2026/01/14 14:58 1/7 Comment changer la fréquence PWM d'Arduino

Comment changer la fréquence PWM d'Arduino

: Guide épique Robert Brun-11 juin 2021

Le microcontréleur possede plusieurs temporisateurs qui peuvent exécuter différentes fonctions,
telles que la génération d'un signal PWM . Pour que le temporisateur génere un signal PWM, il doit
étre préconfiguré en éditant le registre du temporisateur. Lorsque nous travaillons dans I'IDE Arduino,
les minuteries sont configurées a notre insu dans la bibliotheque Arduino.h et obtiennent en fait les
parametres souhaités par les développeurs. Et ces parametres ne sont pas trés bons : la fréquence
PWM par défaut est faible et les minuteries ne sont pas utilisées a leur plein potentiel. Regardons le
PWM standard de I'ATmega328 (Arduino UNO/ Nano / Pro Mini) :

Minuteur | Epingles Fréquence| Résolution
Minuterie 0| D5 et D6 976Hz|8 bits (0-255)
Minuterie 1/D9 et D10 488Hz|8 bits (0-255)
Minuterie 2|D3 et D11 488Hz|8 bits (0-255)

En fait, tous les temporisateurs peuvent facilement émettre un signal PWM de 64 kHz , et le
temporisateur 1 - c'est méme 16 bits, et a la fréquence qui lui a été donnée Arduino, pourrait
fonctionner avec une résolution de 15 bits au lieu de 8, et cela, soit dit en passant, 32768 gradations
de remplissage au lieu de 256 ! Alors pourquoi cette injustice ? La minuterie 0 est en charge de la
synchronisation et est réglée de maniere a ce que les millisecondes s'écoulent avec précision. Les
autres minuteries sont ramenées a zéro pour éviter que I'amateur d'Arduino n'ait des problemes
inutiles. Cette approche est généralement compréhensible mais aurait fait au moins quelques
fonctions standard pour une fréquence plus élevée, eh bien, sérieusement ! D'accord, s'ils ne I'ont pas
fait, nous le ferons.

Réglage de la fréquence PWM via les
registres

La génération PWM est réglée via les registres de temporisation. Ensuite, vous trouverez des
“morceaux” de code préts a I'emploi, que vous devez insérer dans setup(), et la fréquence PWM sera
reconfigurée (le pré-délimiteur et le mode minuterie changeront). Vous pouvez toujours travailler
avec le signal PWM avec la analogWrite()fonction, contrélant le remplissage du PWM sur les broches
standard.

Modification de la fréquence PWM sur I'ATmega328 (Arduino UNO/Nano/Pro
Mini)

Broches D5 et D6 (Timer 0) - 8 bits

pwmD5D6.ino

// Pins D5 and D6 are 62.5kHz

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:pwm&codeblock=0

Last update: 2023/01/27 16:08 start:arduino:pwm https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:pwm&rev=1671543909

TCCROB = 0b0000O0O1; // xI

TCCROA = 0b00OOOOOL11; // fast pwm

// Pins D5 and D6 - 31.4 kHz

TCCROB = 0b000000OL; // xI

TCCROA = 0b0OOO0OOOOL; // phase correct
// Pins D5 and D6 - 7.8 kHz

TCCROB = 0b00000010O; // x8

TCCROA = 0b00OOOOOL11; // fast pwm

// Pins D5 and D6 - 4 kHz

TCCROB = 0b0OOOOO1O; // x8

TCCROA = 0b000OOOOL; // phase correct
// Pins D5 and D6 - 976 Hz - default
TCCROB = 0b00G00OOL11; // x64

TCCROA = 0b00OOOOOL11; // fast pwm

// Pins D5 and D6 - 490 Hz

TCCROB = 0b0000OO11; // x64

TCCROA = 0b000OOOOL; // phase correct
// Pins D5 and D6 - 244 Hz

TCCROB = 0b00G00O10O; // x256

TCCROA = 0b000O0OOOL11; // fast pwm

// Pins D5 and D6 - 122 Hz

TCCROB = 0b0000010O; // x256

TCCROA = 0bOOO0OOOOL; // phase correct
// Pins D5 and D6 - 61 Hz

TCCROB = 0b0000010L; // x1024

TCCROA = 0b00O00OOOL11; // fast pwm

// Pins D5 and D6 - 30 Hz

TCCROB = 0b00000101; // x1024

TCCROA = 0b0OOO0OOOOL; // phase correct

Broches D9 et D10 (Timer 1) - 8 bits

pwmD9D108B.ino

// Broches D9 et D10 - 62,5 kHz

TCCR1A = 0b0OOOOOOOL ; // 8 bits

TCCR1B = 0b000016GO1 ; // xI1 pwm rapide

// Broches D9 et D10 - 31,4 kHz

TCCR1A = 0b0OOOOOO1 ; // 8 bits

TCCR1B = 0bO0OOOOOOL ; // phase x1 correcte
// Broches D9 et D10 - 7,8 kHz

TCCR1A = 0b0OOOOOOOL ; // 8 bits

TCCR1B = 0b00001010O ; // x8 rapide pwm

// Broches D9 et D10 - 4 kHz

TCCR1A = 0b0O0OOOOOL ; // 8 bits

TCCR1B = 0bOO0OOOO1O ; // phase x8 correcte
// Broches D9 et D10 - 976 Hz

TCCR1A = 0b0OOOOOOOL ; // 8 bits

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 14:58

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:pwm&codeblock=1

2026/01/14 14:58 3/7 Comment changer la fréquence PWM d'Arduino

TCCR1B = 0b00001011 ; // pwm rapide x64

// Broches D9 et D10 - 490 Hz - par défaut
TCCR1A = 0bOOOOOOOL ; // 8 bits

TCCR1B = 0b0O0OOOOO1l ; // phase x64 correcte
// Broches D9 et D10 - 244 Hz

TCCR1A = 0bOOGOOOOOL ; // 8 bits

TCCR1B = 0b000011600O ; // x256 pwm rapide

// Broches D9 et D10 - 122 Hz

TCCR1A = 0bOOOOOOOL ; // 8 bits

TCCR1B = 0b00OO0O10O ; // phase x256 correcte
// Broches D9 et D10 - 61 Hz

TCCR1A = 0bOOOOOOOL ; // 8 bits

TCCR1B = 0b00001101 ; // x1024 pwm rapide

// Broches D9 et D10 - 30 Hz

TCCR1A = 0bOOOOOOOL ; // 8 bits

TCCR1B = 0b00000101 ; // phase x1024 correcte

Broches D9 et D10 (minuterie 1) - 10 bits

pwmD9D1010B.ino

// Broches D9 et D10 - 15,6 kHz 10 bits
TCCR1A = 0b00OOOOL1l ; // 10 bits

TCCR1B = 0b000010O1 ; // xI1 pwm rapide

// Broches D9 et D10 - 7,8 kHz 10 bits
TCCR1A = 0b00OOOOLl ; // 10 bits

TCCR1B = 0b0OOOOOOL ; // phase x1 correcte
// Broches D9 et D10 - 2 kHz 10 bits
TCCR1A = 0b00OOOOL1l ; // 10 bits

TCCR1B = 0b0OGOO1O1O ; // x8 rapide pwm

// Broches D9 et D10 - 977 Hz 10 bits
TCCR1A = 0b00OOOO11 ; // 10 bits

TCCR1B = 0bO0O0OOOO1O ; // phase x8 correcte
// Broches D9 et D10 - 244 Hz 10 bits
TCCR1A = 0b00OOOOL1l ; // 10 bits

TCCR1B = 0b00001011 ; // pwm rapide x64

// Broches D9 et D10 - 122 Hz 10 bits
TCCR1A = 0b00OOOOL11 ; // 10 bits

TCCR1B = 0b000OOOL1l ; // phase x64 correcte
// Broches D9 et D10 - 61 Hz 10 bits
TCCR1A = 0b00OOOOL1l ; // 10 bits

TCCR1B = 0b0OOOO110O ; // x256 pwm rapide
// Broches D9 et D10 - 30 Hz 10 bits
TCCR1A = 0b00OOOOL1 ; // 10 bits

TCCR1B = 0b000OO1GO ; // phase x256 correcte
// Broches D9 et D10 - 15 Hz 10 bits
TCCR1A = 0b00OOOOOL1l ; // 10 bits

TCCR1B = 0b0OOOO1101 ; // x1024 pwm rapide

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:pwm&codeblock=2

Last update: 2023/01/27 16:08 start:arduino:pwm https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:pwm&rev=1671543909

// Broches D9 et D10 - 7,5 Hz 10 bits
TCCR1A 0b00006OO11 // 10 bits
TCCR1B = 0b0OO00101 ; // phase x1024 correcte

Broches D3 et D11 (Timer 2) - 8 bits

pwmD3D118B.ino

// Broches D3 et D11 - 62,5 kHz

TCCR2B = 0b000OOOOL ; // xI

TCCR2A = 0b000OOOL11 ; // pwm rapide

// Broches D3 et D11 - 31,4 kHz

TCCR2B = 0b0000OOOL ; // xI

TCCR2A = 0b0OOOOOOOL ; // phase correcte
// Broches D3 et D11 - 8 kHz

TCCR2B = 0b00000O1O ; // x8

TCCR2A = 0b000OOOL11 ; // pwm rapide

// Broches D3 et D11 - 4 kHz

TCCR2B = 0b00000O1O ; // x8

TCCR2A = 0b000OOOOL ; // phase correcte
// Broches D3 et D11 - 2 KkHz

TCCR2B = 0b000OOOL11 ; // x32

TCCR2A = 0b0OOO0OOOL11 ; // pwm rapide

// Broches D3 et D11 - 980 Hz

TCCR2B = 0b000OOO11 ; // x32

TCCR2A = 0b0O0OOOOOL ; // phase correcte

// Broches D3 et D11 - 980 Hz

TCCR2B = 0b00G00O10O ; // x64

TCCR2A = 0b0000OO11 ; // pwm rapide

// Broches D3 et D11 - 490 Hz - par défaut
TCCR2B = 0b0000O10O ; // x64

TCCR2A = 0b000OOOOL ; // phase correcte
// Broches D3 et D11 - 490 Hz

TCCR2B = 0b0000O101 ; // x128

TCCR2A = 0b0000OO11 ; // pwm rapide

// Broches D3 et D11 - 245 Hz

TCCR2B = 0b0000O101 ; // x128

TCCR2A = 0b000OOOOL ; // phase correcte
// Broches D3 et D11 - 245 Hz

TCCR2B = 0b00000110 ; // x256

TCCR2A = 0b000OOO11 ; // pwm rapide

// Broches D3 et D11 - 122 Hz

TCCR2B = 0b0O0O00O110 ; // x256

TCCR2A = 0bOOOOOOOL ; // phase correcte
// Broches D3 et D11 - 60 Hz

TCCR2B = 0b00000111 ; // x1024

TCCR2A = 0b0000OOL11 ; // pwm rapide

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 14:58

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:pwm&codeblock=3

2026/01/14 14:58 5/7 Comment changer la fréquence PWM d'Arduino

// Broches D3 et D11 - 30 Hz
TCCR2B = 0bOOEOO111 ; // x1024
TCCR2A = 0bOO0OOOOOL ; // phase correcte

Exemple d'utilisation

exemplel.ino

void setup
// Pins D5 and D6 - 7.8 kHz
TCCROB = 0b00000010O; // x8
TCCROA = 0b000OOOL1L1; // fast pwm
// Pins D3 and D11 - 62.5 kHz
TCCR2B = 0b00OOOOOL; // xI
TCCR2A = 0b000OOOL1L1; // fast pwm
// Pins D9 and D10 - 7.8 kHz 10bit
TCCR1A = 0b000OOOL11; // 10bit
TCCR1B = 0bOG0OOOOOL; // x1 phase correct
analogWrite(3, 15
analogWrite(5, 167
analogWrite(6, 241
analogWrite(9, 745); // yes, range 0-1023
analogWrite(10, 345); // yes, range 0-1023
analogWrite(11, 78

void loop

Si vous changez la fréquence sur les broches D5 et D6, vous perdrez les fonctions de
temps (millis(), delay(), pulseln(), setTimeout(), etc.), elles ne fonctionneront pas
correctement. De plus, les bibliotheques qui les utilisent cesseront de fonctionner !

Changeé les frequences Timer 0

Si vous voulez ou avez vraiment besoin d'un PWM overclocké sur le temporisateur systeme (zéro)
sans perte de fonctions temporelles, vous pouvez les corriger comme suit :

timerO.ino

#define micros() (micros() >> CORRECT CLOCK)
#define millis() (millis() >> CORRECT CLOCK)

void fixDelay(uint32 t ms
delay(ms CORRECT_CLOCK

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:pwm&codeblock=4
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:pwm&codeblock=5

Last update: 2023/01/27 16:08 start:arduino:pwm https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:pwm&rev=1671543909

Les définitions doivent étre placées avant de brancher les bibliotheques afin qu'elles entrent dans le
code et remplacent les fonctions. La seule chose est que vous ne pouvez pas corriger le retard dans
une autre bibliotheque de cette fagon. Vous pouvez utiliser fixDelay() pour vous-méme comme
indiqué ci-dessus.

La chose la plus importante est CORRECT _CLOCK. Il s'agit d'un nombre entier égal au rapport entre le
diviseur de minuterie par défaut et le nouveau défini (pour I'accélération PWM). Par exemple, nous
réglons le PWM a 8 kHz. Dans la liste ci-dessus, nous voyons que le diviseur par défaut est 64, et 7,8
kHz sera 8, ce qui est huit fois plus petit. CORRECT _CLOCK est défini en conséquence.

correctclock.ino

#define CORRECT CLOCK 8
void fixDelay(uint32 t ms
delay(ms CORRECT_CLOCK

void setup
pinMode
// Pins D5 and D6 - 4 kHz
TCCROB = 0b00OOOOOLO; // x8
TCCROA = 0bOOOOOOOL; // phase correct

void loop
digitalWrite digitalRead
fixDelay

Bibliotheques pour travailler avec PWM

En plus de jouer manuellement avec les registres, il existe des bibliotheques prétes a I'emploi qui
vous permettent de modifier la fréquence PWM de I'Arduino. Jetons un coup d'ceil a certains d'entre
eux :

PWM library (GitHub) - une bibliotheque puissante qui vous permet de modifier la fréquence PWM
sur les microcontréleurs ATmega48 /88 /168 /328 /640 /1280 /1281 /2560 /2561, dont 328 sur
UNO/Nano/Mini et 2560 sur un Arduino Méga.

» Vous permet de définir n'importe quelle fréquence PWM, pré-retard, TOP

e Un seul canal est disponible lorsque vous travaillez avec des minuteries 8 bits (par exemple, sur
I'ATmega328, uniquement D3, D5, D9 et D10)

Permet de travailler avec des temporisateurs 16 bits a une résolution plus élevée (16 bits au
lieu du standard 8)

La bibliotheque est trés compliquée, elle ne peut donc pas étre déchiquetée en morceaux.

Voir exemples dans le dossier avec la bibliotheque !

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 14:58

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:pwm&codeblock=6
https://github.com/atmelino/Arduino/tree/master/libraries/PWM

2026/01/14 14:58 717 Comment changer la fréquence PWM d'Arduino

GyverPWM library(GitHub) - la bibliotheque que nous avons écrite avec mon ami. La bibliotheque
permet un travail tres flexible avec PWM sur le microcontréleur ATmega328 (nous ajouterons Mega
plus tard):

e Vous permet de définir n'importe quelle fréquence PWM dans la plage de 250 Hz a 200 kHz

e Sélection de bits : 4-8 bits pour les temporisateurs 8 bits, 4-16 bits pour les temporisateurs 16
bits (a 4 bits, la fréquence PWM est de 1 MHz)

e Sélection du mode PWM : Fast PWM ou Phase-correct PWM (favorable aux moteurs)

Génération de fréquences de méandres de 2 Hz a 8 MHz sur la broche D9 avec une précision

maximale

Un seul canal est disponible lorsque vous travaillez avec des minuteries 8 bits (par exemple, sur

un ATmega328, uniguement D3, D5, D9 et D10)

Il existe des fonctions pour reconfigurer les sorties PWM standard sans perdre le PWM

La bibliotheque est écrite de maniere tres simple, et vous pouvez en prendre des morceaux de

code

Voir exemples dans le dossier avec la bibliotheque !

From:
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Chateau-Renault

Permanent link: - el
https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:pwm&rev=1671543909 k4%

Last update: 2023/01/27 16:08

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://github.com/GyverLibs/GyverPWM
https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:pwm&rev=1671543909

	[Comment changer la fréquence PWM d'Arduino]
	Comment changer la fréquence PWM d'Arduino

	Réglage de la fréquence PWM via les registres
	Modification de la fréquence PWM sur l'ATmega328 (Arduino UNO/Nano/Pro Mini)
	Broches D5 et D6 (Timer 0) – 8 bits
	Broches D9 et D10 (Timer 1) – 8 bits
	Broches D9 et D10 (minuterie 1) – 10 bits
	Broches D3 et D11 (Timer 2) – 8 bits
	Exemple d'utilisation
	Changé les frequences Timer 0

	Bibliothèques pour travailler avec PWM

