MCP23017

GPB5 -

• 1

MCP23017 16 entrées/sorties sur un arduino

MCP23017 En Entrée

MCP23017 EN

--> GPA7

28

mcp23017.ino

```
// MCP23017 Example: Slow key press reaction.
11
// Toggle LEDs and detect keypress.
//
// Example code showing slow reaction of 'button'
// LED to keypress. Leading into why interrupts
// are useful (See next example).
//
// Copyright : John Main
// Free for non commercial use.
#include <Wire.h>
#include <Adafruit_MCP23017.h>
#define MCP LED1 7
#define MCP_INPUTPIN 8
#define MCP LEDTOG1 11
#define MCP LEDT0G2 4
```

```
Adafruit MCP23017 mcp;
void setup() {
 mcp.begin(); // Default device address 0
  mcp.pinMode(MCP_LEDTOG1, OUTPUT); // Toggle LED 1
 mcp.pinMode(MCP_LEDTOG2, OUTPUT); // Toggle LED 2
 mcp.pinMode(MCP LED1, OUTPUT);
                                    // LED output
 mcp.digitalWrite(MCP_LED1, HIGH);
 mcp.pinMode(MCP_INPUTPIN,INPUT);
                                   // Button i/p to GND
 mcp.pullUp(MCP_INPUTPIN,HIGH);
                                    // Puled high to ~100k
}
// Alternate LEDTOG1 and LEDTOG2.
// Transfer pin input to LED1.
void loop() {
  delay(300);
  mcp.digitalWrite(MCP_LEDTOG1, HIGH);
  mcp.digitalWrite(MCP LEDTOG2, LOW);
 delay(300);
 mcp.digitalWrite(MCP LEDTOG1, LOW);
 mcp.digitalWrite(MCP_LEDTOG2, HIGH);
 // Transfer input pin state to LED1
  if (mcp.digitalRead(MCP_INPUTPIN)) {
     mcp.digitalWrite(MCP LED1,HIGH);
  } else {
     mcp.digitalWrite(MCP_LED1,LOW);
  }
```

Bibliothèque de logiciels et versions

Version IDE Arduino La dernière version: 1.8.13 (12/2020)

```
Bibliothèque Adafruit Bibliothèque MCP23017 pour arduino
```

```
[[http://downloads.arduino.cc/libraries/github.com/blemasle/MCP23017-2.0.0.z
ip| Bibliothèque Adafruit MCP23017 2.0.0]]
```

3/4

Ceci est facilement installé à partir de l'IDE Arduino. Si vous ne voyez pas la bibliothèque comme une entrée lorsque vous cliquez sur les menus, installez la bibliothèque comme suit: Esquisse → Inclure la bibliothèque Sélectionnez ensuite gérer les bibliothèques: Esquisse \rightarrow Inclure la bibliothèque \rightarrow Gérer les bibliothèques ... Recherchez et installez <nom de la bibliothèque> en utilisant le formulaire "Filtrer votre recherche". Fonctionnement de la bibliothèque Définition des broches pour la bibliothèque MCP23017 Remarque: dans la bibliothèque, les broches sont étiquetées de 0 à 15 où: la broche 0 est le bit 0 du port A la broche 7 est le bit 7 du port A la broche 8 est le bit 0 du port B la broche 15 est le bit 7 du port B Fonctions de contrôle E / S du MCP23017 E / S à bit unique Des fonctions membres similaires aux commandes de broches sur l'Arduino sont utilisées pour contrôler les broches MCP23017: mcp.pinMode (0, SORTIE); mcp.digitalWrite (0, HAUT); mcp.digitalRead (0); Connexions Connexions Netlist simples La netlist et le diagramme suivants vous montrent comment la connexion du MCP23017 à l'Arduino est très simple. Connectez la broche n ° 12 de l'extenseur à Arduino Analog 5 (horloge i2c) Connectez la broche n ° 13 de l'extenseur à Arduino Analog 4 (données i2c) Connectez la broche n ° 19 de l'extension à la broche 3 d'Arduino (entrée d'interruption). Connectez les broches n ° 15, 16 et 17 de l'extension à la masse Arduino (sélection d'adresse) Connectez la broche n ° 9 de l'extenseur à Arduino 5V (alimentation) Connectez la broche n ° 10 de l'extenseur à la terre Arduino (masse commune) Connectez la broche n ° 18 de l'expanseur à travers une résistance ~ 10 kohm à 5 V (broche de réinitialisation, actif bas). Connectez la broche # 28 de l'extenseur à l'extrémité + ve d'une LED puis à une résistance ~ 1kohm à GND (MCP LED1). Connectez la broche # 26 de l'extenseur à l'extrémité + ve d'une LED puis à une résistance ~ 1kohm à GND (MCP_LEDTOG1). Connectez la broche n ° 4 de l'extenseur à l'extrémité + ve d'une LED puis à une résistance ~ 1kohm à GND (MCP LEDTOG2). Connectez la broche n ° 1 du module d'extension à un bouton-poussoir normalement ouvert qui se connecte ensuite à GND (MCP INPUTPIN). Remarque: les pullups sont activés pour les broches I2C dans la bibliothèque "Wire" et ne sont donc pas affichés dans la connexion ou la disposition du circuit ci-dessus (ci-dessous). Ils ont une valeur élevée (probablement 50k \sim 100k), donc pour un front montant plus rapide sur les signaux I2C, utilisez des résistances d'extraction physiques de valeur inférieure qui remplaceront la valeur élevée.

From: https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Château-Renault

Permanent link: https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:mcp23017&rev=1606995142

Last update: 2023/01/27 16:08

