2026/01/14 14:55 1/8 Cours sur Python

Cours Python 3

programmation éducation python

Cours sur Python

Session 1

Introduction
Python est né au début des années 1990, son péere est Guido van Rossum. Les deux versions actuelles
sontla2.7.2 etla 3.2.2.

Python est présent partout, vous I'utilisez tous les jours avec Ubuntu, Red Hat en use et abuse, de
méme que Google (van Rossum est employé par Google). Vous avez aussi tres certainement vu
Python en action avec Launchpad.

Ce cours est une introduction au langage, en abordant certaines notions de base de la
programmation. Le but est d'étre clair pour les gens qui n'ont jamais programmé, donc certains «
pythonismes » seront volontairement mis de c6té. On approfondira dans d'autres sessions.

L'interpréteur de commandes

Python est un langage « interprété », c'est-a-dire qu'un script ne nécessite pas de compilation pour
étre exécuté. Il existe un interpréteur qui permet d'interagir avec I'utilisateur. Pour le lancer,
démarrez un terminal et lancez :

python
Commencons par une utilisation tres simple, en faisant faire du calcul a python :

3%6
4-9

Notion de variable

Les variables correspondent a des zones de stockage de valeurs. Elles sont désignées par des mots
contenant les lettres minuscules, majuscules, les chiffres et le tiret bas « _ »". Une variable ne peut
avoir un nom commencant par un chiffre.

A une variable on assigne une valeur grace a l'instruction « = », par exemple (dans l'interpréteur) :

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last update: 2025/03/07 20:11 start:python:cours https://chanterie37.fr/fablab37110/doku.php?id=start:python:cours&rev=1741374669

a =4
b=5
a+b

Les valeurs contenues par les variables a et b ont été utilisées pour réaliser I'opération.

Une variable doit avoir été initialisée pour étre utilisée :

0o o0 o0
1l
=

La premiere et la troisieme instruction sont identiques, mais le résultat differe suivant I'initialisation.

Une variable peut « dépendre » d'elle méme :

a =4
a=a+1
a

Attention a la casse ! « A » est différent de « a ».

Notion de type

On n'a utilisé que des entiers pour l'instant. Python I'a remarqué :

O T o Q
]
1
Ul

On obtient 2, et pas 2.5 pour a, et -3 et pas -2.5 pour b. Pourquoi ? python arrondi tout simplement a
I'entier inférieur car on lui a suggéré que a est un entier.

C!) En Python 3, le résultat est bien 2.5 pour a et -2.5 pour b

Comment faire alors ? Préciser a python que a est un « flottant » :

a=>5.0

a/ 2

Un autre type trés courant est la « chaine de caractere » (string en anglais). Elle est définie en
placant du texte entre « !

» oU entre « ' » :

une chaine = "Je suis une chaine."
une chaine

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 14:55

2026/01/14 14:55 3/8 Cours sur Python

On peut « ajouter » des chaines, on appelle ¢a la concaténation :

a = "Bonjour "
b "Monde !"
a+b

Pour mettre le doigt sur une possible confusion, essayons ceci :

II1II

T T 9 9

Notez la différence entre les 2 résultats. La premiere fois python affiche un entier, la seconde une
chaine de caracteres (entre « ' »).

a+b
Une erreur résulte de ce calcul, puisque a et b sont de type différents.
Premier script
Un des intéréts d'un programme est de pouvoir interagir avec l'utilisateur. On va voir pour ¢a deux

instructions et comment les utiliser :

e raw_input() permet de demander a l'utilisateur de saisir un texte (texte au sens large, on
commencera avec des nombres) ;
e print(“texte”) permet d'afficher du texte.

Ce sont deux fonctions, qui utilisent un ou plusieurs arguments (des données qu'elles traiteront).
Nous aborderons les fonctions un peu plus loin.

raw_input() s'utilise de cette maniere :
resultat = raw _input("Veuillez saisir quelque chose : ")

La chaine de caractere sera affichée a I'écran, et le curseur attendra que |'utilisateur saisisse du texte
puis « Entrée ». Ce qui a été saisi sera alors assigné a la variable résultat (en tant que chaine de
caractere).

Pour ensuite afficher ce texte on peut utiliser :
print "Du texte qui ne change pas et autre chose :", resultat

Les éléments a afficher sont séparés par une virgule, qui apparaitre comme un simple espace lors de
I'exécution.

“Du texte qui ne change pas et autre chose :” et resultat sont deux arguments de la
fonction print.

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last update: 2025/03/07 20:11 start:python:cours https://chanterie37.fr/fablab37110/doku.php?id=start:python:cours&rev=1741374669

Regardons maintenant cet exemple :

#!/usr/bin/env python
-*- coding: UTF8 -*-

0On demande le nom
nom raw_input("Quel est votre nom ? "

0On demande le prénom
prenom = raw_input("Quel est votre prénom ? "

On affiche le tout
“bonjour", prenom, nom

Quelques petites remarques :

¢ |es lignes qui commencent par « # » ne sont pas lues par Python, ce sont des lignes de
commentaires. Elle sont utiles pour détailler certains éléments de votre script ;

* la premiéere ligne est un « shebang », qui permet a votre shell que savoir avec quel programme
lancer votre script lorsqu'il est exécutable (./exemplel.py) ;

* la seconde définit I'encodage, c'est essentiel pour nous francophones qui utilisont des accents
(Python n'aime pas vraiment les accents sans encodage précisé).

Copiez ce script dans un fichier « exemple.py » et exécutez :

python exemple.py

En guise d'exercice, écrivez un script qui demande I'age de 2 personnes, et qui affiche la différence
d'age. Rappelez vous que raw_input() récupere une chaine de caractere, qu'il faudrait transformer en
entier pour faire le calcul. La fonction int qui prend en argument une chaine de caractere, et retourne
Sa conversion en entier.

Conditions

Pour que le script réagisse suivant ce que l'utilisateur a saisi, on utilise des instructions de contréle,
if et else. Elle s'utilisent comme ceci :

une condition est vraie
on execute
une série
d'instructions

sinon
on fait autre chose

La syntaxe est (je pense) assez claire, mais elle amene quelques nouvelles notions.

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 14:55

2026/01/14 14:55 5/8 Cours sur Python

Les booléens

Une variable booléennes est une variable qui n'accepte que 2 valeurs : vrai ou faux (True ou False
en Python). On peut étendre ceci aux nombres et dire : si c'est 0 c'est faux, sinon (dans tous les
autres cas), c'est vrai. “une_condition_est vraie” va donc étre une expression qui sera soit vraie (ou
non nulle), soit fausse (nulle). Si elle est vraie, on exécute la premiere partie de la condition (juste
apres if, sinon la deuxieme (ce qui suit else).

L'indentation

Pour connaitre toutes les instructions a exécuter si la condition est vraie, on définit un “bloc”. Ce bloc
est défini par une indentation (<tab> en général) :

on execute
une série
d'instructions

Ce bloc sera exécuté si la condition est vérifiée.

Prenons un exemple de comparaison d'entiers :

a=1
b =2
if (a > b):
print ("a est supérieur a b")
else:
print ("b est supérieur ou égal a a")

Quel sera le résultat du script ?

L'expression qui définit la condition est souvent une comparaison, qui utilise les symboles suivants :
* > et < pour 'strictement supérieur/inférieur a'
e >= et « pour 'supérieur/inférieur ou égal a'
e == et !'=pour 'égal a ou différent de'

Les conditions peuvent étre multiples et inclure des or et and :

e a or b sera vraie si soit a, soit b est vraie
e a and b sera vraie si a et b sont vraie

Vous pouvez maintenant reprendre I'exercice de tout a I'heure et systématiquement afficher un
résultat positif.

Listes

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last update: 2025/03/07 20:11 start:python:cours https://chanterie37.fr/fablab37110/doku.php?id=start:python:cours&rev=1741374669

Définir une liste

Utiliser une variable par élément a saisir, ¢ca devient tres vite ingérable (imaginez ce que ¢a donnerait
pour gérer une liste de 10000 clients). Python possede un autre type de données, les listes. Il s'agit
en fait d'un “tas” de variables groupées en une seule. Par exemple (pour notre liste de choses a faire)
on pourrait avoir :

a = "coup de fil a maman"
b = "acheter du café"
c = "upgrader vers gutsy"

A chaque nouvel élément il faudrait ajouter une variable, c'est ingérable. On peut alors utiliser :
todo = ["coup de fil a maman", "acheter du café", "upgrader vers gutsy"]
Notez que si I'on a déja initialisé a, b et c on peut aussi utiliser :

todo = [a, b, c]

On n'a plus qu'une seule variable, qui contient un ensemble cohérent d'éléments, et qui peut bien
entendu étre modifiée.

Une liste est ce qu'on appelle un 'objet' (comme n'importe quel élément en python, mais peu importe

pour le moment). Et a un objet correspondent des 'méthodes'. Ces méthodes sont des actions que
I'on peut appliquer a I'objet. Par exemple, on peut ajouter un élément a notre liste :

todo.append("préparer le cours python sur 1'orienté objet")
Dans l'interpréteur, affichez maintenant todo:
todo

Le nouvel élément a bien été ajouté a notre liste.

todo est I'objet auquel on s'intéresse, append() la méthode. ATTENTION, todo.method !=
todo.method(). todo.method correspond a la suite d'instruction qui définissent les actions de la
méthode, alors que todo.method() correspond au fait d'appliquer ces instructions. Vous noterez que
'todo' a été modifié sans que I'on ait besoin de lui réassigner une nouvelle valeur ; on n'a pas eu
besoin de faire :

todo = todo.methode()

Accéder aux éléments

On accede aux éléments d'une liste par leur indice (de 0 a (nombre_d_elements - 1)). Le premier
élément est donc accessible par :

todo[0]

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 14:55

2026/01/14 14:55 7/8 Cours sur Python

Le nombre d'éléments contenus dans une liste est donné par len(liste) :

nb = len(todo)

Donc le dernier élément de la liste est :

todo[nb - 1]

Si I'on veut agir sur tous les éléments d'une liste, on utilise I'instruction for :

for item in todo:
on commence un bloc d'instructions
avec une nouvelle indentation
'item' est une variable a laquelle on assigne
la valeur de 1'élément courant du tableau

Pour afficher un élément du tableau par ligne on peut donc utiliser :

for untodo in todo:
print " - %s" % untodo

Notez au passage I'utilisation particuliere de print. %s sera remplacé par la valeur de untodo lors
de I'affichage. Notez aussi que la variable untodo aurait pu prendre n'importe quel nom (elle
s'appelait item un peu plus haut).

Fonctions - introduction
On a parlé tout a I'heure des méthodes pour un objet. Le terme 'méthode' est lié a la programmation

orientée objet, un terme plus générique étant 'fonction'.

L'intérét d'une fonction est d'éviter des répétitions du méme code. Par exemple, votre programme va
appliguer la méme mise en page a du texte a plusieurs reprises, il est alors intéressant d'utiliser une
fonction. Cette fonction pourrait étre définie comme suit :

list print(texte
n_texte - %s - " % texte
n_texte

e def précise a python que I'on débute la description d'une fonction ;
e texte est un parametre ;
e return permet de mettre fin a la fonction, et de renvoyer le contenu d'une variable.

Notez l'indentation pour la définition de bloc.

Une fonction ne doit pas forcément retourner quelque chose, elle peut par exemple juste ecrire du
texte.

Dans un script, cette fonction pourra étre appelée comme ceci :

txtl = "hello"

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last update: 2025/03/07 20:11 start:python:cours https://chanterie37.fr/fablab37110/doku.php?id=start:python:cours&rev=1741374669

txt2 = "bye"

ntxt = (list print(txtl), list print(txt2))
print """%s

%S

troe (ntxt[0], ntxt[1])

A noter :

e |'utilisation des triples ” pour une chaine de caracteres qui s'affichera sur plusieurs lignes ;
« |'utilisation de “%s %s” % (a, b) : si I'on a plus de 2 chaines a remplacer, on les met entre
parenthéses.

1)

En anglais : underscore.

From:
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Chateau-Renault

Permanent link:
https://chanterie37.fr/fablab37110/doku.php?id=start:python:cours&rev=1741374669

Last update: 2025/03/07 20:11

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 14:55

https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=start:python:cours&rev=1741374669

	Cours Python 3
	Cours sur Python
	Session 1
	Introduction
	L'interpréteur de commandes
	Notion de variable
	Notion de type

	Premier script
	Conditions
	Les booléens
	L'indentation

	Listes
	Définir une liste
	Accéder aux éléments

	Fonctions - introduction

