2026/02/06 10:26 1/3 Programmation des Ports sur Arduino

Programmation des Ports sur Arduino

La doc sur les Ports du Blog Eskimon
La Doc de réference Arduino

Registres de port

Les registres de port permettent une manipulation de niveau inférieur et plus rapide des broches d'E /
S du microcontroleur sur une carte Arduino. Les puces utilisées sur la carte Arduino (les ATmega8 et
ATmegal68) ont trois ports:

B (broche numérique 8 a 13)
C (broches d'entrée analogiques)
D (broches numériques 0 a 7)

Chaque port est contro6lé par trois registres, qui sont également des variables définies dans le langage
Arduino. Le registre DDR détermine si la broche est une entrée ou une sortie. Le registre PORT
controle si la broche est HIGH ou LOW, et le registre PIN lit I'état des broches INPUT configurées pour
entrer avec pinMode (). Les cartes des puces ATmega8 et ATmegal68 montrent les ports. La nouvelle
puce Atmega328p suit exactement le brochage de I'Atmegal68.

Les registres DDR et PORT peuvent étre a la fois écrits et lus. Les registres PIN correspondent a |'état
des entrées et ne peuvent étre lus.

PORTD mappe sur les broches numériques Arduino 0 a 7

DDRD - Le registre de direction des données du port D - lecture / écriture
PORTD - Le registre de données du port D - lecture / écriture
PIND - Le registre des broches d'entrée du port D - lecture seule

PORTB correspond aux broches numériques Arduino 8 a 13 Les deux bits hauts (6 et 7) correspondent
aux broches en cristal et ne sont pas utilisables

DDRB - Le registre de direction des données du port B - lecture / écriture
PORTB - Le registre de données du port B - lecture / écriture
PINB - Le registre des broches d'entrée du port B - lecture seule

PORTC correspond aux broches analogiques Arduino 0 a 5. Les broches 6 et 7 ne sont accessibles que
sur I'Arduino Mini

DDRC - Le registre de direction des données du port C - lecture / écriture
PORTC - Le registre de données du port C - lecture / écriture
PINC - Le registre des broches d'entrée du port C - lecture seule

Chaque bit de ces registres correspond a une seule broche; Par exemple, le bit faible de DDRB,
PORTB et PINB fait référence a la broche PBO (broche numérique 8). Pour un mappage complet des
numéros de broches Arduino aux ports et aux bits, consultez le diagramme de votre puce: ATmega8 ,

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://eskimon.fr/tuto-arduino-904-les-ports

Last update: 2023/01/27 16:08 start:arduino:ports https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:ports&rev=1606820843

ATmegal68 . (Notez que certains bits d'un port peuvent étre utilisés pour des choses autres que les
entrées / sorties; faites attention de ne pas changer les valeurs des bits de registre qui leur
correspondent.) Exemples

En se référant a la carte des broches ci-dessus, les registres PortD contrdlent les broches numériques
Arduino 0 a 7.

Vous devez cependant noter que les broches 0 et 1 sont utilisées pour les communications série pour
la programmation et le débogage de I'Arduino, donc le changement de ces broches doit généralement
étre évité sauf si nécessaire pour les fonctions d'entrée ou de sortie série. Sachez que cela peut
interférer avec le téléchargement ou le débogage du programme.

DDRD est le registre de direction pour le port D (broches numériques
Arduino 0-7). Les bits de ce registre controlent si les broches de
PORTD sont configurées comme entrées ou sorties, par exemple:

DDRD = B11111110; // définit les broches Arduino 1 a 7 comme sorties, la
broche 0 comme entrée
DDRD = DDRD | B11111100; // c'est plus sOr car il définit les broches 2 a
7 comme sorties
// sans changer la valeur des broches 0 & 1, qui sont RX &
X

See the bitwise operators reference pages and Le didacticiel Bitmath dans le Playground PORTD est le
registre de ['état des sorties. Par exemple; PORTD = B10101000; sets digital pins 7,5,3 HIGH

Vous ne verrez cependant que 5 volts sur ces broches si les broches ont été définies comme sorties
en utilisant le registre DDRD ou avec pinMode ().

PIND est la variable du registre d'entrée. Il lira toutes les broches d'entrée numériques en méme
temps. Pourquoi utiliser la manipulation de port?

A partir du didacticiel Bitmath

De maniere générale, faire ce genre de chose n'est pas une bonne idée. Pourquoi pas? Voici quelques
raisons:

Le code est beaucoup plus difficile a déboguer et a maintenir, et il est
beaucoup plus difficile a comprendre pour les autres. Le processeur ne prend
que quelques microsecondes pour exécuter le code, mais cela peut vous
prendre des heures pour comprendre pourquoi cela ne fonctionne pas
correctement et le réparer! Votre temps est précieux, non? Mais le temps de
1'ordinateur est tres bon marché, mesuré par le colt de l'électricité que
vous l'alimentez. Il est généralement préférable d'écrire du code de la
maniere la plus évidente.

Le code est moins portable. Si vous utilisez digitalRead () et
digitalWrite (), il est beaucoup plus facile d'écrire du code qui
fonctionnera sur tous les microcontréleurs Atmel, alors que les registres de
contréle et de port peuvent étre différents sur chaque type de
microcontroleur.

Il est beaucoup plus facile de provoquer des dysfonctionnements
involontaires avec un acces direct au port. Remarquez comment la ligne DDRD

https://chanterie37.fr/fablab37110/ Printed on 2026/02/06 10:26

2026/02/06 10:26 3/3 Programmation des Ports sur Arduino

= B11111110; ci-dessus mentionne qu'il doit laisser la broche 0 comme broche
d'entrée. La broche 0 est la ligne de réception (RX) sur le port série. Il
serait tres facile de provoquer accidentellement 1'arrét de votre port série
en changeant la broche 0 en une broche de sortie! Maintenant, ce serait tres
déroutant lorsque vous étes soudainement incapable de recevoir des données
série, n'est-ce pas?

Alors vous vous dites peut-étre, génial, pourquoi aurais-je envie d'utiliser ce truc alors? Voici
quelques-uns des aspects positifs de I'acces direct au port:

Vous devrez peut-étre pouvoir activer et désactiver les broches tres
rapidement, c'est-a-dire en quelques fractions de microseconde. Si vous
regardez le code source dans lib / cibles / arduino / cablage.c, vous verrez
que digitalRead () et digitalWrite () sont chacun environ une douzaine de
lignes de code, qui sont compilées en quelques instructions machine. Chaque
instruction machine nécessite un cycle d'horloge a 16 MHz, ce qui peut
s'additionner dans les applications sensibles au temps. L'acces direct au
port peut faire le méme travail en beaucoup moins de cycles d'horloge.

Parfois, vous devrez peut-étre définir plusieurs broches de sortie
exactement en méme temps. Appel digitalWrite (10, HIGH); suivi de
digitalWrite (11, HIGH); fera passer la broche 10 a 1'état HAUT plusieurs
microsecondes avant la broche 11, ce qui peut perturber certains circuits
numériques externes sensibles au temps que vous avez connectés. Vous pouvez
également régler les deux broches a un niveau élevé exactement au méme
moment en utilisant PORTB | = B1100;

Si vous manquez de mémoire programme, vous pouvez utiliser ces astuces
pour réduire la taille de votre code. Il faut beaucoup moins d'octets de
code compilé pour écrire simultanément un tas de broches matérielles
simultanément via les registres de port que d'utiliser une boucle for pour
définir chaque broche séparément. Dans certains cas, cela peut faire la
différence entre 1'adaptation de votre programme dans la mémoire flash ou
non!

From:

https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Chateau-Renault EE;E%&E

Permanent link: b

https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:ports&rev=1606820843 ri:-'",r"rf
Last update: 2023/01/27 16:08 [=] =1

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:ports&rev=1606820843

	Programmation des Ports sur Arduino
	La Doc de réference Arduino

