
2025/10/19 09:41 1/11 Micro:Bit

Micro:Bit

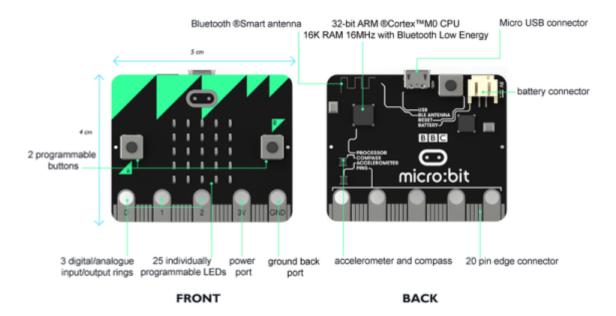
C'est quoi cette carte?

Vous pouvez utiliser votre BBC micro:bit pour toutes sortes de créations géniales, allant des robots aux instruments de musique – les possibilités sont infinies.

Ce qu'en dit le créateur

La BBC déclare : "Le Micro:bit est un ordinateur de poche que vous pouvez programmer, personnaliser et contrôler afin de rendre concrets vos idées numériques, des jeux et des applications. Mesurant 4 cm par 5 cm, il est conçu pour être amusant et facile à utiliser ; les utilisateurs peuvent créer toutes sortes de choses, que ce soient des jeux, des animations ou des messages défilants aussi bien à l'école, à la maison qu'en déplacement. Tout ce dont vous avez besoin est de l'imagination et de la créativité. Le BBC Micro:bit est entièrement programmable. Cela signifie que chacune de ses diodes électroluminescentes peut être programmée individuellement comme peuvent également l'être les boutons, les entrées et sorties, l'accéléromètre, le magnétomètre et la connexion Bluetooth"

Programmer le Micro:bit


Le Micro:bit se programme de façon simple dans un environnement d'édition simple via un site Web. Les langages utilisés par les éditeurs sont : Le javaScript, Microsoft Block, Microsoft Touch Develop et Python.

L'utilisateur crée et écrit le programme sur l'éditeur de son choix. Il l'envoi à un serveur distant qui se chargera de le compiler pour être ensuite téléchargeable par l'utilisateur et transféré sur le Micro:bit. Point fort de cette innovation, la programmation via Android et IOS par Bluetooth.

Pour commencer avec un Micro:bit FR

Fonctionnalités

Ton micro:bit dispose des spécificités techniques suivantes :

Les principaux composants :

- 1. Microcontrôleur Nordic nRF51822
- 2. Processeur Cortex ARM-M0 (architecture ARMv6-M) RISC 32-bits à 16 MHz
- 3. Mémoire RAM: 256kB flash
- 4. Mémoire statique: 16kB
- 5. Connectique bluetooth 4.0 basse énergie/2.4 GHz maître/esclave;
- 6. Un connecteur pour piles;
- 7. Un porte-piles (2 LR03/AAA);
- 8. Une prise femelle micro-USB (permet l'alimentation du Micro:bit ainsi que le transfert des codes);
- 9. Un bouton de ré-initialisation, libellé "R" pour "Reset";
- Une LED jaune du système ;
- 11. Deux boutons programmables, libellés "A" et "B" sur la carte ;
- 12. Une matrice carrée de 25 LED (5 x 5) rouges programmables pouvant servir d'affichage, notamment pour des motifs animés, du texte alphanumérique déroulant ;
- 13. Un capteur de mouvement 3D Freescale MMA8652 via le bus I2C;
- 14. Un magnétomètre 3D Freescale MAG3110 via le bus I2C;
- 15. 5 ports d'entrée-sortie en forme d'anneau. Chacune des 5 E/S est programmable, pour être traitée soit en analogique, soit en numérique. Les anneaux sont compatibles avec des prises crocodile ou des fiches banane 4mm :
- 16. 2 ports : Puissance référencé "PWR" & masse référencé "GND" fournissant 3 Volts, éventuellement pour alimenter un autre appareil, libellés "3V" et "GND" sur la carte ;
- 17. et 3 autres, référencés "Pins" P1 à P3, libellés "1", "2", "3" sur la carte ;
- 18. Un connecteur latéral à 20 broches, à connexion standard, référencés "Pins" P3 à P22. Ceci permet de connecter à un appareil, comme un Arduino, Galileo, Kano et Raspberry

Connecteur Micro:Bit V1 et V2

Connecteur Micro:Bit

2025/10/19 09:41 3/11 Micro:Bit

Pour coder

En javascript Block et texte FR

En Python Texte

MicroPython FR

Créer des Scripts

Micro:bit: Blocks pour Python EN

Tutoriels

Tutos Micro bit

Liens Micro:Bit avec un RaspberryPi

Le Micro:bit Comment l'utiliser?

Micro:bit with Arduino EN

BBC micro:bit + Arduino IDE EN

Guide référence du langage des blocs FR

Démarrage

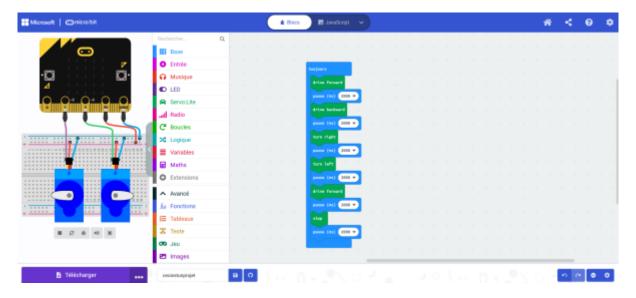
Prise en main rapide de Micro:bit

Utilisation de la carte Micro:bit

Pilotage Mini-Move Micro:bit

Programmer un Micro:bit avec Arduino IDE

test Micro:bit leds Neopixel


Tutos FR

Tuto doc FR

Exemples

Last update: 2024/10/11 16:30

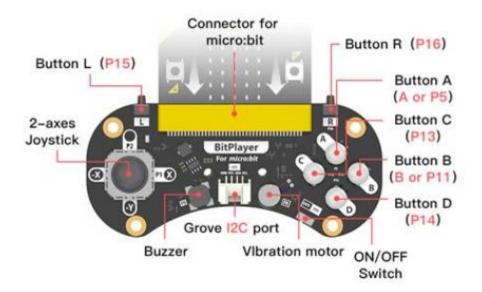
Exemples001

Bitcar

Bitcar

GitHub BitCar

Bitcar doc


Extensions

2025/10/19 09:41 5/11 Micro:Bit

BitCar

https://github.com/TinkerGen/pxt-BitCar

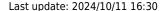
BitPlayer

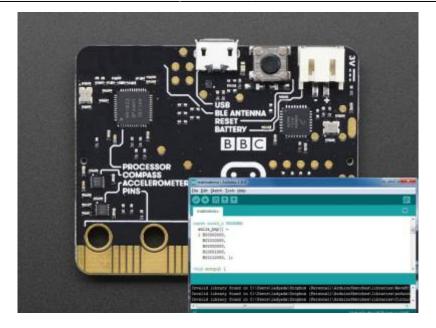
Wiki Seeedstudio Bit Player EN

Doc Micro Bit Bit Player EN

Exemple :Code Bit Player EN

Doc Seeedstudio Bit Player EN


Extensions


BitPlayer

https://github.com/TinkerGen/pxt-BitPlayer

MicroBit et Arduino

MicroBit et Arduino EN

Saviez-vous que l'IDE Arduino peut être utilisé pour programmer le micro:bit ? Vous disposez désormais d'une autre façon d'utiliser cette carte géniale! Apprenez à configurer Arduino pour programmer votre micro:bit, faire clignoter quelques LED, lire le capteur de température interne, envoyer et recevoir des données via Bluetooth - et même enregistrer des données sur Adafruit.IO!

Le micro:bit est une petite plate-forme d'apprentissage pour enfants alimentée par nRF51 - vous pouvez l'utiliser avec Microsoft MakeCode (programmation par blocs glisser-déposer ou Javascript), micropython ou mbed. Mais nous aimons vraiment utiliser l'IDE Arduino, d'autant plus qu'il existe des milliers de projets existants que vous pouvez utiliser et adapter. De plus, vous pouvez avoir des projets beaucoup plus avancés car vous ne manquerez pas de mémoire (comme vous le feriez avec micropython) et vous pouvez écrire à peu près n'importe quel code que vous voulez (avec MakeCode, vous êtes plus limité à ce qui vous a déjà été fourni, un compromis pour la facilité d'utilisation).

Prenez un microbit et suivez-nous pour découvrir comment vous pouvez faire des choses assez avancées avec votre « bit ! »

Installer la carte et blink!

Installer le pilote Windows

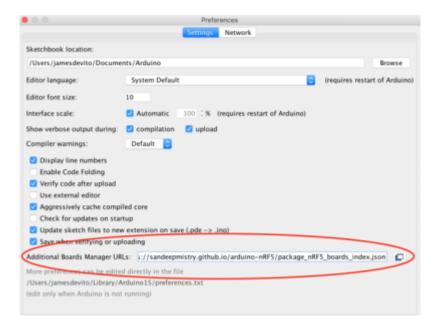
Si vous utilisez Mac, Win 10+ ou Linux, ce n'est pas obligatoire! Ignorez cette étape

Télécharger Arduino IDE

Vous devrez utiliser l'IDE de bureau. Assurez-vous que vous utilisez la dernière version.

IDE Arduino

Installer SoftDevice sur MicroBit


2025/10/19 09:41 7/11 Micro:Bit

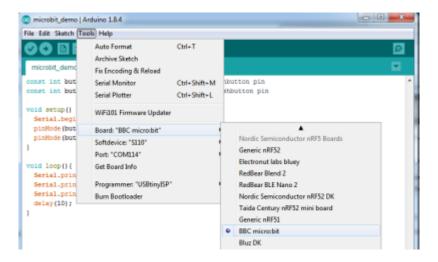
Arduino suppose qu'une radio « softdevice » est déjà installée. Si vous avez utilisé MicroPython avec votre microbit, ce softdevice a été effacé.

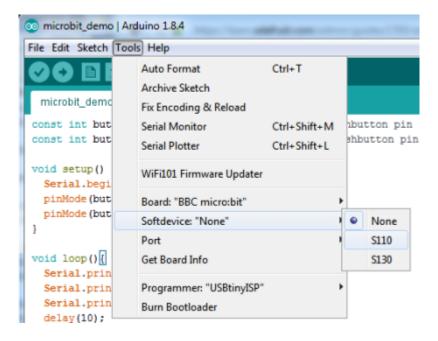
La réinstallation est facile, téléchargez ce fichier hex et faites-le glisser sur votre lecteur MICROBIT

Ajout de la prise en charge de la carte NRF5x

Le microbit utilise le nRF51 qui n'est pas pris en charge « nativement ». Mais il est facile d'ajouter un support ! micro-ordinateurs_

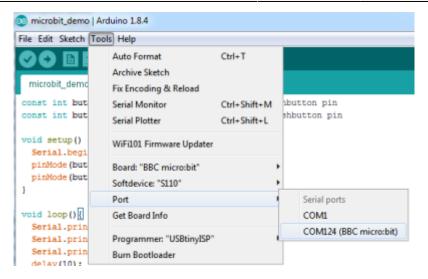
Dans Arduino, accédez à Préférences et ajoutez-les : https://sandeepmistry.github.io/arduino-nRF5/package_nRF5_boards_index.json


dans la zone de texte URL du gestionnaire de cartes supplémentaires. Si ce n'est pas votre premier, assurez-vous de séparer les URL par une virgule.


Ouvrez Outils > Carte > Gestionnaire de cartes dans la barre de menu, recherchez nRF5 et installez « Nordic Semiconductor nRF5 Boards » par Sandeep Mistry

Sélectionnez le tableau et téléchargez

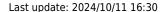
Sélectionnez BBC micro:bit dans le menu Cartes

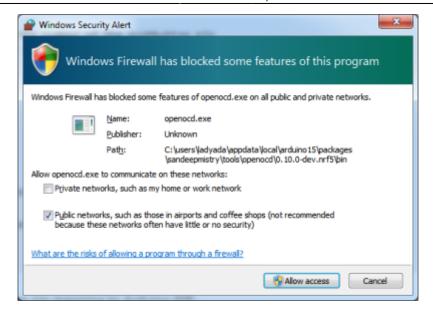


Régler SoftDevice sur S110

Et définissez le port sur le microbit

2025/10/19 09:41 9/11 Micro:Bit


Et créez un nouveau croquis avec cette démo clignotante


demo001MicroBit_arduino_clign.ino

```
// Column #1 control
const int COL1 = 3;
const int LED = 26;
                       // 'row 1' led
void setup() {
  Serial.begin(9600);
  Serial.println("microbit is ready!");
 // because the LEDs are multiplexed, we must ground the opposite side
of the LED
  pinMode(COL1, OUTPUT);
  digitalWrite(COL1, LOW);
  pinMode(LED, OUTPUT);
void loop(){
  Serial.println("blink!");
  digitalWrite(LED, HIGH);
  delay(500);
 digitalWrite(LED, LOW);
  delay(500);
```

Cliquez sur Télécharger!

Si vous recevez un avertissement concernant openocd , approuvez l'accès afin qu'il puisse télécharger le code

Spécifique à Linux

La version openocd du paquet sandeepmistry semble être 32 bits. Si vous utilisez une installation Linux 64 bits, vous pouvez obtenir cette erreur lorsque vous essayez de télécharger des croquis :

• {dossier Arduino}/packages/sandeepmistry/tools/openocd/0.10.0-dev.nrf5/bin/openocd : erreur lors du chargement des bibliothèques partagées : libudev.so.1 : impossible d'ouvrir le fichier objet partagé : aucun fichier ou répertoire de ce type

Pour contourner ce problème, installez la version 32 bits de la bibliothèque libudev avec :

• sudo apt-get install libudev1:i386

Vous pouvez également rencontrer un problème d'autorisations lorsque vous essayez de télécharger le croquis sur le micro:bit. Si vous obtenez un message d'erreur qui se termine par des lignes comme celle-ci :

- Erreur : impossible d'ouvrir le périphérique CMSIS-DAP 0xd28:0x204
- Erreur : aucune interface JTAG valide configurée.
- Erreur : aucune interface JTAG valide configurée.

Ensuite, vous devrez ajouter une règle udev. Placez le contenu ci-dessous dans un fichier nommé /etc/udev/rules.d/99-microbit.rules Télécharger le fichier

Copier le code

ATTRS{idVendor}=="0d28", ATTRS{idProduct}=="0204", MODE="664", GROUP="plugdev"

Rebranchez ensuite le micro:bit pour que les paramètres prennent effet.

Suite Boutons EN

2025/10/19 09:41 11/11 Micro:Bit

Statistiques

Cet page a été consultée : Aujourd'hui: 1 Hier: 1 Jusqu'à maintenant: 3168

From:

https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Château-Renault

Permanent link:

https://chanterie37.fr/fablab37110/doku.php?id=start:micro-bit

Last update: **2024/10/11 16:30**

