2026/01/29 08:06 1/41 ESP 32 Alimentation Autonome

ESP 32 Alimentation Autonome

Brochages de quelques ESP32

ESP32 et le TTGO T-Display

=3 o
= [] Bl wow o
[w]] I -
[e] (] B
[] o v=
L I -] R ves aes mas
Mmcki A [=] [] - = ARy fecis
s asas =] M v e
i am W] [1 B = aaw wsa
=x [EIR swor - anry e
=3 o EE
=E] EIH
B
[mic] e]
[] s] | RS o
D AL
it IPS STT7TB9V 1.14 Inch o0

E5P32 TTGO T-Display vi.1

ESP32 DEVKITC

iy ESP32-WROOM-32 PINOUT
ma P laka ESP3Z-DeviiiC)

[_B=
_" S =
= IThes PESET & e =
L - - vt i " w =
et g 3 L e
- Y
1l 1
- e me e e
_— i =
i - LS -1 - L
E PR A [
T - P o
it b, osm e - mad o
[- [
- <1 = =
e

NodeMCU ESP32

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

NModeMCU-325

4

=

L

L]
LE R R =R R R R RN ENESEESRNE®RHN.)

4y

NOTE:

Tension entrées et sorties

Carte de développement ESP32 Wemos D1 R32 :

e Compatible avec le brochage Arduino Uno
¢ Tension de fonctionnement :
o 3,3 V via broche Vin
o 5V via USB
o 9-24V via fiche alimentation
o WIFI et Bluetooth
e 22 broches d'entrée / sortie numériques
¢ Interfaces 12C, SPI, UART, DAC (x2), ADC (x6)
e Connexion micro USB
* NB : La broche A0 est sensible au téléversement.

Module ESP32 NodeMCU

e Tension de fonctionnement :
o 3,3 V via broche Vin
o 5V via USB
o WIFI et Bluetooth
e 10 broches d'entrée / sortie numériques
¢ Interfaces 12C, SPI, UART, DAC, ADC
e Connexion micro USB

Tension maximum et recommendée

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

2026/01/29 08:06 3/41 ESP 32 Alimentation Autonome

5.1 Absolute Maximum Ratings

Table 7: Absolute Maximum Ratings

[Pusameoter o e PR [T
Inpud few vollages v, -3 QL2581 W

: Inpnat high -.::l‘l.}'_ll: | .'-'_-.. - O, T BN i : ek - \'
Inpul leakans curment Iy | &0 v

[Cutpu Ioew voRags | Wi | i LR | W

[Catpud hugh e [| By v

[Inpu Gin capaciancg [e, I I 2 | pF

| v | 1.8 a3 | ¥
Maximum dive capabidiy [ladibx e,

| fil-;l.ﬁ'_:- ||'.'|'|:.|.1.|I||| ':-.1:'-- I Tars [| 40 |24 "

5.2 Recommended Operating Conditions

Table 8: Recommandad Oparating Conditions

[Pwamater | Symial’ i Typ W Uit
| Batiery reguisior supply vollage Vaar 28 13 | %8 W
| VD supply voltage | W 1.8 [aa Y
I !.Ir‘::‘.'i'-'b:_! Temparal e Fanga 40
0 W
1 | Ve 0.7 %W | Vi W
| MO theeshold vokage | Wi | 08 1 Vi W

Consommation et puissance fournie

Pl Moo] mmn [Pownls CONBLIMETINN
W-F T pachas! 13 dBrm ~ 21 dBir 160 ~ 260 mA

120 ma

Wi-Fi BT Bx and i g Bl =80 ma

: E Wil-Fi ¢ BT Tx packet 0 dBm
ACtHE mode [FRF working

Association sieap patiarn fby light-sloap) I) mAEOTIG, 1.2 maASDTIMI

Max spaed 20 md

bAodem-slean mods The CRU s powenad on

ight-sinep mode

Daap-sieep mods

riboTTeEhe Mmoo

Comme on peut le voir la consommation électrique est trés réduite, en alimentant le circuit avec un
pack de 2 piles AA 2500 mAh par exemple, on a environ un peu moins de 7h d'autonomie en émission
continue a puissance maximale, 60 jours en veille avec les modules radio actifs, et environ 80 ans en

hibernation ! Bien évidmment, a faible consommation électrique I'autonomie sera surtout définie par
I'auto-décharge des accumulateurs.

Comment alimenter un ESP32

Pour alimenter votre kit de développement ESP32, vous avez trois options:

1. -Via le port USB.

2. -Utilisation d'une tension non régulée entre 5V et 12V, connectée aux broches 5V et GND. Cette
tension est régulée a bord.

3. -Utilisation d'une tension régulée de 3,3 V, connectée aux broches 3,3 V et GND. Soyez tres
prudent avec cela: ne dépassez pas la limite de 3,3V, ou votre module ESP32 sera endommagé.

Attention : soyez tres, tres prudent de n'utiliser qu'une seule de ces options a la fois. Par exemple,
n'alimentez pas votre kit de développement ESP32 via la broche 5V en utilisant une entrée 10V alors

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

qgu'en méme temps vous avez le module connecté a votre ordinateur via USB. Cela endommagera
sirement votre module, et peut-étre méme votre ordinateur. Différents niveaux de tension de la carte
microcontréleur ESP32 Avant de pouvoir analyser différentes batteries en combinaison avec le
microcontroleur ESP32, nous devons comprendre qu'il existe différents niveaux de tension sur la carte
ESP32 NodeMCU. L'image suivante montre un schéma simplifié des niveaux de tension et des
composants importants.

Différents niveaux de tension de la carte microcontroleur ESP32

5V

I — L

V.12V 3.3V Voltage

AMS111T

Sur I'image, vous voyez que la connexion USB 5V et la broche VIN sont connectées a un régulateur de
tension 3,3V, qui transforme la tension d'entrée entre 5V et 12V en une tension de sortie

Mode USB

La premiere possibilité et aussi la plus simple pour une alimentation électrique est le cable USB 5V.
Mais comme I'ESP32 fonctionne a 3,3V, il existe un régulateur de tension intégré pour transformer le
5V de la connexion USB au 3,3 V souhaité. La broche 3,3 V du PCB NodeMCU est également
alimentée par cette connexion.

Mode alimentation externe

La deuxieme possibilité consiste a utiliser la broche VIN du NodeMCU comme entrée pour
I'alimentation. Le régulateur de tension AMS1117 a une tension d'entrée maximale de 15V, mais dans
ce cas, le régulateur produit beaucoup de chaleur car le régulateur n'a pas de dissipateur thermique
ou de ventilateur de refroidissement pour la dissipation thermique. Par conséquent, une tension
comprise entre 7V et 12V est recommandée lorsque I'ESP32 est alimenté par la broche VIN.

Mode Piles/Batteries

Pile alcaline AA pour ESP32

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

2026/01/29 08:06 5/41

ESP 32 Alimentation Autonome

Criteres des piles alcalines AA|spécifications
Tension de décharge minimale |1V

Tension de travail 15V

Tension de charge maximale 1,65V

Nombre de recharges 500

Densité d'énergie 80 Wh / kg

=
E
]
:
=
-
m
B
1™
=
m
]

-
&
2
m
-

Les piles alcalines AA ont une tension nominale de 1,5 V et si vous en connectez deux en série, vous
obtenez une tension nominale de 3 V. Vous pouvez connecter deux piles alcalines AA directement a la
broche 3,3 V du NodeMCU, mais le courant fourni par les piles alcalines AA n'est que de 50 mA par

pile. Connecté en série, vous obtenez toujours un courant global de 50 mA.

Malheureusement, I'ESP32 NodeMCU peut tirer jusqu'a 300 mA lors du démarrage. Lorsque I'ESP32
démarre, il tire tellement de courant des piles alcalines AA que la tension chute entierement a zéro,

réinitialisant / écrasant I'ESP32.

En résumé, je ne peux pas alimenter I'ESP32 NodeMCU avec 2 piles AA .

1.5

DECHARGE TEMPS

ABUSIVE DE DECHARGE

DUREE DE VIE D'UNE PILE
TERSION (V) Courbe de décharge (décharge conlinue)

1~ ~ Cn7oFF

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/lib/exe/fetch.php?media=start:arduino:esp32:pile_alcaline_aa_pour_esp32.jpg

Last

;gggfg:l/ﬂ start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

16:08
Batterie LiFePO4 pour ESP32

Plusieurs options pour alimenter I'ESP32 avec différents types de batteries. Ceci est particulierement
intéressant lorsque vous souhaitez construire un projet indépendant d'une alimentation électrique
normale comme une station météo extérieure.

Si la tension maximale de la batterie est supérieure a la tension maximale de I'ESP32 (3,6V), vous
devez utiliser un régulateur de tension pour réduire la tension a 3,3V. La sortie du régulateur de
tension est alors connectée a la broche 3,3 V de la carte ESP32.

Ma recommandation pour une alimentation par batterie est la batterie LiFePO4, car vous n'avez pas
besoin de régulateur de tension supplémentaire entre I'ESP32 et la batterie et elles sont
rechargeables. Les batteries LiFePO4 ont également une capacité allant jusqu'a 6000 mAh, similaire
aux batteries LiPo et Li-ion, ce qui confere a votre projet une longue durée de vie en combinaison
avec un mode d'alimentation qui réduit la consommation d'énergie au minimum.

Criteres de la batterie LiFePO4|spécifications

Tension de décharge minimale 2,5V

Tension de travail 3,0Va32Vv

Tension de charge maximale 3,65V

Nombre de recharges 5000

Densité d'énergie 90 Wh / kg... 160 Wh / kg

La batterie lithium fer phosphate (batterie LiFePO4) a une tension nominale de 3,2 V et une tension
maximale de 3,65 V. Le principal avantage d'une batterie LiFePO4 est la courbe de décharge tres
plate de sorte que la tension chute trés lentement pendant le processus de décharge. Etant donné
que la tension maximale de la batterie au lithium fer phosphate n'est avec 3,65 V que légerement
supérieure a la tension de fonctionnement maximale de I'ESP32 avec 3,6 V, vous pouvez connecter ce
type de batterie directement avec la broche 3,3 V du microcontrdleur.

En résumé une batterie LiFePO4 convient tres bien a I'ESP32 et surtout lorsque votre objectif
principal est d'alimenter votre circuit pendant un temps maximum. Si tel est le cas, je recommande
d'alimenter I'ESP32 avec un LiFePO4 sur la broche 3,3V. L'inconvénient est qu'il est tres compliqué de
charger la batterie pendant son utilisation. Actuellement, je n'ai pas de solution a ce probleme. La
solution la plus simple serait d'avoir deux batteries LiFePO4 que vous pouvez changer rapidement et
un chargeur de batterie externe.

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

https://chanterie37.fr/fablab37110/lib/exe/fetch.php?media=start:arduino:esp32:lifep04.jpg

2026/01/29 08:06 7/41

ESP 32 Alimentation Autonome

v
40

[Maximus-RE LiFsPOS 2300mAk-20C QX

1
154

[R I .
| | Turadar parmris = 3.0 |Crmgs - ER
| | Chegs mesl eospis o 3071 mAh | bl saticn pew dicharge | 5 nin
10 | Duchargs 1T = 2594 ik o T I
] Wiy whenos rleeres o W elbes L - - P -
UG 1| Massa - | T PR =
- { Dirwascn s | 0000w 65 5w | i
e F
[| I R ! .I..u.
n 200 il L] L] 0 1200 180 10 18040 2000

[—semany
o | |
1o FET TR

[jana

Batterie LiPo et batterie Li-ion pour ESP32

Criteres des batteries LiPo et Li-ion

spécifications

Tension de décharge minimale 2,7Va30V
Tension de travail 3,7V
Tension de charge maximale 4,2V
Nombre de recharges 5000

Densité d'énergie

100 Wh / kg... 265 Wh / kg

La tension maximale des batteries LiPo et Li-ion est d'environ 4,2 V et trop élevée pour se connecter
directement a la broche 3,3 V. Par conséquent, vous avez besoin d'un régulateur a faible perte de
charge ou LDO qui réduit la tension de la batterie a 3,3 V. Le MCP1725T-3302E / MC LDO s'adapte
parfaitement a I'ESP32 en combinaison avec une batterie LiPo ou Li-ion. Dans le dernier chapitre de
cet article, vous trouverez une explication détaillée sur I'utilisation du régulateur LDO en combinaison

avec une batterie et I'ESP32.

Les batteries LiPo et Li-ion associées a un régulateur de tension a faible chute de tension
conviennent parfaitement pour alimenter votre ESP32. Surtout si vous souhaitez charger
la batterie pendant que votre circuit est en marche,

[l existe des cartes EPS32 spéciales avec un connecteur JST olu vous connectez la batterie LiPo
directement a votre carte ESP32. Si vous souhaitez charger la batterie, il vous suffit de brancher le
cable micro USB sur I'EPS32. La connexion USB alimente non seulement I'EPS32 mais charge
également la batterie LiPo. Les cartes suivantes ont le connecteur JST ainsi qu'un chargeur LiPo a

bord:

e Adafruit HUZZAH32
e Sparkfun ESP32 Thing Plus

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/lib/exe/fetch.php?media=start:arduino:esp32:lipo2.jpg
https://chanterie37.fr/fablab37110/lib/exe/fetch.php?media=start:arduino:esp32:lipo1.jpg
https://translate.google.com/website?sl=auto&tl=fr&u=https://learn.adafruit.com/adafruit-huzzah32-esp32-feather/power-management
https://translate.google.com/website?sl=auto&tl=fr&u=https://learn.sparkfun.com/tutorials/esp32-thing-plus-hookup-guide/all%23hardware-overview

Last
update:
2023/01/27
16:08

¢ FireBeetle ESP32

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

Batteries rechargeables Li-ion 18650

Courbe de décharge : Lithium-lon vs Plomb Acide

L] = I I | I I

= ithiurmdeo

= -.....___h____‘-‘ Lithivm-lon _-‘\ |

£ _|Plomb-AcideT \

% Y | \ :
g) b, I\ | g
g . _’1 _
= |

o% 1% 0%, % TR L &% R BO% i 8 100

Profondeur de déchorge |%)

Piles AAA NiMH pour ESP32

L

Erichl =T

g

[Tomi - 1

I

([

Criteres des piles AAA NiMH spécifications

Tension de décharge minimale |0,8V

Tension de travail 1,2Val25Vv

Tension de charge maximale |1,4V

Nombre de recharges 1000

Densité d'énergie 60 Wh / kg... 120 Wh / kg

Si vous souhaitez acheter des piles AAA, assurez-vous d'acheter des piles NiMH, car elles sont
rechargeables et ont la capacité la plus élevée et une tension nominale de 1,2 V... 1,25 V par pile. La
combinaison avec quatre piles AAA NiMH résulte en une tension de fonctionnement de 4,8 V... 5V qui
est supérieure a la tension de fonctionnement maximale de I'ESP32 avec 3,6 V. Tout comme les
batteries LiPo et Li-ion, vous pouvez utiliser quatre batteries AAA NiMH en combinaison avec un
régulateur LDO qui réduit la tension d'entrée a 3,3V. Avec la tension réduite, vous pouvez connecter
I'alimentation a la broche 3,3V de I'ESP32.

Par rapport aux batteries LiPo et Li-ion, les batteries NiMH nécessitent la méme connexion au
microcontroleur mais ont une densité d'énergie plus faible et il n'est pas recommande d'utiliser
les batteries NiMH .

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

https://translate.google.com/website?sl=auto&tl=fr&u=https://www.dfrobot.com/product-1590.html
https://technoluxpro.com/akkumulyatory/batarei/18650.html
https://chanterie37.fr/fablab37110/lib/exe/fetch.php?media=start:arduino:esp32:aaanimh.jpg

2026/01/29 08:06 9/41 ESP 32 Alimentation Autonome

10000
. 5000
o
L]
‘5% 2000
8% 1000
oo
55 i
= v,) I A SR A (. G (N

0O 10 20 30 40 50 &0 70 80 90 100 (%)

Profondeur de déchange [DoD : capacité déchargée / capacité nominale)

dof™>—

Lithium lon

ao |-
25 |-

W

E.?u e ——

p —\\Leadhﬁd

-

f 15 | S Nken

T

!

N:i-td, HiMH

10

1]] | |
20 a0 60 80 100
Percent of Capacity Discharged

Pile bloc alcaline 9V pour ESP32

-
5
>

3
&
G
- -
9
I

Criteres de la pile alcaline 9 V|spécifications
Tension de décharge minimale |6V

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/lib/exe/fetch.php?media=start:arduino:esp32:9v.jpg

Last

update: start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

2023/01/27
16:08

Criteres de la pile alcaline 9 V|spécifications
Tension de travail LAY

Tension de charge maximale 9,9V

Nombre de recharges 500

Densité d'énergie 80 Wh/kg

Avec une batterie bloc 9V, vous pouvez utiliser la broche VIN du NodeMCU, qui est connectée en
interne avec le régulateur de tension 3.3V AMS1117. Par conséquent, vous n'avez besoin d'aucun
composant externe. Mais comme I'ESP32 n'a besoin que de 3,3 V, vous étes surpuissant en ce qui
concerne la tension. Etant donné qu'une batterie bloc alcaline 9 V n'est rien d'autre que 6 piles
alcalines AA connectées en série, vous avez la méme courbe de décharge par paliers, ce qui entraine
une courte durée de vie de votre systeme alimenté par batterie.

Il n'est pas recommandé d'utiliser une pile alcaline 9V
Régulateur de tension a faible chute pour ESP32

Le MCP1725T-3302E / MC s'adapte parfaitement a I'ESP32 en combinaison avec des batteries
ayant une tension maximale supérieure a 3,6V. Les tableaux suivants présentent les principes
fondamentaux de la fiche technique LDO et expliquent pourquoi ces principes fondamentaux
correspondent parfaitement a I'ESP32.

MCP1725T-3302E / MC |Valeurs|Explications
Le régulateur a besoin d'une tension de sortie égale a la tension

Tension de sortie 3,3V de fonctionnement de I'ESP32 qui est de 3,3V.
Il est également important que le LDO ait un courant de sortie
. de 500mA car I'ESP32 a besoin d'environ 450mA pendant la
Courant de sortie 500 mA

communication WiFi et dans la fiche technique de I'ESP32, un
courant de sortie de 500mA est recommandé.

Avec une tension d'entrée maximale de 6V, nous sommes en
Tension d'entrée maximale|6V mesure de combiner le LDO avec les batteries 3,7V LiPo et Li-ion
ainsi que les batteries 5V AAA NiMH.

La tension d'entrée minimale doit correspondre a la tension de
fonctionnement minimale de I'ESP32 qui est de 2,3 V.

Tension d'entrée minimale |2,3 V

Régulateur 3,3 V S7V8F3 500 mA a 1 A Régulateur élévateur/abaisseur permettant de délivrer une
tension de 3,3 Vcc a partir d'une tension de 2,7 a 11,8 Vcc. Un connecteur droit ou coudé est a souder
soi-méme en fonction de I'utilisation. La tension de sortie est indépendante de la tension d'entrée.

Remarque: en utilisation, le module peut devenir tres chaud.

S7V8F3 valeurs

Alimentation: 2,7a11,8Vcc

Tension de sortie: |3,3 Vcc

Courant de sortie: |500 mA a 1 A en fonction de la tension d'entrée
Dimensions: 17x12x 3 mm

Référence fabricant:|2122

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

2026/01/29 08:06 11/41 ESP 32 Alimentation Autonome

Régulateur 3,3 V S7V8F3

ESP8266 et ESP32 sur batterie

ESP32 sur batterie

Alimentation solaire

Chargement de la batterie LiPo a partir d'un panneau solaire 1W 5V

chargement de la batterie Lipo a partir d 'un panneau solaire

U=RI | Comment réaliser un chargeur solaire?

Comment réaliser un chargeur solaire?

LU LR

[T —
T L e

Mode veille sur ESP32

ESP32 Deep Sleep

ESP32 Deep Sleep

Doc sur les Sleep Modes ESP32 sur site EXPRESSIF EN
Le sommeil profond

Le sommeil profond a un fonctionnement différent de celui de I'ESP8266.

L'ESP32 est capable de faire la distinction entre plusieurs sources de réveil :

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://www.gotronic.fr/art-regulateur-3-3-v-s7v8f3-21747.htm#complte_desc
https://riton-duino.blogspot.com/2019/02/esp8266-sur-batterie.htm
http://translate.google.com/translate?hl=fr&sl=auto&tl=fr&u=http%3A%2F%2Fwww.rogerclark.net%2Flipo-battery-charging-from-a-1w-5v-solar-panel%2F
https://youtu.be/5FjSYBbz4ig
https://youtu.be/y1R2y8dCsIg
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

e un réveil par une GPIO (ext0)

e un réveil par plusieurs GPIOs (extl)
e un réveil par le touchpad

e un réveil par RTC

Il est possible d'activer I'une ou |'autre ou plusieurs.

Réveil par une GPIO (0, 2, 4,12 a 15,25a27,32a39):

l.ino

esp sleep enable ext0@ wakeup(gpio, state

Dans ce mode, les GPIOs peuvent bénéficier de résistances internes de pull-up ou pull-down :

2.ino

#include <driver/rtc io.h>
rtc gpio pullup en(gpio
rtc_gpio pulldown en(gpio

Réveil par plusieurs GPIOs (32 a 39) :

3.ino

esp sleep enable extl wakeup(gpios, state

Dans ce mode, les GPIOs devront étre équipées de pull-up ou pull-down matérielles externes.

Réveil par le touchpad :

4.ino

touchAttachInterrupt(pad, callback, threshold
esp _sleep enable touchpad wakeup

Réveil par la RTC :

4.ino

esp sleep enable timer wakeup(us

Activation du mode deep-sleep :

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=0
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=1
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=2
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=3
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=4

2026/01/29 08:06 13/41 ESP 32 Alimentation Autonome

5.ino

esp _deep sleep start

Lors du réveil la fonction esp_sleep_get wakeup_cause() sera appelée pour connaitre la cause du
réveil :

6.ino

esp_sleep get wakeup cause

ESP SLEEP WAKEUP EXTO
Serial.println("Wakeup by EXTO"
break

ESP_SLEEP WAKEUP EXT1
Serial.println("Wakeup by EXT1"
break

ESP SLEEP WAKEUP TIMER
Serial.println("Wakeup by RTC"
break

ESP_SLEEP WAKEUP_TOUCHPAD
Serial.println("Wakeup by TouchPad"
break

Si le réveil par plusieurs GPIOs a été activé, il est possible de déterminer quelle GPIO a provoqué le
réveil :

7.ino

uint64 t wakeupBit = esp sleep get extl wakeup status
wakeupBit & GPIO SEL 33
// GPIO 33 woke up

wakeupBit & GPIO SEL 34
// GPIO 34

Et enfin, si le réveil par le touchpad a été activé, il est possible de déterminer quelle touche a
provoqué le réveil :

8.ino

touch pad t pin = esp sleep get touchpad wakeup status
touchPin
Serial.println("Touch detected on GPIO 4" break
Serial.println("Touch detected on GPIO 0" break
Serial.println("Touch detected on GPIO 2" break

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=5
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=6
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=7
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=8

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

O 00 NO Ul AW

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

println
println
println
println
println
println
println
println

"Touch
"Touch
"Touch
"Touch
"Touch
"Touch
"Touch

"Wakeup not by touchpad"

detected
detected
detected
detected
detected
detected
detected

on
on
on
on
on
on
on

GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO

Nous allons partir du méme exemple de client mail que pour I'ESP8266 :

e un capteur de température (réveil cyclique)
¢ un ou deux capteurs de passage PIR (réveil par GPIO)

Voici un petit schéma :

15"
13"
12"
14"
27"
33"
32"

break
break
break
break
break
break
break

break

Comme vous pouvez le constater, par rapport au méme schéma utilisant un ESP8266, celui-ci est

beaucoup plus simple.

Les boutons poussoirs simulent les PIRs. Si de vrais capteurs PIR sont utilisés les résistances R2 et R3

sont inutiles.

Bien sdr, si I'on utilise une ESP-WROOM-32, seuls les boutons poussoirs doivent étre cablés.

Si un seul bouton poussoir est utilisé sur GPIO33 : Dans ce cas, connecter un bouton poussoir entre

https://chanterie37.fr/fablab37110/

Printed on 2026/01/29 08:06

2026/01/29 08:06 15/41 ESP 32 Alimentation Autonome

3.3V et GPIO33, sans résistance de pull-down.

Si deux boutons poussoirs sont utilisés sur les GPIO32 et GPIO33 : Dans ce cas, connecter deux
boutons poussoirs entre 3.3V et GPIO32 et GPIO33, avec 2 résistances de pull-down.

Réveil par un ou deux PIR

Le probleme est simplifié par rapport a I'ESP8266. Il est possible de spécifier sur quelle GPIO le
processeur peut étre réveillé. Dans I'exemple, GPIO_32 et GPIO_33 sont utilisées.

Possibilités Contrairement a ce qui se passait sur I'ESP8266 le front montant ou descendant de la
source de réveil peut étre choisi. Il n'y aura pas de modification hardware a apporter pour inverser le
signal.

On pourra également activer des résistances internes de pull-up ou pull-down en cas de besoin.
Egalement il n'y aura pas besoin de maintenir le signal sur la ou les GPIOs si les impulsions de réveil
sont courtes.

Réveil périodique

Ici également, il n'y a pas de modification hardware a réaliser pour prendre en compte le réveil par la
RTC.

Le sketch suivant est prévu pour fonctionner dans deux modes :

Un seul bouton poussoir sur la GPIO33 : Dans ce cas, connecter un bouton poussoir entre 3.3V et
GPI033, sans résistance de pull-down. Commenter la ligne suivante :

9.ino

//#define EXT1 WAKEUP

Deux boutons poussoirs sur les GPIO32 et GPIO33 : Dans ce cas, connecter deux boutons poussoirs
entre 3.3V et GPI032 et GPIO33, avec 2 résistances de pull-down. Décommenter la ligne suivante :

10.ino

#define EXT1 WAKEUP

Le sketch :

11.ino

#include <WiFi.h>
#include <rom/rtc.h>
#include <driver/rtc io.h>

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=9
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=10
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=11

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

#include <OneWire.h>
#include <DallasTemperature.h>

#define SMTP_PORT 587
#define ONE_WIRE PIN 5
#define SLEEP TIME (30%60)
#define EXT1 WAKEUP

#ifdef EXT1 WAKEUP
#define BUTTON PIN BITMASK 0x300000000

#endif

const char* ssid "Livebox-XXXX"

const char* password ,%.9,.9.9.9.9.9.9.99.9.09.9999990900906
char server smtp . XXXXXX . XX"

// Change to your base64, ASCII encoded user

const char userID XX XX XX XX XXX X"

// change to your base64, ASCII encoded password
const char userPWD "YyYyYyYyYyYyYy"

// sender

const char sender "sender@xxxxxx.xx"

// recipent

const char recipient "XXXXX . XXXXXXXX@gmail.com"

WiFiClient client
OneWire oneWire(ONE WIRE PIN
DallasTemperature DS18B20(foneWire

void setup

byte ret
uint64 t wakeup pin mask

Serial.begin (115200
WiFi.begin(ssid, password
WiFi.status WL CONNECTED
delay (500
Serial.print("."

Serial.println(""
Serial.println("WiFi Connected"”
Serial.print("IPess: "
Serial.println(WiFi.localIP
esp sleep get wakeup cause
ESP_SLEEP WAKEUP EXTO
ret sendEmail ("**** Motion Detected ****"
break
ESP_SLEEP WAKEUP_EXT1

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

2026/01/29 08:06 17/41 ESP 32 Alimentation Autonome

#ifdef EXT1 WAKEUP
wakeup pin mask = esp sleep get extl wakeup status
wakeup pin mask & GPIO SEL 32
ret sendEmail ("**** Motionl Detected ****"

wakeup_pin_mask & GPIO SEL 33
ret sendEmail ("**** Motion2 Detected ****"

break
#endif
ESP_SLEEP WAKEUP_ TIMER
char temp
char s
dtostrf(getTemperature temp
sprintf(s, "**** temperture is %s ****" temp
ret sendEmail(s
break
ESP_SLEEP WAKEUP_TOUCHPAD
ret sendEmail ("**** TQUCH ***x**
break
ESP_SLEEP WAKEUP ULP
ret sendEmail ("**** UJLPp **x**"
break

ret = sendEmail("**** Just Started ***x"
break

Serial.print("Going into deep sleep for "
Serial.print(SLEEP TIME
Serial.println(" seconds"
delay
esp _sleep enable timer wakeup SLEEP TIME
#ifdef EXT1 WAKEUP
esp sleep enable extl wakeup(BUTTON PIN BITMASK
ESP_EXT1 WAKEUP ANY HIGH
// internal pull-ups not available !!!
#else
esp sleep enable ext® wakeup(GPIO NUM 33
rtc_gpio pulldown en(GPIO NUM 33
#endif
esp _deep sleep start

void loop

byte sendEmail(const char *data

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

http://www.opengroup.org/onlinepubs/009695399/functions/sprintf.html

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

byte thisByte
byte respCode

client.connect(server

0

SMTP_PORT 1

Serial.println(F("connected"

Serial.println(F("connection failed"

0
recv

Serial.println
client.println
recv
Serial.println
client.println
recv
Serial.println
client.println
recv
Serial.println
client.println
recv
Serial.print(F
client.print(F
recv
Serial.print(F
client.print(F
recv
Serial.println
client.println
recv
Serial.println
client.print(F
client.print(F
client.println
client.print(F

uint64 t chipID

client.println
Serial.println
client.println
client.println
recv
Serial.println
client.println
recv
client.stop
Serial.println
1

F("Sending HELLO"
"EHLO www.example.com"

0
F("Sending auth login"
"auth login"

0
F("Sending User"
userID

0
F("Sending Password"
userPwD

0
"Sending From "
"MAIL From: "

0
"Sending To "
"RCPT To: "

0
F("Sending DATA"
F("DATA"

0
F("Sending email"
"To: " client.println(recipient
“"From: client.println(sender
F("Subject: My first Email from ESP32\r\n"
“"From ESP32 N° "

ESP.getEfuseMac

Serial.println(sender
client.println(sender

Serial.println(recipient
client.println(recipient

uintl6é t) (chipID 32 HEX
data
data
F(u
0
F("Sending QUIT"
F("QUIT"
0

F("disconnected"

https://chanterie37.fr/fablab37110/

Printed on 2026/01/29 08:06

2026/01/29 08:06 19/41

ESP 32 Alimentation Autonome

byte recv

byte respCode
byte thisByte
int loopCount
client.available
delay
loopCount
loopCount
client.stop

Serial.println(F("\r\nTimeout"

respCode = client.peek
client.available
thisByte = client.read
Serial.write(thisByte

respCode ‘4"
// efail();

float getTemperature
float tempC

DS18B20. requestTemperatures
tempC DS18B20.getTempCByIndex
delay
tempC 85.0 tempC
tempC

Le code est simplifié par rapport a celui de I'ESP8266

127.0

Il vous faudra bien s(r remplacer certaines valeurs (ssid, password, etc.) comme dans I'exemple de

I'ESP8266.

La directive suivante permet d'attendre un réveil sur les deux GPIOs 32 et 33 :

11.ino

#define EXT1 WAKEUP

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=12

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

Si la directive est commentée, seule la GPIO 33 est surveillée :

12.ino

// #define EXT1 WAKEUP

L'IDE ARDUINO

Il vous faudra bien entendu installer le support ESP32 :
https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/boards_manager.md

[l vous faut aussi installer deux librairies :

https://github.com/PaulStoffregen/OneWire.git
https://github.com/milesburton/Arduino-Temperature-Control-Library.qgit

De préférence installez la derniere version.

Doc en ligne sleep modes pour ESP32 en EN Doc sur les Sleep Modes ESP32 sur site EXPRESSIF EN

Ci-dessous traduction Google en FR

Modes de veille

L'ESP32 est capable de modes d'économie d'énergie de veille Iégere et de veille prolongée. En mode
veille Iégere, les périphériques numériques, la plupart de la RAM et les processeurs sont synchronisés
par horloge et la tension d'alimentation est réduite. A la sortie du sommeil Iéger, les périphériques et
les processeurs reprennent leur fonctionnement, leur état interne est préservé.

En mode veille profonde, les processeurs, la plupart de la RAM et tous les périphériques numériques
qui sont cadencés a partir d'APB_CLK sont mis hors tension. Les seules parties de la puce qui peuvent
encore étre mises sous tension sont: le controleur RTC, les périphériques RTC (y compris le
coprocesseur ULP) et les mémoires RTC (lentes et rapides).

Le réveil a partir des modes de sommeil profond et I1éger peut étre effectué a I'aide de plusieurs
sources. Ces sources peuvent étre combinées, dans ce cas, la puce se réveillera lorsque l'une des
sources est déclenchée. Les sources de réveil peuvent étre activées a I'aide des
esp_sleep_enable X wakeupAPI

et peuvent étre désactivées a I'aide de I' esp_sleep disable_wakeup_source()API. La section suivante
décrit ces API en détail. Les sources de réveil peuvent étre configurées a tout moment avant d'entrer
en mode veille Iégére ou profonde.

De plus, I'application peut forcer des modes de mise hors tension spécifiques pour les périphériques
RTC et les mémoires RTC a I'aide de I'esp_sleep_pd_config()API. Une fois les sources de réveil

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=13
https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/boards_manager.md
https://github.com/PaulStoffregen/OneWire.git
https://github.com/milesburton/Arduino-Temperature-Control-Library.git
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv431esp_sleep_disable_wakeup_source18esp_sleep_source_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv431esp_sleep_disable_wakeup_source18esp_sleep_source_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv419esp_sleep_pd_config21esp_sleep_pd_domain_t21esp_sleep_pd_option_t

2026/01/29 08:06 21/41 ESP 32 Alimentation Autonome

configurées, |'application peut entrer en mode veille a I'aide des API
esp_light_sleep_start()
ou esp_deep_sleep start()

A ce stade, le matériel sera configuré en fonction des sources de réveil demandées et le contréleur
RTC mettra hors tension ou hors tension les CPU et les périphériqgues numériques.

WiFi / BT et modes veille

En modes veille profonde et veille Iégere, les périphériques sans fil sont mis hors tension. Avant d'
entrer dans un sommeil profond ou modes de sommeil Iéger, les applications doivent désactiver le
WiFi et BT en utilisant des appels appropriés (esp_bluedroid_disable(),esp_bt_controller _disable(),
esp_wifi_stop()).

Les connexions WiFi et BT ne seront pas maintenues en veille profonde ou en veille [égere, méme si
ces fonctions ne sont pas appelées.

Si la connexion WiFi doit étre maintenue, activez la mise en veille du modem WiFi et activez la
fonction de veille automatique Iégere (voir API de gestion de I'alimentation). Cela permettra au
systeme de se réveiller automatiqguement lorsque le pilote WiFi I'exige, maintenant ainsi la connexion
au point d'acces.

Sources de réveil

Minuteur

Le contréleur RTC a une minuterie intégrée qui peut étre utilisée pour réveiller la puce apres un laps
de temps prédéfini. L'heure est spécifiée avec une précision de I'ordre de la microseconde, mais la
résolution réelle dépend de la source d'horloge sélectionnée pour RTC SLOW_CLK. Voir le chapitre
«Réinitialisation et horloge» du Manuel de référence technique ESP32 pour plus de détails sur les
options d'horloge RTC.

Ce mode de réveil ne nécessite pas la mise sous tension des périphériques RTC ou des mémoires RTC
pendant le sommeil.

esp_sleep_enable_timer wakeup() La fonction peut étre utilisée pour activer le réveil du sommeil
profond a I'aide d'une minuterie.

Pavé tactile

Le module RTC 10 contient une logique pour déclencher le réveil lorsqu'une interruption du capteur
tactile se produit. Vous devez configurer I'interruption du pavé tactile avant que la puce ne
commence le sommeil profond.

Les révisions 0 et 1 de I'ESP32 ne prennent en charge ce mode de réveil que lorsque les
périphériques RTC ne sont pas forcés d'étre mis sous tension (c'est-a-dire que

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv421esp_light_sleep_startv
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv420esp_deep_sleep_startv
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/bluetooth/esp_bt_main.html#_CPPv421esp_bluedroid_disablev
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/bluetooth/controller_vhci.html#_CPPv425esp_bt_controller_disablev
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/network/esp_wifi.html#_CPPv413esp_wifi_stopv
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/power_management.html
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv429esp_sleep_enable_timer_wakeup8uint64_t

Last
update:
2023/01/27
16:08

ESP_PD_DOMAIN_RTC_PERIPH doit étre défini sur ESP_PD_OPTION_AUTO).

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

esp_sleep_enable touchpad wakeup() peut étre utilisée pour activer cette source de réveil.

Réveil externe (ext0)

Le module RTC IO contient une logique pour déclencher le réveil lorsque I'un des GPIO RTC est défini
sur un niveau logique prédéfini. RTC 10 fait partie du domaine d'alimentation des périphériques RTC,
de sorte que les périphériques RTC resteront sous tension pendant la veille prolongée si cette source
de réveil est demandée.

Etant donné que le module RTC 10 est activé dans ce mode, des résistances de rappel ou de réduction
internes peuvent également étre utilisées. lls doivent étre configurés par I'application a l'aide des
fonctions rtc_gpio_pullup_en() et rtc_gpio_pulldown_en(), avant d'appeler esp_sleep_start().

Dans les révisions 0 et 1 de I'ESP32, cette source de réveil est incompatible avec les sources de réveil
ULP et tactile.

esp_sleep_enable_ext0 wakeup() peut étre utilisée pour activer cette source de réveil.
Attention

Apres le réveil, le pad 10 utilisé pour le réveil sera configuré comme RTC 10. Avant d'utiliser ce pad
comme GPIO numérique, reconfigurez-le en utilisant la rtc_gpio_deinit(gpio_num)fonction.

Réveil externe (extl)

Le controleur RTC contient une logique pour déclencher le réveil a I'aide de plusieurs GPIO RTC. L'une
des deux fonctions logiques peut étre utilisée pour déclencher le réveil:

* se réveiller si I'une des broches sélectionnées est haute (ESP_EXT1_WAKEUP_ANY_HIGH)
* se réveiller si toutes les broches sélectionnées sont faibles (ESP_EXT1_WAKEUP_ALL LOW)

Cette source de réveil est implémentée par le contréleur RTC. Ainsi, les périphériques RTC et les
mémoires RTC peuvent étre mis hors tension dans ce mode. Cependant, si les périphériques RTC sont
mis hors tension, les résistances de rappel internes et de réduction seront désactivées. Pour utiliser
des résistances pullup ou pulldown internes, demandez au domaine d'alimentation des périphériques
RTC de rester allumé pendant le sommeil et configurez les résistances pullup / pulldown a I'aide des
rtc_gpio_fonctions, avant d'entrer en veille:

e esp sleep pd config(ESP_PD_DOMAIN RTC PERIPH, ESP_PD OPTION_ON);
e gpio_pullup_dis(gpio_num);
e gpio_pulldown_en(gpio_num);

Attention

Apres le réveil, le (s) pad (s) 10 utilisé (s) pour le réveil sera configuré comme RTC |0. Avant d'utiliser
ces pads comme GPIO numériques, reconfigurez-les a I'aide de la rtc_gpio_deinit(gpio_num)fonction.

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv432esp_sleep_enable_touchpad_wakeupv
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/peripherals/gpio.html#_CPPv418rtc_gpio_pullup_en10gpio_num_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/peripherals/gpio.html#_CPPv420rtc_gpio_pulldown_en10gpio_num_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv428esp_sleep_enable_ext0_wakeup10gpio_num_ti

2026/01/29 08:06 23/41 ESP 32 Alimentation Autonome

esp_sleep_enable_extl wakeup() peut étre utilisée pour activer cette source de réveil.

Réveil du coprocesseur ULP

Le coprocesseur ULP peut fonctionner pendant que la puce est en mode veille et peut étre utilisé pour
interroger des capteurs, surveiller les valeurs de I'ADC ou des capteurs tactiles et réveiller la puce
lorsqu'un événement spécifique est détecté. Le coprocesseur ULP fait partie du domaine
d'alimentation des périphériques RTC et exécute le programme stocké dans la mémoire lente RTC. La
mémoire lente RTC sera allumée pendant le sommeil si ce mode de réveil est demandé. Les
périphériques RTC seront automatiquement mis sous tension avant que le coprocesseur ULP ne
commence a exécuter le programme; une fois le programme arrété, les périphériques RTC sont
automatiquement mis hors tension.

Les révisions 0 et 1 de I'ESP32 ne prennent en charge ce mode de réveil que lorsque les
périphériques RTC ne sont pas forcés d'étre mis sous tension (c'est-a-dire que
ESP_PD_DOMAIN_RTC_PERIPH doit étre défini sur ESP_PD_OPTION_AUTO).

esp_sleep_enable_ulp_wakeup() peut étre utilisée pour activer cette source de réveil.

Réveil GPIO (veille Iégére uniquement)

En plus des sources de réveil EXTO et EXT1 décrites ci-dessus, une autre méthode de réveil a partir
d'entrées externes est disponible en mode veille |égere. Avec cette source de réveil, chaque broche
peut étre configurée individuellement pour déclencher le réveil a un niveau haut ou bas a I'aide de la
gpio_wakeup_enable()fonction. Contrairement aux sources de réveil EXTO et EXT1, qui ne peuvent
étre utilisées qu'avec les E / S RTC, cette source de réveil peut étre utilisée avec n'importe quelle E/ S
(RTC ou numérique).

esp_sleep_enable gpio_wakeup() peut étre utilisée pour activer cette source de réveil.

Réveil UART (sommeil léger uniquement)

Lorsque ESP32 recoit une entrée UART de périphériques externes, il est souvent nécessaire de
réveiller la puce lorsque les données d'entrée sont disponibles. Le périphérique UART contient une
fonction qui permet de réveiller la puce du sommeil Iéger lorsqu'un certain nombre de fronts positifs
sur la broche RX sont visibles. Ce nombre de fronts positifs peut étre défini a I'aide de la

uart_set wakeup_threshold()fonction. Notez que le caractere qui déclenche le réveil (et tous les
caracteres avant) ne seront pas recus par I'UART apres le réveil. Cela signifie que le périphérique
externe doit généralement envoyer un caractere supplémentaire a I'ESP32 pour déclencher le réveil,
avant d'envoyer les données.

esp_sleep_enable uart wakeup() peut étre utilisée pour activer cette source de réveil.

Mise hors tension des périphériques et des mémoires RTC

Par défaut, les fonctions esp_deep sleep start()et met esp_light sleep start()hors tension tous les

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv428esp_sleep_enable_ext1_wakeup8uint64_t28esp_sleep_ext1_wakeup_mode_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv427esp_sleep_enable_ulp_wakeupv
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/peripherals/gpio.html#_CPPv418gpio_wakeup_enable10gpio_num_t15gpio_int_type_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv428esp_sleep_enable_gpio_wakeupv
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/peripherals/uart.html#_CPPv425uart_set_wakeup_threshold11uart_port_ti
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv428esp_sleep_enable_uart_wakeupi
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv420esp_deep_sleep_startv
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv421esp_light_sleep_startv

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

domaines d'alimentation RTC qui ne sont pas nécessaires aux sources de réveil activées. Pour
remplacer ce comportement, une esp_sleep_pd_config()fonction est fournie.

Remarque: dans la révision 0 de I'ESP32, la mémoire rapide RTC sera toujours maintenue activée en
veille profonde, afin que le stub de veille profonde puisse fonctionner apres la réinitialisation. Cela
peut étre remplacé si I'application n'a pas besoin d'un comportement de réinitialisation propre apres
un sommeil profond.

Si certaines variables du programme sont placées dans la mémoire lente RTC (par exemple, en
utilisant I' RTC_DATA_ATTRattribut), la mémoire lente RTC sera maintenue sous tension par défaut.
Cela peut étre annulé en utilisant la esp_sleep _pd_config()fonction, si vous le souhaitez.

Entrer dans le sommeil léger

esp_light_sleep_start()La fonction peut étre utilisée pour entrer en veille 1égere une fois que les
sources de réveil sont configurées. Il est également possible de passer en veille |Iégere sans
gu'aucune source de réveil ne soit configurée.Dans ce cas, la puce sera indéfiniment en mode veille
|égere, jusqu'a ce que la réinitialisation externe soit appliquée.

Entrer dans le sommeil profond

esp_deep sleep_start()La fonction peut étre utilisée pour entrer en veille profonde une fois que les
sources de réveil sont configurées. Il est également possible de passer en veille profonde sans
qu'aucune source de réveil ne soit configurée.Dans ce cas, la puce sera en mode veille prolongée
indéfiniment, jusqu'a ce que la réinitialisation externe soit appliquée.

Configuration des E/ S

Certains ESP32 I0s ont des pullups ou des pulldowns internes, qui sont activés par défaut. Si un
circuit externe pilote cette broche en mode de veille profonde, la consommation de courant peut
augmenter en raison du courant circulant a travers ces pullups et pulldowns. Pour isoler une broche,
évitant une consommation de courant supplémentaire, appelez la rtc_gpio_isolate()fonction.

Par exemple, sur le module ESP32-WROVER, GPIO12 est extrait en externe. GPIO12 a également un
pulldown interne dans la puce ESP32. Cela signifie qu'en sommeil profond, un certain courant
circulera a travers ces résistances externes et internes, augmentant le courant de sommeil profond
au-dessus de la valeur minimale possible. Ajoutez le code suivant avant esp_deep _sleep_start()de
supprimer ce courant supplémentaire:

13.ino

rtc_gpio isolate(GPIO NUM 12

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv419esp_sleep_pd_config21esp_sleep_pd_domain_t21esp_sleep_pd_option_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv421esp_light_sleep_startv
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv420esp_deep_sleep_startv
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/peripherals/gpio.html#_CPPv416rtc_gpio_isolate10gpio_num_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv420esp_deep_sleep_startv
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=14

2026/01/29 08:06 25/41 ESP 32 Alimentation Autonome

Gestion de la sortie UART

Avant d'entrer en mode veille, esp_deep_sleep_start()voir le contenu des FIFO UART.

Lorsque vous entrez en mode veille 1égere en utilisant esp_light_sleep_start(), les FIFO UART ne seront
pas vidées. Au lieu de cela, la sortie UART sera suspendue, et les caracteres restants dans le FIFO
seront envoyés apres le réveil du sommeil l1éger.

Vérification de la cause du réveil du sommeil

esp_sleep_get wakeup cause() La fonction peut étre utilisée pour vérifier quelle source de réveil a
déclenché le réveil depuis le mode veille. Pour le pavé tactile et les sources de réveil extl, il est
possible d'identifier la broche ou le pavé tactile qui a provoqué le réveil a l'aide des fonctions
esp_sleep _get touchpad wakeup status()et esp sleep get extl wakeup_ status().

Désactiver la source de réveil du sommeil

La source de réveil précédemment configurée peut étre désactivée ultérieurement a I'aide de I'
esp_sleep_disable_wakeup_source()API. Cette fonction désactive le déclenchement pour la source de
réveil donnée. De plus, il peut désactiver tous les déclencheurs si I'argument est
ESP_SLEEP_WAKEUP_ALL.

Exemple d'application

La mise en ceuvre des fonctionnalités de base du sommeil profond est illustrée dans I' exemple de
protocoles / sntp , ou le module ESP est réveillé périodiquement pour récupérer I'heure du serveur
NTP.

Un exemple plus complet dans system / deep_sleep illustre I'utilisation de divers déclencheurs de
réveil en veille profonde et de la programmation du coprocesseur ULP.

Référence API

En téte de fichier
e esp_system /include / esp_sleep.h

Les fonctions esp err t esp sleep _disable wakeup source (source esp_sleep _source t)

Désactivez la source de réveil.

Cette fonction permet de désactiver le déclencheur de réveil pour la source définie comme parametre
de la fonction. Voir docs / sleep-modes.rst pour plus de détails.

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv420esp_deep_sleep_startv
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv421esp_light_sleep_startv
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv426esp_sleep_get_wakeup_causev
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv436esp_sleep_get_touchpad_wakeup_statusv
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv432esp_sleep_get_ext1_wakeup_statusv
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv431esp_sleep_disable_wakeup_source18esp_sleep_source_t
https://translate.google.com/website?sl=auto&tl=fr&u=https://github.com/espressif/esp-idf/tree/526f682/examples/protocols/sntp
https://translate.google.com/website?sl=auto&tl=fr&u=https://github.com/espressif/esp-idf/tree/526f682/examples/system/deep_sleep
https://translate.google.com/website?sl=auto&tl=fr&u=https://github.com/espressif/esp-idf/blob/526f682/components/esp_system/include/esp_sleep.h
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/esp_err.html#_CPPv49esp_err_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv418esp_sleep_source_t

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

Remarque

Cette fonction ne modifie pas la configuration de réveil dans RTC. Il sera exécuté dans la fonction
esp_sleep_start.

Retour

» ESP_OK en cas de succes
e ESP_ERR INVALID STATE si le déclencheur n'était pas actif

Parametres
e source: - numéro de source a désactiver de type esp_sleep_source t

esp_err_t esp_sleep_enable_ulp_wakeup (void)

Activez le réveil par le coprocesseur ULP.

Remarque

Dans les révisions 0 et 1 de I'ESP32, la source de réveil ULP ne peut pas étre utilisée lorsque le
domaine d'alimentation RTC_PERIPH est forcé d'étre mis sous tension (ESP_PD_OPTION_ON) ou
lorsque la source de réveil ext0 est utilisée.

Retour

* ESP_OK en cas de succes

e ESP_ERR_NOT_SUPPORTED si le courant supplémentaire au toucher
(CONFIG_ESP32_RTC_EXT_CRYST ADDIT_CURRENT) est activé.

e ESP_ERR INVALID_STATE si le coprocesseur ULP n'est pas activé ou si le réveil déclenche un
conflit

esp_err_t esp_sleep _enable_timer_wakeup (uint64 _t time_in_us)

Activez le réveil par minuterie.

Retour

» ESP_OK en cas de succes
e ESP_ERR_INVALID_ARG si la valeur est hors limites (a déterminer)

Parametres
e time_in_us: temps avant le réveil, en microsecondes

esp_err_t esp_sleep_enable_touchpad wakeup (void)

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/esp_err.html#_CPPv49esp_err_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/esp_err.html#_CPPv49esp_err_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/esp_err.html#_CPPv49esp_err_t

2026/01/29 08:06 27/41 ESP 32 Alimentation Autonome

Activez le réveil par capteur tactile.

Remarque

» Dans les révisions 0 et 1 de I'ESP32, la source de réveil tactile ne peut pas étre utilisée lorsque
le domaine d'alimentation RTC_PERIPH est forcé d'étre mis sous tension (ESP_PD_OPTION_ON)
ou lorsque la source de réveil ext0 est utilisée.

Remarque

e Le mode FSM du bouton tactile doit étre configuré comme mode de déclenchement de la
minuterie.

Retour

e ESP_OK en cas de succes

e ESP_ERR_NOT_SUPPORTED si le courant supplémentaire au toucher
(CONFIG_ESP32_RTC_EXT_CRYST ADDIT_CURRENT) est activé.

e ESP_ERR INVALID_STATE si le réveil déclenche un conflit

touch_pad_t esp_sleep_get touchpad_wakeup_status (void)

Obtenez le pavé tactile qui a provoqué le réveil.

Si le réveil a été provoqué par une autre source, cette fonction renverra TOUCH PAD_MAX;
Retour
pavé tactile qui a provoqué le réveil
bool esp _sleep _is valid wakeup gpio (gpio_num_t gpio_num)
Renvoie true si un numéro GPIO est valide pour une utilisation comme source de réveil.
Remarque
Pour les SoC avec capacité RTC 10, il peut s'agir de n'importe quelle broche d'entrée RTC 10 valide.
Retour
Vrai si ce numéro GPIO sera accepté comme source de réveil du sommeil.
Parametres
e gpio_num: Numéro du GPIO a tester pour la capacité de la source de réveil

esp_err_t esp _sleep_enable_ext0 wakeup (gpio_num_t gpio_num , niveau int)

Activez le réveil a I'aide d'une épingle.

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/peripherals/touch_pad.html#_CPPv411touch_pad_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/peripherals/gpio.html#_CPPv410gpio_num_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/esp_err.html#_CPPv49esp_err_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/peripherals/gpio.html#_CPPv410gpio_num_t

Last

583258:1/27 start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

16:08

Cette fonction utilise la fonction de réveil externe du périphérique RTC_IO. Cela ne fonctionnera que si
les périphériques RTC restent allumés pendant le sommeil.

Cette fonction peut surveiller n'importe quelle broche qui est un 10 RTC. Une fois que la broche passe
dans I'état donné par I'argument de niveau, la puce sera réveillée.

Remarque

Cette fonction ne modifie pas la configuration des broches. La broche est configurée dans
esp_sleep_start, juste avant d'entrer en mode veille.

Remarque

Dans les révisions 0 et 1 de I'ESP32, la source de réveil ext0 ne peut pas étre utilisée avec des
sources de réveil tactiles ou ULP.

Retour

» ESP_OK en cas de succes
e ESP_ERR INVALID ARG si le GPIO sélectionné n'est pas un GPIO RTC ou si le mode n'est pas

valide
e ESP_ERR INVALID STATE si le réveil déclenche un conflit

Paramétres

e gpio_num: Numéro GPIO utilisé comme source de réveil. Seuls les GPIO dotés de la
fonctionnalité RTC peuvent étre utilisés: 0,2,4,12-15,25-27,32-39.
* level: niveau d'entrée qui déclenchera le réveil (0 = bas, 1 = haut)

[[
https://kwgppdgnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projec

ts/esp-idf/en/latest/esp32/api-
reference/system/esp err.html# CPPv49esp err t|esp err_t

esp sleep enable extl wakeup]] (uint64 t masque ,
[[https://kwgppdgnvpe5eobk5gbusuejbqg--docs-espressif-com.translate.goog/proj
ects/esp-idf/en/latest/esp32/api-
reference/system/sleep modes.html# CPPv428esp sleep extl wakeup mode t|esp s
leep extl wakeup mode t]] Mode)

Activez le réveil en utilisant plusieurs broches.
Cette fonction utilise la fonction de réveil externe du contréleur RTC. Cela fonctionnera méme si les

périphériques RTC sont arrétés pendant le sommeil.

Cette fonction peut surveiller n'importe quel nombre de broches qui se trouvent dans les E/ S RTC.
Une fois que I'une des broches sélectionnées entre dans I'état donné par I'argument mode, la puce
sera réveillée.

Remarque

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

2026/01/29 08:06 29/41 ESP 32 Alimentation Autonome

Cette fonction ne modifie pas la configuration des broches. Les broches sont configurées dans
esp_sleep_start, juste avant d'entrer en mode veille.

Remarque

Les pullups et pulldowns internes ne fonctionnent pas lorsque les périphériques RTC sont arrétés.
Dans ce cas, des résistances externes doivent étre ajoutées. Alternativement, les périphériques RTC
(et les pullups / pulldowns) peuvent étre maintenus activés a l'aide de la fonction
esp_sleep_pd_config.

Retour

* ESP_OK en cas de succes
e ESP_ERR_INVALID_ARG si I'un des GPIO sélectionnés n'est pas un GPIO RTC ou si le mode n'est
pas valide

Parameétres

e mask: masque de bits des nombres GPIO qui provoqueront le réveil. Seuls les GPIO dotés de la
fonctionnalité RTC peuvent étre utilisés dans ce bitmap: 0,2,4,12-15,25-27,32-39.
e mode: sélectionnez la fonction logique utilisée pour déterminer la condition de réveil:
o ESP_EXT1 WAKEUP ALL LOW: réveil lorsque tous les GPIO sélectionnés sont faibles
o ESP_EXT1 _WAKEUP_ANY_HIGH: se réveiller lorsque I'un des GPIO sélectionnés est élevé

esp_err_t esp_sleep_enable gpio_wakeup (void)

Activez le réveil a partir du sommeil Iéger a l'aide de GPIO.

Chaque GPIO prend en charge la fonction de réveil, qui peut étre déclenchée a un niveau bas ou
élevé. Contrairement aux sources de réveil EXTO et EXT1, cette méthode peut étre utilisée a la fois
pour tous les E/S: E/ S RTC et E / S numériques. Cependant, il ne peut étre utilisé que pour se
réveiller apres un sommeil léger.

Pour activer le réveil, appelez d'abord gpio_wakeup_enable, en spécifiant le numéro gpio et le niveau
de réveil, pour chaque GPIO utilisé pour le réveil. Appelez ensuite cette fonction pour activer la
fonction de réveil.

Remarque

Dans les révisions 0 et 1 de I'ESP32, la source de réveil GPIO ne peut pas étre utilisée avec des
sources de réveil tactiles ou ULP.

Retour

e ESP_OK en cas de succes
e ESP_ERR INVALID STATE si le réveil déclenche un conflit

esp_err_t esp _sleep_enable _uart wakeup (int uart_num)

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/esp_err.html#_CPPv49esp_err_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/esp_err.html#_CPPv49esp_err_t

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

Activez le réveil du sommeil léger en utilisant UART.

Utilisez la fonction uart_set_wakeup_threshold pour configurer le seuil de réveil UART. Le réveil du
sommeil 1éger prend un certain temps, donc tous les caracteres envoyés a I'UART ne peuvent pas
étre regus par Il'application.

Remarque
ESP32 ne prend pas en charge le réveil depuis UART2.
Retour

e ESP_OK en cas de succes
e ESP_ERR _INVALID_ARG si le réveil a partir d'un UART donné n'est pas pris en charge

Parametres
e uart_num: Port UART a partir duquel se réveiller

esp_err_t esp_sleep_enable_wifi_wakeup (void)

Activez le réveil par WiFi MAC.

Retour
* ESP _OK en cas de succes
uint64 t esp sleep get extl wakeup status (void)

Obtenez le masque de bits des GPIO qui ont provoqué le réveil (extl) Si le réveil a été causé par une
autre source, cette fonction renverra 0.

Retour masque de bits, si GPIOn a provoqué le réveil, BIT (n) sera défini
esp_err_t esp_sleep pd _config (esp_sleep_pd domain_t domaine , esp_sleep_pd_option_t choix)
Définissez le mode de mise hors tension pour un domaine d'alimentation RTC en mode veille.

S'il n'est pas défini a I'aide de cette API, tous les domaines d'alimentation sont définis par défaut sur
ESP_PD_OPTION_AUTO.

Retour

» ESP_OK en cas de succes
e ESP_ERR_INVALID_ARG si l'un des arguments est hors limites

Parameétres

» domain: domaine d'alimentation a configurer
e option: option de mise hors tension (ESP_PD_OPTION_OFF, ESP_PD_OPTION_ON ou

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/esp_err.html#_CPPv49esp_err_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/esp_err.html#_CPPv49esp_err_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv421esp_sleep_pd_domain_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv421esp_sleep_pd_option_t

2026/01/29 08:06 31/41 ESP 32 Alimentation Autonome

ESP_PD_OPTION_AUTO)
void esp_deep sleep start (nul)
Entrez dans le sommeil profond avec les options de réveil configurées. Cette fonction ne revient pas.
esp_err_t esp_light_sleep_start (void)
Entrez en veille Iégere avec les options de réveil configurées.
Retour

* ESP_OK en cas de succes (renvoyé apres le réveil)
e ESP_ERR INVALID STATE si WiFi ou BT n'est pas arrété

void esp_deep_sleep (uint64 ttime_in_us)
Entrez en mode sommeil profond.
L'appareil se réveillera automatiquement apres le temps de sommeil profond. Au réveil, I'appareil

appelle le stub de veille de sommeil profond, puis procede au chargement de I'application.

L'appel a cette fonction équivaut a un appel a esp_deep sleep_enable_timer_wakeup suivi d'un appel
a esp_deep sleep start.

esp_deep_sleep n'arréte pas correctement les connexions WiFi, BT et de protocole de niveau
supérieur. Assurez-vous que les fonctions de pile WiFi et BT appropriées sont appelées pour fermer
toutes les connexions et désinitialiser les périphériques. Ceux-ci inclus:

e esp_bluedroid_disable
e esp_bt controller_disable
e esp wifi_stop

Cette fonction ne revient pas.
Parametres

e time_in_us: temps de sommeil profond, unité: microseconde
esp_sleep_wakeup_cause_t esp sleep get wakeup cause (void)
Obtenez la source de réveil qui a provoqué le réveil du sommeil.
Retour
cause du réveil du dernier sommeil (sommeil profond ou sommeil Iéger)
void esp_wake_deep_sleep (nul)
Stub par défaut a exécuter au réveil apreés un sommeil profond.

Permet d'exécuter du code immédiatement au réveil, avant le démarrage du chargeur de démarrage
du logiciel ou de I'application ESP-IDF. Cette fonction est faiblement liée, vous pouvez donc

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv424esp_sleep_wakeup_cause_t

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

implémenter votre propre version pour exécuter le code immédiatement lorsque la puce sort du
mode veille.

Voir docs / deep-sleep-stub.rst pour plus de détails.
void esp_set deep sleep wake stub (esp_deep sleep wake stub fn t nouveau stub)

Installez un nouveau stub au moment de I'exécution pour I'exécuter au réveil apres un sommeil
profond.

Si vous implémentez esp_wake_deep_sleep (), il n'est pas nécessaire d'appeler cette fonction.

Cependant, il est possible d'appeler cette fonction pour remplacer un autre stub de sommeil profond.
Toute fonction utilisée comme stub de sommeil profond doit étre marquée RTC_IRAM_ATTR, et doit
obéir aux mémes regles que celles données pour esp_wake_deep sleep ().

esp_deep_sleep_wake_stub fn_t esp _get deep_sleep_wake_stub (void)

Obtenez le réveil actuel du stub de sommeil profond.

Retour Renvoie I'actuel réveil du stub de veille profonde, ou NULL si aucun stub n'est installé.
void esp_default wake deep sleep (nul)

Le stub esp_wake_deep_sleep () par défaut fourni par esp-idf.

Voir docs / deep-sleep-stub.rst pour plus de détails.

void esp_deep _sleep _disable rom_logging (nul)

Désactivez la journalisation a partir du code ROM apres une veille prolongée.

Utilisation de LSB de RTC_STORE4.

Void esp_sleep_gpio_status_init (nul)

Désactivez toutes les broches GPIO en état de veille.

Void esp_sleep_gpio_status switch_configure (bool enable)

Configurez le basculement de I'état des broches GPIO entre I'état de veille et I'état de veille.
Parametres

e enable: décider de changer d'état ou non
Définitions de type

typedef esp_sleep _source t esp_sleep _wakeup cause t

typedef void (* esp_deep_sleep wake stub fn_t) (void)

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv429esp_deep_sleep_wake_stub_fn_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv429esp_deep_sleep_wake_stub_fn_t
https://kwgppdqnvpe5eobk5gbusuejbq--docs-espressif-com.translate.goog/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#_CPPv418esp_sleep_source_t

2026/01/29 08:06 33/41

ESP 32 Alimentation Autonome

Type de fonction pour que le stub s'exécute au réveil.
Enumérations

énumération esp_sleep_extl wakeup mode t
Fonction logique utilisée pour le mode de réveil EXT1.
Valeurs:

ESP_EXT1_WAKEUP_ALL_LOW =0

» Réveillez la puce lorsque tous les GPIO sélectionnés deviennent bas.

ESP_EXT1 WAKEUP_ANY HIGH =1

e Réveillez la puce lorsque I'un des GPIO sélectionnés devient élevé.

énumération esp_sleep pd_domain _t

Domaines d'alimentation pouvant étre mis hors tension en mode veille.

Valeurs:
ESP_PD_DOMAIN_RTC_PERIPH

e RTC IO, capteurs et coprocesseur ULP.
ESP_PD_DOMAIN_RTC_SLOW _MEM

e Mémoire lente RTC.
ESP_PD_DOMAIN RTC_FAST MEM

e Mémoire rapide RTC.
ESP_PD_DOMAIN_XTAL

e Oscillateur XTAL.
ESP_PD_DOMAIN_MAX

e Nombre de domaines.
énumération esp_sleep pd_option t
Options de mise hors tension.

Valeurs: ESP_PD_OPTION_OFF

¢ Mettez le domaine d'alimentation hors tension en mode veille.

ESP_PD_OPTION_ON

e Gardez le domaine d'alimentation activé en mode veille.

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

ESP_PD_OPTION_AUTO

e Gardez le domaine d'alimentation activé en mode veille, s'il est requis par I'une des options de

réveil. Sinon, mettez-le hors tension.
énumération esp_sleep _source t
Cause de réveil du sommeil.

Valeurs: ESP_SLEEP_WAKEUP_UNDEFINED

e En cas de sommeil profond, la réinitialisation n'a pas été provoquée par la sortie du sommeil

profond.

ESP_SLEEP_WAKEUP_ALL

 Pas une cause de réveil, utilisée pour désactiver toutes les sources de réveil avec

esp_sleep_disable_wakeup_source.

ESP_SLEEP_WAKEUP_EXTO

e Réveil provoqué par un signal externe utilisant RTC_IO.

ESP_SLEEP WAKEUP_EXT1

» Réveil provoqué par un signal externe utilisant RTC_CNTL.

ESP_SLEEP_WAKEUP_TIMER

e Réveil causé par la minuterie.
ESP_SLEEP_WAKEUP_TOUCHPAD

» Réveil causé par le pavé tactile.
ESP_SLEEP_WAKEUP_ULP

e Réveil provoqué par le programme ULP.
ESP_SLEEP_WAKEUP_GPIO

e Réveil causé par GPIO (veille Iégere uniquement)
ESP_SLEEP_WAKEUP_UART

e Réveil causé par UART (sommeil Iéger uniguement)
ESP_SLEEP_WAKEUP_WIFI

» Réveil causé par WIFI (sommeil Iéger uniquement)

ESP_SLEEP_WAKEUP_COCPU

https://chanterie37.fr/fablab37110/

Printed on 2026/01/29 08:06

2026/01/29 08:06 35/41 ESP 32 Alimentation Autonome

* Réveil provoqué par COCPU int.
ESP_SLEEP_WAKEUP_COCPU_TRAP_TRIG

e Réveil causé par un crash du COCPU.
ESP_SLEEP_WAKEUP BT

e Réveil causé par BT (sommeil Iéger uniqguement)

autre exemple « sommeil profond » Deep Sleep

49.ino

/*
Simple Deep Sleep with Timer Wake Up

ESP32 offers a deep sleep mode for effective power
saving as power 1is an important factor for IoT
applications. In this mode CPUs, most of the RAM,
and all the digital peripherals which are clocked
from APB CLK are powered off. The only parts of
the chip which can still be powered on are:

RTC controller, RTC peripherals ,and RTC memories

This code displays the most basic deep sleep with
a timer to wake it up and how to store data in
RTC memory to use it over reboots

This code is under Public Domain License.

Author:
Pranav Cherukupalli <cherukupallip@gmail.com>
*/

#define uS TO S FACTOR 1000000ULL /* Conversion factor for micro
seconds to seconds */

#define TIME TO SLEEP 5 /* Time ESP32 will go to sleep (in
seconds) */

RTC DATA ATTR int bootCount = 0;

/*
Method to print the reason by which ESP32
has been awaken from sleep
*/
void print wakeup reason(){
esp sleep wakeup cause t wakeup reason;

wakeup reason = esp sleep get wakeup cause();

switch(wakeup_reason)

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=15

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

{
case ESP_SLEEP_WAKEUP_EXTO : Serial.println("Wakeup caused by

external signal using RTC IO0"); break;

case ESP_SLEEP_WAKEUP_EXT1 : Serial.println("Wakeup caused by
external signal using RTC CNTL"); break;

case ESP_SLEEP_WAKEUP TIMER : Serial.println("Wakeup caused by
timer"); break;

case ESP_SLEEP_WAKEUP TOUCHPAD : Serial.println("Wakeup caused by
touchpad"”); break;

case ESP_SLEEP_WAKEUP ULP : Serial.println("Wakeup caused by ULP
program"); break;

default : Serial.printf("Wakeup was not caused by deep sleep:
%d\n" ,wakeup reason); break;

}

¥

void setup(){
Serial.begin(115200);
delay(1000); //Take some time to open up the Serial Monitor

//Increment boot number and print it every reboot
++bootCount;
Serial.println("Boot number: " + String(bootCount));

//Print the wakeup reason for ESP32
print wakeup reason();

/*

First we configure the wake up source

We set our ESP32 to wake up every 5 seconds

*/

esp sleep enable timer wakeup(TIME TO SLEEP * uS TO S FACTOR);

Serial.println("Setup ESP32 to sleep for every " +
String(TIME TO SLEEP) +

" Seconds");

/*

Next we decide what all peripherals to shut down/keep on

By default, ESP32 will automatically power down the peripherals

not needed by the wakeup source, but if you want to be a poweruser

this is for you. Read in detail at the API docs
http://esp-idf.readthedocs.io/en/latest/api-reference/system/deep sleep

.html
Left the line commented as an example of how to configure
peripherals.
The line below turns off all RTC peripherals in deep sleep.
*/

//esp _deep sleep pd config(ESP_PD DOMAIN RTC PERIPH,
ESP PD OPTION OFF);

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/01/29 08:06 37/41 ESP 32 Alimentation Autonome

//Serial.println("Configured all RTC Peripherals to be powered down
in sleep");

/*

Now that we have setup a wake cause and if needed setup the
peripherals state in deep sleep, we can now start going to
deep sleep.

In the case that no wake up sources were provoidd but deep
sleep was started, it will sleep forever unless hardware
reset occurs.

*/

Serial.println("Going to sleep now");

Serial.flush();

esp deep sleep start();

Serial.println("This will never be printed");

}

void loop(){
//This 1is not going to be called
}

50.ino
/*

Simple Deep Sleep with Timer Wake Up

ESP32 offers a deep sleep mode for effective power
saving as power is an important factor for IoT
applications. In this mode CPUs, most of the RAM,
and all the digital peripherals which are clocked
from APB_CLK are powered off. The only parts of
the chip which can still be powered on are:

RTC controller, RTC peripherals ,and RTC memories

This code displays the most basic deep sleep with
a timer to wake it up and how to store data in

RTC memory to use it over reboots

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:alimentation&codeblock=16

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

This code is under Public Domain License.

Author:
Pranav Cherukupalli <cherukupallip@gmail.com>

*/

#define uS TO S FACTOR 1000000ULL /* Conversion factor for micro
seconds to seconds */

#define TIME TO SLEEP 5 /* Time ESP32 will go to sleep (in seconds) */

RTC DATA ATTR int bootCount = 0

/%
Method to print the reason by which ESP32
has been awaken from sleep

*/

void print wakeup reason

esp _sleep wakeup cause t wakeup reason

wakeup reason = esp sleep get wakeup cause

wakeup reason

ESP_SLEEP_WAKEUP_EXTO : Serial.println("Wakeup caused by external

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

2026/01/29 08:06 39/41 ESP 32 Alimentation Autonome

signal using RTC IO" break

ESP SLEEP WAKEUP_ EXT1 Serial.println("Wakeup caused by external
signal using RTC CNTL" break

ESP SLEEP WAKEUP TIMER : Serial.println("Wakeup caused by timer"
break

ESP_SLEEP _WAKEUP TOUCHPAD : Serial.println("Wakeup caused by
touchpad" break

ESP_SLEEP_WAKEUP _ULP : Serial.println("Wakeup caused by ULP
program" break

Serial.printf("Wakeup was not caused by deep sleep:
%d\n",wakeup reason); break

void setup
Serial.begin (115200

delay(1000); //Take some time to open up the Serial Monitor

//Increment boot number and print it every reboot
bootCount

Serial.println("Boot number: " String(bootCount

//Print the wakeup reason for ESP32

print wakeup reason

/*
First we configure the wake up source

We set our ESP32 to wake up every 5 seconds

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last
update:
2023/01/27
16:08

start:arduino:esp32:alimentation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

*/
esp sleep enable timer wakeup(TIME TO SLEEP * uS TO S FACTOR);

Serial.println("Setup ESP32 to sleep for every " +
String(TIME TO SLEEP) +

" Seconds");

/*
Next we decide what all peripherals to shut down/keep on

By default, ESP32 will automatically power down the peripherals
not needed by the wakeup source, but if you want to be a poweruser
this is for you. Read in detail at the API docs

http://esp-idf.readthedocs.io/en/latest/api-reference/system/deep sleep
.html

Left the line commented as an example of how to configure peripherals.
The line below turns off all RTC peripherals in deep sleep.
*/

//esp _deep sleep pd config(ESP_PD DOMAIN RTC PERIPH,
ESP_PD OPTION OFF);

//Serial.println("Configured all RTC Peripherals to be powered down in
sleep");

/*

Now that we have setup a wake cause and if needed setup the
peripherals state in deep sleep, we can now start going to

deep sleep.

In the case that no wake up sources were provided but deep

sleep was started, it will sleep forever unless hardware

https://chanterie37.fr/fablab37110/ Printed on 2026/01/29 08:06

2026/01/29 08:06 41/41 ESP 32 Alimentation Autonome

reset occurs.

*/

Serial.println("Going to sleep now"
Serial.flush

esp deep sleep start

Serial.println("This will never be printed"

void loop

//This is not going to be called

From: ¥
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Chateau-Renault E -a%-'n _. [ﬂ
- AP e
Permanent link: = ":|‘=|l|.-.-:|:|l.|il:|
https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270 -E:E::i-'l"l.-'q!‘.‘.ﬂ'r -
= e '

Last update: 2023/01/27 16:08

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:esp32:alimentation&rev=1611162270

	ESP 32 Alimentation Autonome
	Brochages de quelques ESP32
	ESP32 et le TTGO T-Display
	ESP32 DEVKITC
	NodeMCU ESP32

	Tension entrées et sorties
	Tension maximum et recommendée
	Consommation et puissance fournie

	Comment alimenter un ESP32
	Différents niveaux de tension de la carte microcontrôleur ESP32
	Mode USB
	Mode alimentation externe
	Mode Piles/Batteries
	Pile alcaline AA pour ESP32
	Batterie LiFePO4 pour ESP32
	Batterie LiPo et batterie Li-ion pour ESP32
	Piles AAA NiMH pour ESP32
	Pile bloc alcaline 9V pour ESP32
	Régulateur de tension à faible chute pour ESP32
	ESP8266 et ESP32 sur batterie

	Alimentation solaire
	Chargement de la batterie LiPo à partir d'un panneau solaire 1W 5V
	U=

	Mode veille sur ESP32
	ESP32 Deep Sleep
	Le sommeil profond
	Réveil par un ou deux PIR
	Réveil périodique
	L'IDE ARDUINO
	Modes de veille
	WiFi / BT et modes veille
	Sources de réveil
	Pavé tactile
	Réveil externe (ext0)
	Réveil externe (ext1)
	Réveil du coprocesseur ULP
	Réveil GPIO (veille légère uniquement)
	Réveil UART (sommeil léger uniquement)
	Mise hors tension des périphériques et des mémoires RTC
	Entrer dans le sommeil léger
	Entrer dans le sommeil profond
	Configuration des E / S
	Gestion de la sortie UART
	Vérification de la cause du réveil du sommeil
	Désactiver la source de réveil du sommeil
	Exemple d'application
	Référence API
	Désactivez la source de réveil.
	Activez le réveil par le coprocesseur ULP.
	Activez le réveil par minuterie.
	Activez le réveil par capteur tactile.
	Obtenez le pavé tactile qui a provoqué le réveil.
	Activez le réveil à l'aide d'une épingle.
	Activez le réveil en utilisant plusieurs broches.
	Activez le réveil à partir du sommeil léger à l'aide de GPIO.
	Activez le réveil du sommeil léger en utilisant UART.
	Activez le réveil par WiFi MAC.
	Entrez en mode sommeil profond.

	Définitions de type

