
2026/02/16 12:02 1/8 Les interruptions

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

Les interruptions

Une interruption, comme son nom l’indique, consiste à interrompre momentanément le programme
que l’Arduino exécute pour qu’il effectue un autre travail. Quand cet autre travail est terminé,
l’Arduino retourne à l’exécution du programme et reprend à l’endroit exact où il l’avait laissé.

Les interruptions forment une caractéristique indispensable des processeurs modernes,
puisqu’elles lui permettent de réagir à des événements internes ou externes qui surviennent sans
prévenir, en faisant rediriger le flux d’exécution vers un bloc de code de gestion d’interruption. Une
fois ce bloc exécuté, le programme reprend où il en était au moment de l’interruption. Dans les
processeurs AVR, vous pouvez activer ou inhiber la réponse à une interruption en modifiant des bits
dans les registres de contrôle. La description qui suit est spécifique au modèle ATmega168. Pour les
autres modèles, vous irez d’abord consulter les tableaux de l’Annexe B, puis la documentation
officielle Atmel.

Le modèle ATmega168 propose deux entrées pour interruptions externes, INT0 et INT1. Vous pouvez
les configurer pour provoquer une interruption sur un front montant, un front descendant ou un état
Bas. Le registre de contrôle nommé EICRA permet de contrôler le comportement exact. Les deux
entrées INT0 et INT1 ont besoin d’une horloge d’entrées-sorties. Le mode interruption sur état Bas
génère une interruption de façon répétée tant que l’entrée correspondante est maintenue à l’état
Bas.

Les broches d’entrées-sorties de l’ATmega168 peuvent également servir de sources d’interruption.

Les interruptions sur changement de port portent le nom PCINT0 jusqu’à PCINT23, chacune étant
associée à une des 24 broches d’entrées-sorties.

Lorsqu’une interruption est autorisée, elle est déclenchée lorsque l’état de la broche change, même si
cette broche est configurée comme sortie. C’est ce qui permet à une broche de générer une
interruption sous le contrôle du logiciel lorsque le programme lui-même provoque le changement
d’état de la broche (bien sûr, il faut que la détection d’interruption sur changement d’état du port soit
active). Dès qu’une des broches entre PCINT0 et PCINT7 change d’état, elle déclenche une
interruption PC0.

Pour les broches PCINT8 à PCINT14, cela correspond à l’interruption PC1.

Enfin, les broches de PCINT16 à PCINT23 correspondent à l’interruption PC2. La configuration des
broches qui déclenchent les interruptions en cas de changement d’état est réalisée par les registres
PCMSK0, PCMSK1 et PCMSK2. Quand une interruption qui n’est pas masquée survient, le processeur
va chercher la prochaine instruction à exécuter à l’adresse trouvée dans une table de vecteursen
mémoire ; cette adresse contient une instruction machine de saut RJMP qui pointe vers le bloc de
code incarnant la réaction à l’interruption. Une fois ce bloc exécuté, l’exécution reprend dans le
programme normal, juste après l’interruption. La Figure ci-dessous montre comment la table des
vecteurs d’interruption est exploitée pour rediriger le flot d’exécution vers le code de l’interruption
puis revenir au programme principal.

Last update:
2025/06/05 07:14 start:arduino:interruptions https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:interruptions&rev=1749100498

https://chanterie37.fr/fablab37110/ Printed on 2026/02/16 12:02

Les broches d'interruptions

Sur un Arduino Uno basé sur microcontrôleur AVR 328P

INT0 Interruption externe sur la broche 2

INT1 Interruption externe sur la broche 3

0 ou 1 sur un Arduino Uno, ce qui correspond respectivement aux broches 2 et 3.

Sur un Arduino Mega basé sur microcontrôleur AVR 2560

0 à 5 sur un Arduino Mega ce qui correspond, dans l’ordre, aux broches 21, 20, 19, 18, 2 et 3.

Sur un ESP32

L’ESP32 dispose de 26 broches numériques qui peuvent être utilisées pour déclencher l’exécution
d’une fonction à l’aide d’une interruption externe

Interruptions sur ESP32

Les interruptions sur Esp32

Les interruptions : Syntaxe

methodespourlesinterruptions

digitalPinToInterrupt (broche); // convertit un identifiant de broche
en identifiant d'interruption,
 // à utiliser avec attachInterrupt() et
detachInterrupt() .

https://projetsdiy.fr/esp32-interruptions-externes-code-arduino/
https://chanterie37.fr/fablab37110/doku.php?id=start:esp32:interruptions
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:interruptions&codeblock=0

2026/02/16 12:02 3/8 Les interruptions

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

attachInterrupt (digitalPinToInterrupt (pin), ISR, mode); // conseillé

attachInterrupt (interruption, ISR, mode); // non recommandé

detachInterrupt (digitalPinToInterrupt (pin));

detachInterrupt (interruption);

noInterrupts (); // désactive les interruptions

interruptions (); // réactiver les interruptions après l'
noInterrupts() de noInterrupts() .

Paramètres remarques

interruption 0 ou 1 pour Uno. Identifiant de l'interruption. Ne doit pas être confondu avec le numéro
d'identification.

ISR Routine de service d'interruption. C'est la méthode qui sera exécutée lorsque
l'interruption se produira.Appel de la fonction

mode
Provoque le déclenchement de l'interruption, FALLING: Passage de l'état haut à l'état
bas (détection d'un front descendent). RASING: Détection du front montant (Passage
de l'état bas à l'état haut). LOW: Détection d'un passage à état bas de la broche.
CHANGE: Lorsque la broche change d'état. Les cartes DUE permettent HIGH.

Remarques

Les routines de service d'interruption (ISR) doivent être aussi courtes que possible, car elles
mettent en pause l'exécution du programme principal et peuvent donc vider le code en fonction du
temps. Généralement, cela signifie que dans l'ISR, vous définissez un drapeau et sortez, et dans la
boucle du programme principal, vous vérifiez le drapeau et faites ce que ce drapeau est censé faire.

Vous ne pouvez pas utiliser delay() ou millis() dans un ISR car ces méthodes elles-mêmes reposent
sur des interruptions.

Toute valeur modifiée à l’intérieur de la routine d’interruption devra être déclarée comme volatile,
afin que le processeur aille chercher la valeur en mémoire et ne se fie pas à ce qui se trouve dans ses
registres qui étaient gelés au moment de l’interruption.

Programmes d'exemples

Exemple 1 BP avec Rebonds

Interruption sur le bouton presse

Cet exemple utilise un bouton-poussoir (commutateur tactile) connecté à la broche numérique 2 et à
la masse, en utilisant une résistance de rappel interne pour que la broche 2 soit haute lorsque le
bouton n'est pas enfoncé.

https://arduinogetstarted.com/fr/reference/arduino-volatile

Last update:
2025/06/05 07:14 start:arduino:interruptions https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:interruptions&rev=1749100498

https://chanterie37.fr/fablab37110/ Printed on 2026/02/16 12:02

interrupBP.ino

const int LED_PIN = 13;
const int INTERRUPT_PIN = 2;
volatile bool ledState = LOW;

void setup() {
 pinMode(LED_PIN, OUTPUT);
 pinMode(INTERRUPT_PIN, INPUT_PULLUP);
 attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), myISR,
FALLING); // trigger when button pressed, but not when released.
}

void loop() {
 digitalWrite(LED_PIN, ledState);
}

void myISR() {
 ledState = !ledState;
 // note: LOW == false == 0, HIGH == true == 1, so inverting the
boolean is the same as switching between LOW and HIGH.
}

Avec cet exemple simple, les boutons-poussoirs ont tendance à rebondir, ce qui signifie que le circuit
s’ouvre et se ferme plus d’une fois avant de s’établir dans l’état final fermé ou ouvert.

Cet exemple ne prend pas cela en compte. Par conséquent, il suffit parfois d'appuyer sur le bouton
pour basculer le voyant plusieurs fois, au lieu d'une fois.

Exemple 2 sur les broches A1 A2 et A3

brochesA1A2A3eninterruption.ino

//ce code configure les broches A1,A2 et A3 en interruption.
//ont utilise la bibliotheque PinChangeInt.h
//ont peut egalement le faire avec les broches digitale.
#include <PinChangeInt.h>//appele de la fonction
const byte B1 = A1;
const byte B2 = A2;//Déclaration des boutons
const byte B3 = A3;

volatile int led1=2;
volatile int led2=3;// Déclaration des LED
volatile int led3=4;

volatile bool bascule = false;//Cette variable enregistre l'état d'un
bouton
volatile int i;// Cette variable prmet de savoir si un bouton à été

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:interruptions&codeblock=1
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:interruptions&codeblock=2

2026/02/16 12:02 5/8 Les interruptions

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

actionner

int f1(){
 bascule = !bascule;
 i = 1;
 if(bascule){
 digitalWrite(led1,HIGH);
 }
 else{
 digitalWrite(led1,LOW);
 }
 }

int f2(){
 bascule = !bascule;
 i = 1;
 if(bascule){
 digitalWrite(led2,HIGH);
 }
 else{
 digitalWrite(led2,LOW);
 }
 }

int f3(){
 bascule = !bascule;
 i = 1;
 if(bascule){
 digitalWrite(led3,HIGH);
 }
 else{
 digitalWrite(led3,LOW);
 }
 }

void setup() {// fonction d'initialisation des variables
 Serial.begin(9600);
 pinMode(B1,INPUT);
 pinMode(B2,INPUT);
 pinMode(B3,INPUT);

 PCintPort::attachInterrupt(B1,f1,FALLING);
 PCintPort::attachInterrupt(B2,f2,FALLING);
 PCintPort::attachInterrupt(B3,f3,FALLING);

}

void loop() {
 if(i==1){
 delay(5);
 i=0;

Last update:
2025/06/05 07:14 start:arduino:interruptions https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:interruptions&rev=1749100498

https://chanterie37.fr/fablab37110/ Printed on 2026/02/16 12:02

 }else{i=0}
}

Exemple 3 avec un bouton poussoir pour passage pietons

FeuxBP.ino

const int vert = 10; // Broche 10 pour le voyant vert
const int orange = 11;// Broche 11 pour le voyant orange
const int rouge = 12;// Broche 12 pour le voyant rouge
const int BP1_Pietons = 2;// Broche 2 pour le Bouton pietons
const int RougePietons = 9;// Broche 9 pour le voyant Rouge Pietons
const int VertePietons = 8;// Broche 8 pour le voyant Vert Pietons
const int delais1s = 1000;// Defini un delai de 1 s ==> 1000
millisecondes
const int delais3s = 3000;// Defini un delai de 3 s ==> 3000
millisecondes
const int delais5s = 5000;// Defini un delai de 5 s ==> 5000
millisecondes
volatile int etatBP1 = LOW;

void setup() {
 pinMode(vert, OUTPUT); // Definit les broches des Voyants en sortie
 pinMode(orange, OUTPUT);
 pinMode(rouge, OUTPUT);
 pinMode(RougePietons, OUTPUT);
 pinMode(VertePietons, OUTPUT);
 pinMode(BP1_Pietons, INPUT);// Definit la broche Bouton pietons en
entrée
 digitalWrite(vert, LOW);// Initialise tous les voyants eteint pour
demmarrer
 digitalWrite(orange, LOW);
 digitalWrite(rouge, LOW);
 digitalWrite(VertePietons, LOW);
 digitalWrite(RougePietons, LOW);
 attachInterrupt(0, memoireBP, CHANGE);

}

void memoireBP(){
etatBP1 = 1;

}

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:interruptions&codeblock=3

2026/02/16 12:02 7/8 Les interruptions

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

void loop() {
 digitalWrite(VertePietons, LOW); // eteint le voyant vert pietons
 digitalWrite(RougePietons, HIGH); // allume le voyant rouge pietons
 digitalWrite(vert, HIGH);// allume le voyant vert voiture
 delay(delais3s);// pendant 3 secondes
 digitalWrite(vert, LOW);// eteint le voyant vert voiture
 // if (digitalRead(BP1_Pietons) == 1){ // test si le bouton pietons
est appuyé pendant que le voyant vert voiture est allumé
 if (etatBP1 == 1){
 digitalWrite(orange, HIGH); // si OUI fait la sequence pietons
--> orange voiture allumé
 delay(delais1s);// pendant 1 seconde
 digitalWrite(orange, LOW);// voyant orange voiture eteint
 digitalWrite(rouge, HIGH);// voyant rouge voiture allumé
 digitalWrite(RougePietons,LOW);// voyant rouge pietons eteint
 digitalWrite(VertePietons,HIGH);// voyant vert pietons allumé
 delay(delais5s); // pendant 5 secondes
 digitalWrite(VertePietons, LOW); // eteint voyant vert pietons
 digitalWrite(RougePietons, HIGH);// allume voyant rouge
pietons
 digitalWrite(rouge, LOW); // voyant rouge voiture eteint
 etatBP1 = 0;
 } // et l'on recommence la boucle au debut

 else { // si NON = Bouton pietons non appuyé pendant le voyant vert
voiture allumé
 digitalWrite(orange, HIGH);// sequence normale des feux voiture -->
Orange voiture allumé
 delay(delais1s);// pendant 1 seconde
 digitalWrite(orange, LOW);// voyant orange voiture eteint
 digitalWrite(rouge, HIGH);// voyant rouge voiture allumé
 delay(delais3s);// pendant 3 secondes
 digitalWrite(rouge, LOW); // voyant rouge voiture eteint
 }
 // et l'on recommence la boucle au debut
}

Liens Web avec les interruptions

Sur Locoduino et ILS

Autre Exemple

https://www.locoduino.org/spip.php?article64
https://gcworks.fr/tutoriel/arduino/Lesinterruptions.html

Last update:
2025/06/05 07:14 start:arduino:interruptions https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:interruptions&rev=1749100498

https://chanterie37.fr/fablab37110/ Printed on 2026/02/16 12:02

From:
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Château-Renault

Permanent link:
https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:interruptions&rev=1749100498

Last update: 2025/06/05 07:14

https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:interruptions&rev=1749100498

	Les interruptions
	Les broches d'interruptions
	Sur un Arduino Uno basé sur microcontrôleur AVR 328P
	Sur un Arduino Mega basé sur microcontrôleur AVR 2560
	Sur un ESP32
	Les interruptions : Syntaxe
	Programmes d'exemples
	Exemple 1 BP avec Rebonds
	Exemple 2 sur les broches A1 A2 et A3
	Exemple 3 avec un bouton poussoir pour passage pietons

	Liens Web avec les interruptions

