2026/02/06 10:24 1/4 Programmation des Ports sur Arduino

Programmation des Ports sur Arduino

La doc sur les Ports du Blog Eskimon

La Doc de référence Arduino

Registres de port

Les registres de port permettent une manipulation de niveau inférieur et plus rapide des broches d'E /
S du microcontrdleur sur une carte Arduino. Les puces utilisées sur la carte Arduino (les ATmega8 et
ATmegal68) ont trois ports:

B (broche numérique 8 a 13)
C (broches d'entrée analogiques)
D (broches numériques 0 a 7)

Chaque port est contro6lé par trois registres, qui sont également des variables définies dans le langage
Arduino. Le registre DDR détermine si la broche est une entrée ou une sortie. Le registre PORT
contrdle si la broche est HIGH ou LOW, et le registre PIN lit I'état des broches INPUT configurées pour
entrer avec pinMode (). Les cartes des puces ATmega8 et ATmegal68 montrent les ports. La nouvelle
puce Atmega328p suit exactement le brochage de I'Atmegal68.

Les registres DDR et PORT peuvent étre a la fois écrits et lus. Les registres PIN correspondent a |'état
des entrées et ne peuvent étre lus.

PORTD mappe sur les broches numériques Arduino 0 a 7

DDRD - Le registre de direction des données du port D - lecture / écriture
PORTD - Le registre de données du port D - lecture / écriture
PIND - Le registre des broches d'entrée du port D - lecture seule

PORTB correspond aux broches numériques Arduino 8 a 13 Les deux bits hauts (6 et 7) correspondent
aux broches en cristal et ne sont pas utilisables

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://eskimon.fr/tuto-arduino-904-les-ports

Last update: 2023/01/27 16:08 start:arduino:ports https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:ports&rev=1607201000

DDRB - Le registre de direction des données du port B - lecture / écriture
PORTB - Le registre de données du port B - lecture / écriture
PINB - Le registre des broches d'entrée du port B - lecture seule

PORTC correspond aux broches analogiques Arduino 0 a 5. Les broches 6 et 7 ne sont accessibles que
sur I'Arduino Mini

DDRC - Le registre de direction des données du port C - lecture / écriture
PORTC - Le registre de données du port C - lecture / écriture
PINC - Le registre des broches d'entrée du port C - lecture seule

Chaque bit de ces registres correspond a une seule broche; Par exemple, le bit faible de DDRB,
PORTB et PINB fait référence a la broche PBO (broche numérique 8). Pour un mappage complet des
numéros de broches Arduino aux ports et aux bits, consultez le diagramme de votre puce: ATmega8 ,
ATmegal68 . (Notez que certains bits d'un port peuvent étre utilisés pour des choses autres que les
entrées / sorties; faites attention de ne pas changer les valeurs des bits de registre qui leur
correspondent.) Exemples

En se référant a la carte des broches ci-dessus, les registres PortD contrdlent les broches numériques
Arduino 0 a 7.

Vous devez cependant noter que les broches 0 et 1 sont utilisées pour les communications série pour
la programmation et le débogage de I'Arduino, donc le changement de ces broches doit généralement
étre évité sauf si nécessaire pour les fonctions d'entrée ou de sortie série. Sachez que cela peut
interférer avec le téléchargement ou le débogage du programme.

DDRD est le registre de direction pour le port D (broches numériques
Arduino 0-7). Les bits de ce registre controlent si les broches de
PORTD sont configurées comme entrées ou sorties, par exemple:

DDRD = B11111110; // définit les broches Arduino 1 a 7 comme sorties, la
broche 0 comme entrée
DDRD = DDRD | B11111100; // c'est plus sOr car il définit les broches 2 a

7 comme sorties
// sans changer la valeur des broches 0 & 1, qui sont RX &
X

See the bitwise operators reference pages and Le didacticiel Bitmath dans le Playground PORTD est le
registre de ['état des sorties. Par exemple; PORTD = B10101000; sets digital pins 7,5,3 HIGH

Vous ne verrez cependant que 5 volts sur ces broches si les broches ont été définies comme sorties
en utilisant le registre DDRD ou avec pinMode ().

PIND est la variable du registre d'entrée. Il lira toutes les broches d'entrée numériques en méme
temps. Pourquoi utiliser la manipulation de port?

A partir du didacticiel Bitmath

De maniere générale, faire ce genre de chose n'est pas une bonne idée. Pourquoi pas? Voici quelques
raisons:

https://chanterie37.fr/fablab37110/ Printed on 2026/02/06 10:24

2026/02/06 10:24 3/4 Programmation des Ports sur Arduino

Le code est beaucoup plus difficile a déboguer et a maintenir, et il est beaucoup plus difficile a
comprendre pour les autres. Le processeur ne prend que quelques microsecondes pour exécuter le
code, mais cela peut vous prendre des heures pour comprendre pourquoi cela ne fonctionne pas
correctement et le réparer! Votre temps est précieux, non? Mais le temps de I'ordinateur est trés bon
marché, mesuré par le colt de I'électricité que vous l'alimentez. Il est généralement préférable
d'écrire du code de la maniere la plus évidente.

Le code est moins portable. Si vous utilisez digitalRead () et digitalWrite (), il est beaucoup plus facile
d'écrire du code qui fonctionnera sur tous les microcontréleurs Atmel, alors que les registres de
controle et de port peuvent étre différents sur chaque type de microcontréleur.

Il est beaucoup plus facile de provoquer des dysfonctionnements involontaires avec un acces direct
au port. Remarquez comment la ligne DDRD = B11111110; ci-dessus mentionne qu'il doit laisser la
broche 0 comme broche d'entrée. La broche 0 est la ligne de réception (RX) sur le port série. Il serait
trés facile de provoquer accidentellement I'arrét de votre port série en changeant la broche 0 en une
broche de sortie! Maintenant, ce serait tres déroutant lorsque vous étes soudainement incapable de
recevoir des données série, n'est-ce pas?

Alors vous vous dites peut-étre, génial, pourquoi aurais-je envie d'utiliser ce truc alors? Voici
quelques-uns des aspects positifs de I'acces direct au port:

Vous devrez peut-étre pouvoir activer et désactiver les broches tres rapidement, c'est-a-dire en
quelques fractions de microseconde. Si vous regardez le code source dans lib / cibles / arduino /
cablage.c, vous verrez que digitalRead () et digitalWrite () sont chacun environ une douzaine de lignes
de code, qui sont compilées en quelques instructions machine. Chaque instruction machine nécessite
un cycle d'horloge a 16 MHz, ce qui peut s'additionner dans les applications sensibles au temps.
L'acces direct au port peut faire le méme travail en beaucoup moins de cycles d'horloge.

Parfois, vous devrez peut-étre définir plusieurs broches de sortie exactement en méme temps. Appel
digitalWrite (10, HIGH); suivi de digitalWrite (11, HIGH); fera passer la broche 10 a I'état HAUT
plusieurs microsecondes avant la broche 11, ce qui peut perturber certains circuits numériques
externes sensibles au temps que vous avez connectés. Vous pouvez également régler les deux
broches a un niveau élevé exactement au méme moment en utilisant PORTB | = B1100;

Si vous manquez de mémoire programme, vous pouvez utiliser ces astuces pour réduire la taille de
votre code. Il faut beaucoup moins d'octets de code compilé pour écrire simultanément un tas de
broches matérielles simultanément via les registres de port que d'utiliser une boucle for pour définir
chaque broche séparément. Dans certains cas, cela peut faire la différence entre I'adaptation de votre
programme dans la mémoire flash ou non!

Exemple de programme Arduino UNO pour faire clignoter 2
LEDS

2 LEDS branchées sur les broches: LED1 = - sur 2 et cmd+ sur 3, LED2 = - sur 6 cmd+ sur 7

ports_Leds.ino

void setup

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:ports&codeblock=0

Last update: 2023/01/27 16:08 start:arduino:ports https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:ports&rev=1607201000

// 0n positionne en sortie OUTPUT (1) les broches 2 a 7 sur
les bits 2 a 7 ,

// 0On part de la droite vers la gauche pour lire les n° des bits
donc des broches.

DDRD = B11111110; // ATTENTION le bit 0 = 0 et le bit 1 = 1 sinon
pas de liaison série!!!

// Le B majuscule en début de séquence indique un nombre Binaire

void loop

// on met du 5 volts ou a 1 (HIGH) les broches 3 et 7 on allume les
2 LEDS

PORTD B10001600O; // toujours O sur les bits 0 et 1 ==> liaison
série...

delay(1000); // on attend 1s

PORTD BOOOOGOOOO; // On eteind les 2 LEDS

delay(1000); // attente 1s

bitRead(x, n); bitRead() permet de lire I'état d'un bit dans un nombre entier. bitWrite(x, n, b);
bitWrite() permet d'écrire I'état d'un bit dans un nombre entier. bitSet(x, n); bitSet() permet de mettre
un bit a “1” dans un nombre entier. bitClear(x, n); bitClear() permet de mettre un bit a “0” dans un
nombre entier. bit(n),;bit() permet de retourner la valeur numérique correspondant au poids d'un bit :
https://www.carnetdumaker.net/articles/quelques-fonctions-bien-pratiques-du-framework-arduino/

From:
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Chateau-Renault

Permanent link:

Last update: 2023/01/27 16:08

https://chanterie37.fr/fablab37110/ Printed on 2026/02/06 10:24

https://www.carnetdumaker.net/articles/quelques-fonctions-bien-pratiques-du-framework-arduino/
https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:ports&rev=1607201000

	Programmation des Ports sur Arduino
	La Doc de référence Arduino
	Registres de port

	Exemple de programme Arduino UNO pour faire clignoter 2 LEDS

