2026/01/31 13:47

1/4

Ecrire une bibliothéque pour Arduino

Ecrire une bibliotheque pour Arduino

Ce document expligue comment créer une bibliothéque pour Arduino. Il commence par un croquis du
code Morse clignotant et explique comment convertir ses fonctions en bibliotheque. Cela permet a
d'autres personnes d'utiliser facilement le code que vous avez écrit et de le mettre a jour facilement a
mesure que vous améliorez la bibliotheque.

Pour plus d'informations, consultez le guide de style APl pour obtenir des informations sur la création
d'une bonne API de style Arduino pour votre bibliotheque.

Nous commencons par un croquis qui fait du code Morse simple:

codemorse001.ino

broche int

void setup

pinMode pin

boucle

vide point

tiret

retard

void dot

digitalWrite
retard
digitalWrite
retard

void dash

digitalWrite
retard
digitalWrite
retard

OUTPUT

point

point point

pin , HIGH

broche LOwW

pin HIGH

broche LOwW

point tiret

point

tiret

Si vous exécutez ce croquis, il clignotera le code pour SOS (un appel de détresse) sur la broche 13.

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:librairies:creation&codeblock=0

Last
update:
2023/01/27
16:08

start:arduino:librairies:creation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:librairies:creation&rev=1607340846

L'esquisse comporte quelques parties différentes que nous devrons apporter dans notre bibliotheque.
Premierement, bien sir, nous avons les fonctions dot () et dash () qui clignotent. Deuxiemement, il y a
la variable ledPin que les fonctions utilisent pour déterminer la broche a utiliser. Enfin, il y a I'appel a
pinMode () qui initialise la broche en tant que sortie.

Commencons a transformer le croquis en bibliotheque!

Vous avez besoin d'au moins deux fichiers pour une bibliotheque: un fichier d'en-téte (avec
I'extension .h) et le fichier source (avec I'extension .cpp). Le fichier d'en-téte a des définitions pour la
bibliotheque: essentiellement une liste de tout ce qui se trouve a l'intérieur; tandis que le fichier
source a le code réel. Nous appellerons notre bibliotheque “Morse”, donc notre fichier d'en-téte sera
Morse.h. Jetons un coup d'ceil a ce qui s'y passe. Cela peut sembler un peu étrange au début, mais
cela aura plus de sens une fois que vous verrez le fichier source qui va avec.

Le cceur du fichier d'en-téte se compose d'une ligne pour chaque fonction de la bibliotheque,
enveloppée dans une classe avec toutes les variables dont vous avez besoin:

class Morse {

public
Morse (int pin) ; point
vide () ; tiret

vide () ;
privé
int pin ;

} ; [Obtenir le code]

Une classe est simplement une collection de fonctions et de variables qui sont toutes conservées
ensemble au méme endroit. Ces fonctions et variables peuvent étre publiques , ce qui signifie qu'elles
sont accessibles aux personnes utilisant votre bibliotheque, ou privées , ce qui signifie qu'elles ne
sont accessibles qu'a partir de la classe elle-méme. Chaque classe a une fonction spéciale appelée
constructeur , qui est utilisée pour créer une instance de la classe. Le constructeur a le méme nom
que la classe et aucun type de retour.

Vous avez besoin de quelques autres éléments dans le fichier d'en-téte. L'une est une instruction
#include qui vous donne acces aux types et constantes standard du langage Arduino (cela est
automatiguement ajouté aux esquisses normales, mais pas aux bibliotheques). Cela ressemble a ceci
(et va au-dessus de la définition de classe donnée précédemment):

#include “Arduino.h” [Obtenir le code]
Enfin, il est courant d'envelopper tout le fichier d'en-téte dans une construction étrange:
#ifndef Morse_h #define Morse_h

l'instruction et le code #include vont ici ... #endif [Obtenir le code] Fondamentalement, cela évite les
problemes si quelqu'un # inclut accidentellement votre bibliotheque deux fois. Enfin, vous mettez
généralement un commentaire en haut de la bibliothéque avec son nom, une breve description de ce
qu'elle fait, qui I'a écrit, la date et la licence. Jetons un coup d'ceil au fichier d'en-téte complet: / *
Morse.h - Bibliothéque pour faire clignoter le code Morse. Créé par David A. Mellis, 2 novembre 2007.

https://chanterie37.fr/fablab37110/ Printed on 2026/01/31 13:47

2026/01/31 13:47 3/4 Ecrire une bibliothéque pour Arduino

Relaché dans le domaine public. * / #ifndef Morse_h #define Morse_h #include la classe “Arduino.h”
Morse { public : Morse (int pin) ; point vide () ; tiret vide () ; privé : int _pin; } ; #fin si [Obtenir le
code] Passons maintenant en revue les différentes parties du fichier source, Morse.cpp. Viennent
d'abord quelques déclarations #include. Celles-ci donnent au reste du code accés aux fonctions
Arduino standard et aux définitions de votre fichier d'en-téte: #include “Arduino.h” #include
“Morse.h” [Obtenir le code] Puis vient le constructeur. Encore une fois, cela explique ce qui doit se
passer lorsque quelqu'un crée une instance de votre classe. Dans ce cas, I'utilisateur spécifie la
broche qu'il souhaite utiliser. Nous configurons la broche en tant que sortie, enregistrez-la dans une
variable privée pour une utilisation dans les autres fonctions: Morse :: Morse (int pin) { pinMode (pin
, OUTPUT) ; pin = broche ; } [Obtenir le code] Il y a quelques choses étranges dans ce code. Le
premier est le Morse :: avant le nom de la fonction. Cela dit que la fonction fait partie de la classe
Morse . Vous le verrez a nouveau dans les autres fonctions de la classe. La deuxiéme chose
inhabituelle est le trait de soulignement dans le nom de notre variable privée, pin . Cette variable
peut en fait avoir le nom de votre choix, a condition qu'elle corresponde a la définition du fichier d'en-
téte. L'ajout d'un trait de soulignement au début du nom est une convention courante pour indiquer
clairement quelles variables sont privées, et aussi pour distinguer le nom de celui de I'argument de la
fonction (pin dans ce cas). Vient ensuite le code réel du croquis que vous transformez en
bibliothéque (enfin!). Cela ressemble a peu prés au méme, sauf avec Morse :: devant les noms des
fonctions, et pin au lieu de pin : void Morse :: dot () { digitalWrite (_pin, HIGH) ; retard (250) ;
digitalWrite (_pin, LOW) ; retard (250) ; } void Morse :: dash () { digitalWrite (_pin, HIGH) ; retard
(1000) ; digitalWrite (_pin, FAIBLE) ; retard (250) ; } [Obtenir le code] Enfin, il est courant d'inclure
également |'en-téte de commentaire en haut du fichier source. Voyons le tout: / * Morse.cpp -
Bibliotheque pour faire clignoter le code Morse. Créé par David A. Mellis, 2 novembre 2007. Relaché
dans le domaine public. * / #include “Arduino.h” #include “Morse.h” Morse :: Morse (int pin) {
pinMode (pin, OUTPUT) ; _pin = broche ; } void Morse :: dot (') { digitalWrite (_pin, HIGH) ; retard (
250) ; digitalWrite (_pin, LOW) ; retard (250) ; } void Morse :: dash (') { digitalWrite (_pin, HIGH) ;
retard (1000) ; digitalWrite (_pin, LOW) ; retard (250) ; } [Obtenir le code] Et c'est tout ce dont
vous avez besoin (il y a d'autres trucs optionnels intéressants, mais nous en reparlerons plus tard).
Voyons comment vous utilisez la bibliothéque. Tout d'abord, créez un répertoire Morse dans le sous-
répertoire des bibliotheques de votre répertoire de carnet de croquis. Copiez ou déplacez les fichiers
Morse.h et Morse.cpp dans ce répertoire. Lancez maintenant I'environnement Arduino. Si vous ouvrez
le menu Sketch> Import Library , vous devriez voir Morse a l'intérieur. La bibliothéque sera compilée
avec les croquis qui I'utilisent. Si la bibliotheque ne semble pas se construire, assurez-vous que les
fichiers se terminent vraiment par .cpp et .h (sans extension .pde ou .txt supplémentaire, par
exemple). Voyons comment nous pouvons répliquer notre ancienne esquisse SOS en utilisant la
nouvelle bibliotheque: #include <Morse.h> Morse morse (13) ; void setup () { } void loop () {
morse. point () ; morse. point () ; morse. point () ; morse. tiret () ; morse. tiret () ; morse. tiret () ;
morse. point () ; morse.point () ; morse. point () ; retard (3000) ; } [Obtenir le code] Il y a quelques
différences avec I'ancienne esquisse (outre le fait qu'une partie du code a été déplacée vers une
bibliothéque). Tout d'abord, nous avons ajouté une instruction #include en haut de I'esquisse. Cela
rend la bibliotheque Morse disponible pour I'esquisse et I'inclut dans le code envoyé au tableau. Cela
signifie que si vous n'avez plus besoin d'une bibliothéque dans une esquisse, vous devez supprimer
l'instruction #include pour économiser de I'espace. Deuxiemement, nous créons maintenant une
instance de la classe Morse appelée morse : Morse morse (13) ; [Obtenir le code] Lorsque cette ligne
est exécutée (ce qui se produit en fait méme avant la fonction setup ()), le constructeur de la classe
Morse sera appelé et passera I'argument que vous avez donné ici (dans ce cas, seulement 13). Notez
que notre setup () est maintenant vide; c'est parce que I'appel a pinMode () se produit a l'intérieur de
la bibliothéque (lorsque I'instance est construite). Enfin, pour appeler les fonctions dot () et dash () ,
nous devons les préfixer avec morse. - le nom de I'instance que nous voulons utiliser. Nous pourrions
avoir plusieurs instances de la classe Morse, chacune sur sa propre broche stockée dans la variable
privée pin de cette instance. En appelant une fonction sur une instance particuliére, nous spécifions

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last
update:
2023/01/27
16:08

start:arduino:librairies:creation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:librairies:creation&rev=1607340846

les variables d'instance a utiliser lors de cet appel a une fonction. Autrement dit, si nous avions les
deux: Morse morse (13) ; Morse morse2 (12) ; [Obtenir le code] puis a l'intérieur d'un appel a
morse2.dot (), pin serait 12. Si vous avez essayé la nouvelle esquisse, vous avez probablement
remarqué que rien de notre bibliothéque n'était reconnu par I'environnement et mis en évidence en
couleur. Malheureusement, le logiciel Arduino ne peut pas automatiquement déterminer ce que vous
avez défini dans votre bibliotheque (méme si ce serait une fonctionnalité intéressante a avoir), vous
devez donc lui donner un peu d'aide. Pour ce faire, créez un fichier appelé keywords.txt dans le
répertoire Morse. Ca devrait ressembler a ¢ca: Morse KEYWORD]1 tiret KEYWORDZ2 dot KEYWORD?2
[Obtenir le code] Chaque ligne porte le nom du mot-clé, suivi d'une tabulation (pas d'espaces), suivi
du type de mot-clé. Les classes doivent étre KEYWORDI et sont de couleur orange; les fonctions
doivent étre KEYWORD?2 et seront marron. Vous devrez redémarrer I'environnement Arduino pour
qu'il reconnaisse les nouveaux mots-clés. Il est également agréable de fournir aux gens un exemple
de croquis qui utilise votre bibliothéque. Pour ce faire, créez un répertoire d' exemples dans le
répertoire Morse . Ensuite, déplacez ou copiez le répertoire contenant le sketch (appelons-le SOS)
que nous avons écrit ci-dessus dans le répertoire des exemples. (Vous pouvez trouver I'esquisse en
utilisant la commande Sketch> Show Sketch Folder .) Si vous redémarrez I'environnement Arduino
(c'est la derniére fois, je vous le promets) - vous verrez un élément Library-Morse dans le menu
Fichier> Sketchbook> Exemples contenant votre exemple. Vous voudrez peut-étre ajouter des
commentaires qui expliquent mieux comment utiliser votre bibliothéque. Si vous souhaitez consulter
la bibliotheque complete (avec mots-clés et exemple), vous pouvez la télécharger: Morse.zip . C'est
tout pour le moment, mais j'écrirai probablement bientét un tutoriel de bibliotheque avancé. En
attendant, si vous avez des problémes ou des suggestions, veuillez les publier sur le forum de
développement de logiciels . Pour plus d'informations, consultez le guide de style APl pour obtenir des
informations sur la création d'une bonne API de style Arduino pour votre bibliotheque.

From:
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Chateau-Renault

Permanent link:
https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:librairies:creation&rev=1607340846 "

Last update: 2023/01/27 16:08

https://chanterie37.fr/fablab37110/ Printed on 2026/01/31 13:47

https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:librairies:creation&rev=1607340846

	Ecrire une bibliothèque pour Arduino

