 2026/01/17 23:27

From:
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Château-Renault

Permanent link:
https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:poo&rev=1725977490

Last update: 2024/09/10 16:11

https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=debuter_en_python:poo&rev=1725977490

	Programmation orientée objet en python / classes
	Les classes
	Les objets
	Les attributs de class
	Les méthodes
	Les propriétés
	La fonction dir
	L'attribut spécial __dict__
	L'héritage de class
	Polymorphisme / surcharge de méthode

