
2026/01/25 00:31 1/22 "ssh" : connexion à distance sécurisée

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

"ssh" : connexion à distance sécurisée

Il existe de nombreux moyens de se connecter à un ordinateur distant, qu'il fasse partie de votre
réseau local ou à travers le réseau Internet. La principale préoccupation dans ce contexte est le
niveau de sécurité fourni par ces connexions distantes, surtout si elles doivent transiter par le réseau
Internet. Le programme incontournable dans ce domaine est sans aucun doute “ssh” et les utilitaires
de la même famille comme “sshfs” (monter un système de fichiers distants), “scp” et “sftp”
(copie/transfert de fichiers distants). Cette famille de programmes a la particularité d'offrir un haut
niveau de sécurité, toutes les données échangées étant cryptées. De plus “ssh” peut fournir un
service “d'encapsulation” des connexions pour d'autres programmes non-sécurisés, on parle alors de
“tunnel ssh”.

Un signe $ précède les commandes qui ne nécessitent pas de droits administrateur ;
un signe # précède celles qui nécessitent des droits administrateur (ces signes ne font
PAS partie des commandes). Les lignes qui ne commencent pas par un signe $ ou #
correspondent au résultat de la commande précédente.

Installation

L'installation est très simple, le nom du paquet concerné peut varier d'une distribution à l'autre, sur
Debian il s'agit de “openssh-server” et “openssh-client”, souvent réunis par un paquet virtuel “ssh”.
Comme l'indiquent les noms des paquets, “ssh” peut être envisagé de deux façons :

Un “serveur ssh” fonctionne comme démon (daemon) et démarre en général en même temps
que le système (script “init”). Il “écoute” les connexions sur un port particulier (le 22 par
défaut), et répond à une demande en autorisant la connexion selon les règles fixées dans sa
configuration. Tout ce qui se réfère à cet aspect “serveur” contient le nom “sshd”, le “d” final
étant là pour “daemon”. La configuration est par exemple dans /etc/ssh/sshd_config (ou
/etc/sshd_config). Le fonctionnement de ce démon n'est pas interactif, on le configure et on le
laisse faire son travail discrètement.

Un “client ssh” ne fait rien d'autre que d'essayer de se connecter à une machine qui possède un
“serveur sshd”. La demande de connexion a lieu en général sur demande, et vers une adresse
ip indiquée par l'utilisateur. Le “client ssh” est un programme interactif, il va interagir avec
l'utilisateur (demande de mot de passe …etc), et recevoir des instructions de celui-ci (adresses
ip à interroger, commandes à exécuter).

Pour clarifier la chose, imaginons un réseau local composé de deux ordinateurs, appelons les “salon”
et “bureau”. Ces ordinateurs ont les caractéristiques suivantes :

“salon” : adresse ip local 192.168.1.2 , utilisateur “famille” ayant un compte sur l'ordinateur.
Connecté par câble réseau Ethernet à un modem/router qui lui donne un accès à Internet et au
réseau local, et joue le rôle de pare-feu.
“bureau” : adresse ip local 192.168.1.3 , utilisateur “geek” ayant un compte sur l'ordinateur.
Connecté par wifi au même modem/routeur que “salon”.

Si “geek” veut depuis l'ordinateur “bureau” être en mesure de faire les mises à jour sur “salon”, y
puiser ou déposer des fichiers, et dépanner l'utilisateur “famille” qui y est connecté, le “serveur ssh”

Last update: 2023/01/27 16:08 start:raspberry:ssh:doc https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:ssh:doc

https://chanterie37.fr/fablab37110/ Printed on 2026/01/25 00:31

devra être installé sur “salon”, “geek” utilisera un “client ssh” depuis l'ordinateur “bureau” pour s'y
connecter.
Si on veut que les possibilités de connexion soient symétriques, il faut qu'un démon sshd fonctionne
sur les deux machines.
C'est clair ? Un dessin illustrant cette situation :

Dans ce contexte on peut se demander l'utilité d'une connexion sécurisée, cependant en milieu
urbain les connexions wifi sont assez facile à “écouter”, la connexion cryptée garantie donc un peu
plus de respect de la vie privée. Mais c'est lors de connexion à travers le réseau Internet que cette
sécurité prend tout son sens.

Utilisation basique

Une séquence de connexion se passe comme ceci du côté client (“geek” sur “bureau” dans notre
exemple) :

$ ssh famille@192.168.1.2
famille@192.168.1.2 passwd:

Vous dites à “ssh” de se connecter au compte “famille” sur l'ordinateur dont l'adresse ip est
192.168.1.2 (“salon”). “ssh” va donc envoyer la demande de connexion qui va être reçue par “sshd”
sur l'ordinateur “salon”, qui en retour demande le mot de passe du compte “famille”.
Lors de la première connexion uniquement vous recevrez un avertissement car le serveur auquel
vous vous connectez n'est pas “connu”, “ssh” vous demandera si vous acceptez de l'ajouter à la liste
des serveurs de confiance, répondez “oui”.

$ ssh famille@192.168.1.2
famille@192.168.1.2 passwd:

The authenticity of host '[192.168.1.2]:22 ([192.168.1.2]:22)' can't be
established.

2026/01/25 00:31 3/22 "ssh" : connexion à distance sécurisée

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

RSA key fingerprint is 32:fe:a4:27:c3:d7:5f:52:bb:re:ee:a6:25:14:6a:a3.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[192.168.1.2]:22' (RSA) to the list of known
hosts.
[...]

Une fois ces formalités passées vous êtes connecté sur l'ordinateur cible (ici “salon”) sous l'identité
du compte dont vous avez donné le mot de passe (ici “famille”). Toutes les commandes que vous
utilisez à partir de maintenant sont exécutées sur et depuis l'ordinateur cible (“salon”). Par exemple si
vous lancez une installation de logiciel celui-ci sera installé sur “salon”, et pas sur “bureau”.
Pour illustrer ce basculement le texte qui précède les commandes dans une console linux, qu'on appel
le “prompt”, va changer pour indiquer la nouvelle origine du shell. Dans notre exemple on passera de
:

geek@bureau:~$

à

famille@salon:~$

Pour quitter la session “ssh” et fermer la connexion, vous pouvez taper “exit” ou utiliser la séquence
d'échappement “~.” (sans les guillemets).

Ce fonctionnement basique peut tout à fait suffire dans un contexte d'usage personnel, mais on peut
faire mieux. Nous allons faire un tour dans la configuration.

Si l'utilisateur du poste client dispose d'un compte sur la machine serveur, il peut se
connecter en indiquant simplement l'adresse ip du serveur, sans préciser de nom de
login (la partie “user@”).

Configuration

Le point le plus important de la configuration de “ssh” est l'authentification des connexions. En bref il
s'agit de déterminer qui peut se connecter, à partir d'où, et selon quelles modalités.

Les fichiers de configurations se trouvent dans le répertoire /etc/ssh, il s'agit de “sshd_config” pour la
partie “serveur”, et “ssh_config” pour la partie “client”. À cela s'ajoute dans le répertoire personnel
(noté ~) de l'utilisateur un dossier caché ~/.ssh/. Il contient les clés d'identification lorsqu'elles ont
été créées, ainsi que “l'empreinte” des serveurs auxquels l'utilisateur s'est déjà connecté, et dont il a
accepté la clé d'identification (fichier “known_hosts”). Sur le poste qui fait office de serveur on
trouvera également un fichier “~/.ssh/authorized_keys” qui contient la signature “publique” des clés
de sécurité des clients autorisés, si le mode l'authentification par clé est utilisé.
En plus des fichiers de configuration globale on peut créer des fichiers additionnels par utilisateur
“~/.ssh/config” pour les réglages personnalisés.

Par défaut sshd sera probablement configuré pour accepter les connexions de n'importe quel client,
avec pour authentification le “login” (son mot de passe) de l'utilisateur sur le compte duquel “sshd”
fonctionne. Dans notre exemple sshd est lancé au démarrage sur “salon” où l'utilisateur “famille” est

Last update: 2023/01/27 16:08 start:raspberry:ssh:doc https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:ssh:doc

https://chanterie37.fr/fablab37110/ Printed on 2026/01/25 00:31

connecté. Le client sur “bureau” pourra donc initier une connexion vers “salon” et s'identifier en
donnant le mot de passe du compte “famille”, s'il le connaît.

Pour améliorer la sécurité on pourra commencer par ces options dans sshd_config :

Après tout changement de configuration de “sshd” vous devez redémarrer le service,
sinon la nouvelle configuration ne sera pas prise en compte. Un moyen simple est
d'appeler le script d'initialisation comme ceci :

/etc/init.d/ssh restart

Retirer l'autorisation de se connecter depuis le compte du super-utilisateur “root”. C'est
généralement inutile et cela peu représenter un risque pour la sécurité. Une fois connecté on
peut si nécessaire de toute façon obtenir des droits root avec "su" ou "sudo". On s'assurera
d'avoir la ligne :

PermitRootLogin no

Déterminer si on doit faire suivre la connexion du serveur graphique via “ssh”, c'est à dire
permettre au client de lancer une application graphique sur le serveur, et de la voir s'afficher
sur son ordinateur. Cette possibilité peut être pratique dans le cadre d'une utilisation
personnelle, et certains programmes ne sont pas utilisables en ligne de commande :

X11Forwarding yes

Pour tirer partie du déport du serveur graphique vous pouvez utiliser l'option “-X” lors de la connexion
ssh :

$ ssh -X famille@192.168.1.2

De cette façon si vous lancez une application graphique pendant la session ssh elle sera affichée sur
votre écran et non sur celui de la machine distante. Attention avec une connexion lente, les temps
d'affichage et de rafraîchissement de l'affichage peuvent être longs.
Si vous voulez systématiquement utiliser le déport du serveur graphique vous pouvez ajouter dans le
fichier “/etc/ssh/ssh_config” du(des) poste(s) client(s) :

ForwardX11 yes

Cette ligne rend inutile l'option “-X” en autorisant le déport d'affichage systématiquement par défaut,
à partir du moment où le serveur l'autorise également bien sûr. On peut annuler pour une session le
déport du serveur graphique avec l'option “-x” (“x” minuscule cette fois). Le déport du serveur
graphique peut constituer un risque pour la sécurité, un utilisateur malveillant ou un attaquant
pouvant récupérer les frappes au clavier par l'intermédiaire du serveur graphique Xorg, et donc
d'éventuels mots de passe. Ce risque est totalement négligeable dans le cadre d'un usage personnel
sur un réseau local.

Changer le port de communication par défaut. “ssh” utilise par défaut le port 22, mais “ssh”

https://chanterie37.fr/fablab37110/doku.php?id=commande:su_sudo:start

2026/01/25 00:31 5/22 "ssh" : connexion à distance sécurisée

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

étant un service très utilisé et sensible au niveau de la sécurité les attaques contre ce port sont
devenus très fréquentes. Si vous utilisez ssh à travers le réseau Internet c'est une bonne idée
de changer ce port pour quelque chose de moins “classique”, cela vous épargnera les assauts
de groupe de machines “robots” (bots) qui testent de manière aléatoire des machines sur le
port 22, et tentent ensuite de forcer le mot de passe de connexion.

Pour que cela fonctionne il faut modifier le port utilisé avec la directive (on peut utiliser plusieurs
ports):

port 62500

Vous devez vous assurer que le(s) port(s) choisi(s) (ici 62500) soit accessible à travers votre routeur
(NAT) et votre pare-feu, à la fois sur la machine “serveur” et sur les machines clients. Pour que “ssh-
client” utilise ce nouveau port au lieu du 22 il faut le lui indiquer avec l'option “-p” :

$ ssh -p 62500 famille@192.168.1.2

Si vous souhaitez que ce changement soit permanent, modifiez la directive “port” de la même façon
que pour “sshd_config” dans “/etc/ssh_config” sur le(s) poste(s) client(s). Dans ce cas vous n'aurez
plus à utiliser l'option “-p”.

Avant de choisir un port arbitrairement, consultez la listes des ports réservés et ne
choisissez pas un de ceux qui sont employés de manière standard pour d'autres
services. D'une manière générale n'employez jamais un port inférieur à 1024.

Forcer ssh à n'écouter que sur une interface. Si vous avez plusieurs interfaces réseau, vous
pouvez restreindre l'écoute de sshd sur l'une d'elles avec :

ListenAddress 192.168.0.2

Ici seule l'interface avec l'adresse ip 192.168.0.2 sera utilisée par sshd. Bien sûr n'utilisez pas cette
option si votre adresse ip est attribuée par dhcp et change régulièrement.

Restreindre l'accès à un utilisateur particulier, ou un réseau, ou les deux. Si vous utilisez
l'identification par le login des utilisateurs, vous pouvez restreindre l'usage de ssh à un seul
utilisateur avec :

AllowUsers famille

Ici seul le compte “famille” pourra être utilisé. Pour spécifier un réseau, par exemple le réseau local,
utilisez :

AllowUsers *@192.168.0.*

Ici tous les utilisateurs sont autorisés à se connecter depuis le réseau “192.168.0.*” (“*” est un joker
qui autorise n'importe quelle valeur, par exemple 192.168.0.2), c'est à dire toutes les adresses qui
appartiennent à ce réseau local. Pour coupler les deux, utilisez la syntaxe “utilisateur@adresse”, par
exemple “famille@192.168.0.*” pour l'utilisateur “famille” sur le réseau local “192.168.0.*”.
Alternativement on peut indiquer un ou plusieurs groupe(s) avec “AllowGroups”.

http://www.frameip.com/liste-des-ports-tcp-udp/

Last update: 2023/01/27 16:08 start:raspberry:ssh:doc https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:ssh:doc

https://chanterie37.fr/fablab37110/ Printed on 2026/01/25 00:31

Empêcher que la connexion ssh n'expire. Par défaut si une connexion ssh ouverte n'est pas
utilisée, elle sera automatiquement coupée par le serveur. Si vous n'avez pas d'impératif de
sécurité strict et que vous voulez maintenir les sessions en cours ouvertes, utilisez :

TCPKeepAlive yes

Améliorer la sécurité sur le serveur en séparant les droits, et en vérifiant les permissions des
fichiers de configuration (à placer dans “/etc/ssh/sshd_config”) :

UsePrivilegeSeparation yes
StrictModes yes

La première ligne permet de forcer ssh à n'exécuter que le strict minimum de code en root, la
seconde provoque une vérification des permissions sur les fichiers de configuration (clés
d'identification etc…).

On peut empêcher les connexions vers des comptes sans mot de passe :

PermitEmptyPasswords no

Accepter les connexions vers des comptes sans mot de passe est un risque pour la sécurité, mais ça
peut être nécessaire pour certaines applications de sauvegarde à distance, qui se connectent
automatiquement avec un compte spécifique sans mot de passe. Dans ces cas il vaudra bien mieux
utiliser une identification par clés sans mot de passe (voir “Authentification par clés” ci-dessous).

Désactiver le mode d'identification “Challenge-Response”. Ce mode d'identification a déjà fait
l'objet d'attaques sur des failles de sécurité par le passé, et il n'y a pas de raison de le laisser
activé si on utilise une identification par mot de passe ou par clés.

ChallengeResponseAuthentication no

On peut utiliser un mode d'encryption différent de celui par défaut (3des) pour crypter les
connexions. L'algorithme “blowfish” est par exemple réputé aussi sûr que “3des”, mais plus
rapide. Ajoutez au fichier “/etc/ssh/ssh_config” du client :

Cipher blowfish-cbc

Si vous voulez une liste, qui sera testée dans l'ordre en cas de non compatibilité d'un algorithme avec
le serveur, mettez :

Cipher blowfish-cbc,aes256-cbc,aes192-cbc,3des-cbc

Pour une liste complète des algorithmes supportés, voyez le site de “Openssh” (voir “Liens” en fin de
page).

Si vous voulez plus d'information sur une option donnée, vous pouvez consulter la documentation
(voir “Liens” en fin de page). Coller simplement l'option en question dans un moteur de recherche
devrait vous renvoyer de nombreux résultats pertinents également. Bien sur la page de manuel est
un passage obligé :

$ man sshd_config

2026/01/25 00:31 7/22 "ssh" : connexion à distance sécurisée

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

Authentification par clés

La première étape consiste à générer la paire de clés, qui se compose d'une clé “publique”, que nous
communiquerons au serveur (“salon”), et d'une clé “privée”, qui restera sur l'ordinateur client
(“bureau”). La paire de clés générée sera cryptée selon un algorithme choisi au moment de la
création, “rsa” ou “dsa” généralement. Peu importe ce que vous choisirez dans un cadre familiale, si
rien n'est précisé c'est le choix par défaut qui s'appliquera.

La paire de clés peut être protégée par mot de passe ou pas, à votre guise. Si vous choisissez un mot
de passe l'authentification se déroulera en deux étapes, la comparaison des clés publique et privée,
ainsi qu'une demande de mot de passe. Cette méthode procure un niveau de sécurité élevé (si le mot
de passe est bien choisi), mais nécessite de ne pas oublier le mot de passe, de le taper à chaque
connexion (des programmes permettent d'alléger cette contrainte en stockant temporairement le mot
de passe), et peut bloquer l'utilisation de certains services à distance qui requièrent un accès ssh
sans mot de passe (programme de sauvegarde à distance, montage automatique d'un répertoire
distant avec “sshfs”, etc…).

À vous de choisir ce qui est le plus adapté à votre cas, si vous optez pour une paire de clés sans mot
de passe, veillez simplement à ne pas “égarer” une copie de votre clé privée, et soyez conscient que
quiconque a accès au poste client aura également accès au poste qui fait tourner “sshd”.

Pour créer les clés on utilise :

$ ssh-keygen

Choisissez un mot de passe “fort”, du type de ceux que l'on réserve au compte root, avec des lettres,
chiffres, différentes casses et des symboles éventuellement. Au minimum 10 caractères, et ni de
noms propres, dates de naissances ou mot existant dans un dictionnaire (peu importe la langue), ces
précautions vous prémuniront contre les attaques qui consistent à tester un grand nombre de mots
de passes courants à l'aide de programmes spécialisés. Cela n'est important que si votre utilisation de
ssh passe par le réseau Internet, si elle ne concerne que votre réseau local comme dans notre
exemple le nom du chat fera l'affaire ! Si vous voulez générer des clés sans mot de passe, laisser
blanc.

Si pour des raisons de compatibilité vous devez créer des clés compatibles avec le
protocole “sshv1” (l'ancien protocole, aujourd'hui remplacé par la version 2), vous
pouvez indiquer le type de clé à créer avec l'option “-t”. Pour une clé rsa version 1
vous indiquerez “ssh-keygen -t rsa1”. Vous pouvez également choisir une clé “dsa”
au lieux du choix par défaut “rsa” (“dsa” et “rsa” sont uniquement compatibles avec
la version 2 de ssh)

L'étape suivante consiste à copier la clé publique sur le(s) serveur(s) auxquels vous souhaitez pouvoir
vous connecter. “ssh” installe un script qui peut se charger de cette étape pour vous, si vous
posséder déjà un accès ssh à la machine serveur (ici “famille@192.168.1.2”). Il suffit de taper sur le
client :

$ ssh-copy-id famille@192.168.1.2

Si vous souhaitez indiquer une clé particulière (par exemple une clé “dsa”, utilisez l'option “-i”

Last update: 2023/01/27 16:08 start:raspberry:ssh:doc https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:ssh:doc

https://chanterie37.fr/fablab37110/ Printed on 2026/01/25 00:31

comme ceci :

$ ssh-copy-id -i ~/.ssh/id_dsa.pub famille@192.168.1.2

Cette commande va effectuer plusieurs tâches importantes, à commencer par la création d'un
répertoire “~/.ssh” sur le serveur, avec des permissions adaptées de “700” (rwx------). À l'intérieur de
ce répertoire sera créé un fichier “authorized_keys” avec des permissions de “600” (rw-------) qui
contiendra la clé publique créée auparavant avec “ssh-keygen” sur le poste client.

Ces opérations peuvent être effectuées manuellement, en copiant la clé publique sur le serveur, à
condition que le répertoire “~/.ssh” y existe déjà. Un exemple pour effectuer ces opérations depuis le
poste client via “ssh” (utilisé de manière simple le temps de l'opération), vers le poste serveur (ici
“famille@192.168.1.2”) :

$ cat ~/.ssh/id_rsa.pub | ssh famille@192.168.1.2 tee -a
~/.ssh/authorized_keys

Certaines versions de “ssh” n'autorisent pas la connexion en “strict mode” si la clé
publique est toujours présente dans “~/.ssh/” sur le client. Il faut donc la copier
ailleurs et l'effacer.

Si le répertoire “~/.ssh” n'existe pas encore il faut le créer, pour cela on se connecte avec “ssh” sur le
serveur, et on y effectue les opérations nécessaires :

$ ssh famille@192.168.1.2
mkdir ~/.ssh
chmod 700 ~/.ssh
touch ~/.ssh/authorized_keys
chmod 600 ~/.ssh/authorized_keys

Vous avez saisi le but, peu importe la méthode, vous pouvez également copier la clé publique
“id_rsa.pub” sur le serveur avec une clé usb, créer les répertoires nécessaires sur le serveur et copier
le contenu de la clé dans le fichier “~/.ssh/authorized_keys”.

Une fois que les clés sont en place il reste à modifier la configuration du serveur pour ne plus
accepter les connexions par login, mais uniquement celles par clés. Ne vous trompez pas si vous
effectuez les modifications par ssh et que vous n'avez pas d'accès physique à la machine
(hébergement distant etc…), sinon vous risquez de ne plus pouvoir vous connecter !

Autoriser l'identification par clés :

PubkeyAuthentication yes

Interdire l'identification par le login d'un utilisateur :

PasswordAuthentication no
ChallengeResponseAuthentication no

Une fois ces changements appliqués, et “sshd” redémarré, il ne sera plus possible de se connecter au

2026/01/25 00:31 9/22 "ssh" : connexion à distance sécurisée

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

serveur sans y avoir enregistré sa clé publique.

Changement d'identité du serveur ?

ssh vérifie l'identité des serveurs auxquels vous vous êtes déjà connecté (empreinte présente dans le
fichier “know_hosts”). Cette précaution permet d'éviter des attaques de type “man in the middle”, où
votre connexion est interceptée et redirigée (souvent à travers un proxy) vers un serveur ssh
usurpant l'identité du serveur légitime auquel vous essayez de vous connecter. Voici un aperçu de
l'avertissement reçu en cas de non vérification de la signature, c'est assez explicite :

$ ssh famille@192.168.1.2
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
e4:a0:73:8d:8a:f1:26:a1:49:0c:69:bb:bz:24:36:a1.
Please contact your system administrator.
Add correct host key in /home/geek/.ssh/known_hosts to get rid of this
message.
Offending key in /home/geek/.ssh/known_hosts:2
RSA host key for [192.168.1.2]:22 has changed and you have requested strict
checking.
Host key verification failed.

Vous recevrez cet avertissement dans deux cas, si vous êtes victime d'une attaque de type “man in
the middle”, peu probable si vous utilisez ssh sur votre réseau local, à moins que votre fils soit un fan
de “hacking”. Vous recevrez également cet avertissement si vous avez réinstallé le système, ou
simplement “ssh” en recréant des clés sur le serveur. Dans ce cas il faudra supprimer l'ancienne
signature du serveur de votre fichier ~/.ssh/known_hosts. La signature en question est indiquée dans
le message d'erreur, c'est important si vous avez activé le “hachage” des signatures car vous n'avez
aucun moyen de savoir laquelle correspond au serveur en question.

Add correct host key in /home/geek/.ssh/known_hosts to get rid of this
message.
Offending key in /home/geek/.ssh/known_hosts:2

On peut traduire par :
“Ajoutez la clé correcte dans ”/home/geek/.ssh/known_hosts“ pour ne plus voir ce message. La clé
incriminée est ”/home/geek/.ssh/known_hosts:2“
où le chiffre “2” vous indique la ligne à supprimer dans le fichier “known_hosts”.
À la prochaine connexion il vous sera demandé d'accepter la nouvelle signature du serveur,
n'acceptez évidemment pas si vous pensez être victime d'une manœuvre de piraterie !!

"ssh-agent", garder en mémoire les mots de passe de clés

Last update: 2023/01/27 16:08 start:raspberry:ssh:doc https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:ssh:doc

https://chanterie37.fr/fablab37110/ Printed on 2026/01/25 00:31

Si vous utilisez un identification par clé protégée par mot de passe, et que vous avez un usage
“intensif” de “ssh” avec plusieurs connexions simultanées, il est intéressant d'utiliser une programme
qui garde en mémoire le mot de passe associé à la clé le temps de la session.

“ssh-agent” fait justement ça, il stocke le mot de passe associé aux clés de sécurité le temps de la
session, et permet de ne pas avoir à le retaper à chaque nouvelle connexion.

“ssh-agent” est en général installé avec le paquet “ssh-client”, et configuré pour démarrer en même
temps qu'une session est ouverte. Pour savoir s'il fonctionne :

$ pgrep -l ssh-agent

Si ça n'est pas le cas, vous pouvez lancer “ssh-agent” depuis la ligne de commande, mais comme
“ssh-agent” a besoin de passer des variables à votre environnement shell au lancement on ne peut
pas simplement appeler la commande (sinon les variables seront simplement écrites sur la sortie de
la console, ce sera à vous de les exporter). Vous pouvez utiliser :

$ eval `ssh-agent`

Pour mettre le mot de passe associé à votre (vos) clé(s) en mémoire pour la session il suffit donc
d'appeler “ssh-add” sans argument :

$ ssh-add

Le mot de passe associé à la clé vous sera demandé une fois, et vous pourrez ensuite vous connecter
sans devoir le taper à chaque nouvelle connexion.

Quelques astuces, pour lister les clés actuellement en mémoire utilisez l'option “-l”, pour effacer
toutes les clés enregistrées utilisez l'option “-D”.
Pour afficher l'intégralité des clés stockées en mémoire, et pas seulement leurs empreintes, vous
pouvez utiliser l'option “-L”. C'est pratique pour ajouter toutes les clés enregistrée à un fichier
“authorized_keys” prêt à être copié sur un serveur. Pour ça faite :

$ ssh-add -L > authorized_keys

Vous allez créer un fichier “authorized_keys” dans le répertoire courant.

Si vous quitter votre poste et qu'il risque d'être utilisé en votre absence, verrouillez “ssh-agent” avec
un mot de passe en utilisant l'option “-x” :

$ ssh-add -x

Pour le déverrouiller utilisez l'option “-X” (majuscule cette fois), et donner le mot de passe que vous
avez choisi.

Un mot sur la sécurité, “ssh-agent” stocke les clés de manière sûre, seul un utilisateur local avec des
droits root pourrait accéder aux clés stockées et les utiliser pour se connecter. En revanche “ssh-
agent” possède une fonction de “forwarding” (suivi) des clés qui peut constituer un risque pour la
sécurité. Cette fonction est destinée à exporter les clés enregistrées sur votre machine vers une
seconde à laquelle vous vous connectez, et d'où les clés stockées par ssh-agent seront utilisables
également (pour se connecter vers une troisième machine depuis la seconde par exemple). Les clés

2026/01/25 00:31 11/22 "ssh" : connexion à distance sécurisée

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

seront lisibles par un utilisateur disposant de droits root sur la machine où seront exportées les clés,
et ce mécanisme est assez facilement exploitable. Pour désactiver cette fonction de “forwarding” si
vous ne l'utilisez pas, mettez dans votre fichier ”/etc/ssh/ssh_config“ :

Host *
ForwardAgent no

Tunnel ssh

“ssh” est fréquemment utilisé pour “encapsuler” un autre service non sécurisé, on parle alors de
“tunnel ssh”. Le procédé consiste à établir une connexion ssh entre deux ordinateurs sur des ports
déterminé, et ensuite d'utiliser cette connexion “ssh” pour connecter un autre comme “vnc”, notre
exemple ici.
“vnc” est une programme de connexion à distance graphique, une sorte de bureau distant à la
manière du programme “remote desktop” intégré à Windows. “vnc” est très pratique et efficace, mais
transmet toutes les informations en clair, c'est donc un bon candidat pour l'encapsulation “ssh”.

On suppose que le serveur “vnc” fonctionne sur le poste serveur (“famille@192.168.1.2” dans notre
exemple), par exemple le programme “vino” qui fait partie de Gnome. Par défaut le serveur “vnc” va
attendre les connexions sur le port 5900 (paramétrable dans les préférences du serveur vnc).

Établir le tunnel sur le port 5900, à taper sur le client qui veut accéder au serveur “vnc”
(“geek@192.168.1.3” dans notre exemple) :

$ ssh -L 5901:localhost:5900 famille@192.168.1.2

L'option “-L” (pour “Local forward”) indique l'établissement d'un tunnel, depuis le port local 5901,
vers le port 5900 de l'ordinateur distant. Le choix des ports est libre, on aurait pu choisir n'importe
quel port libre sur la machine locale, la convention fait que vnc utilise les ports 590*.
Une fois le tunnel établie, il ne reste qu'à lancer un client “vnc” (comme “vinagre” du bureau Gnome,
ou “KRDC” pour KDE), et à lui indiquer de se connecter à “localhost:5901” (sans guillemets). La
connexion “vnc” se déroule ensuite normalement, le client “vnc” envoie ses requêtes sur “localhost”
mais c'est bel et bien l'ordinateur distant qui les reçoit, le passage par le tunnel “ssh” est totalement
transparent, mais toutes les données échangées seront cryptés (sur le réseau du moins, elles
transitent en clair sur les machines elles mêmes entre le tunnel “ssh” et les applications “vnc”). La
connexion à travers le tunnel peut juste s'avérer plus lente, particulièrement en wifi.
Pour avoir une “image” plus clair de ce qui se passe, vous pouvez lancer la commande “nc” pour
surveiller l'activité sur le port 5901 de la machine locale, avant et après l'établissement du tunnel.
Vous verrez le serveur “vnc” se manifester sur le port après l'ouverture du tunnel.

$ nc localhost 5901

L'autre avantage du tunnel est que vous n'avez pas besoin d'ouvrir de ports supplémentaires sur la
machine locale ou le routeur, ni sur la machine distante, tout le trafic passant par le port utilisé par
“ssh”.

Si la connexion n'est destinée qu'à établir un tunnel, on peut veiller à ce qu'elle ne soit pas fermée
pendant une période d'inactivité avec l'option “TCPKeepAlive yes” dans le fichier de configuration de

Last update: 2023/01/27 16:08 start:raspberry:ssh:doc https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:ssh:doc

https://chanterie37.fr/fablab37110/ Printed on 2026/01/25 00:31

“ssh”. Si ça n'est pas suffisant on peut utiliser le programme “autossh” qui maintient la connexion
ouverte, et la rétablie si elle vient à être fermée malgré tout. Pour améliorer la sécurité on peut
préciser à “ssh” que la connexion n'est destinée qu'à établir un tunnel, et pas à exécuter des
commandes sur l'ordinateur de destination, avec l'option “-N”.

Une tentative de représentation “visuelle” du “tunnel ssh” :

application <--> boucle locale, port 5901 boucle locale, port 5900 <-
-> application
Client vnc | ^
Serveur vnc
 | Réseau local |
 V ou Internet |
 SSH (port 22 par défaut) --------------------> SSH (port 22 par défaut)
 tunnel cryptée

On peut créer un alias pour le tunnel, à l'aide d'un fichier de configuration ”~/.ssh/config“ (à créer).
Ce fichier aura par exemple le contenu suivant dans notre exemple :

Host tunnel_vnc
Hostname 192.168.1.2
LocalForward localhost:5901 localhost:5900
User famille

Vous pourrez alors lancer le tunnel avec la commande :

$ ssh tunnel_vnc

Pour en savoir plus, “man ssh_config” bien sûr !

Tunnel inversé

Le “tunnel inversé”, ou “Remote forward” fait juste l'inverse du “Local forward” vu précédemment, il
“exporte” un port de la machine locale vers un autre port d'une machine.
On utilise l'option “-R” de “ssh” depuis la machine dont on veut “exporter” un port, la syntaxe est
l'inverse de celle du tunnel local, on précise d'abord le port d'écoute sur la machine distante, puis
celui sur la machine locale. Un exemple dans lequel on exporte le port 631 (port de l'interface
d'administration du serveur d'impression “CUPS”) vers le port 8888 de la machine distante (ici
“famille@192.168.1.2” sur “salon”) :

$ ssh -R 8888:localhost:631 famille@192.168.1.2

Si on laisse tourner cette commande sur “bureau”, et qu'on se rend sur “salon” où un ouvre un
navigateur Internet, en pointant celui-ci vers l'adresse “localhost:8888” (sans guillemets) on arrivera
sur la page d'administration de “CUPS” (il s'agit évidement de celle de la machine “bureau” que nous
venons “d'exporter”).

Si vous utilisez :

2026/01/25 00:31 13/22 "ssh" : connexion à distance sécurisée

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

$ ssh -R 8888:www.linuxpedia.fr:80 -N famille@192.168.1.2

vous permettez à l'utilisateur “famille” sur l'ordinateur “salon” (192.168.0.2) de se connecter au site
“www.linuxpedia.fr”, et ses sous-rubriques, en pointant un navigateur Internet sur l'url
”localhost:8888“ (sans guillemets). Si vous cliquez ensuite sur une sous-rubrique du site, par exemple
“ligne de commande”, vous verrez s'afficher la page avec dans la barre d'état ou d'url l'adresse
”http://localhost:8888/doku.php/commande/commande“. Vous êtes bien sur la page dédiée à la ligne
de commande de “linuxpedia.fr”, mais pour votre navigateur vous naviguez toujours l'url local
“localhost” sur le port 8888.
Bien sûr cela fonctionne même si “salon” ne dispose normalement pas d'un accès Internet, mais
simplement d'un accès au réseau local, alors que l'utilisateur “geek” sur “bureau” dispose lui d'un
accès Internet. On comprend bien que ces mécanismes de “tunnel” peuvent facilement servir à
contourner un pare-feu, un routeur utilisant le NAT ou même un système de filtrage basé sur un proxy
(type “protection parentale”). Le “tunnel ssh” est très pratique dans certains usages, il peut être un
cauchemar pour un administrateur réseau en permettant aux utilisateurs de “s'évader” du réseau
local, et de créer par la même occasion des failles de sécurité… Tout dépend de l'usage qu'on en fait.

Le port 80 que nous avons “exporté” dans le dernier exemple est celui qui sert aux
serveurs Internet comme “apache”, et celui qu'utilisent les navigateurs Internet pour
se connecter. Pour que “l'export” avec un “tunnel ssh” fonctionne il faut que ce port
soit libre, c'est à dire qu'un navigateur Internet ou un autre service ne soit pas en
fonction sur ce port.

Si vous utilisez les “tunnel ssh” pour contourner un pare-feu ou un proxy à votre
travail, dans votre université ou autres cas similaires, vous vous exposez à des
sanctions extrêmement graves. En utilisant cette technique vous ouvrez l'ordinateur
au réseau Internet, offrant une porte d'entrée potentielle à des pirates que les
administrateurs réseau s'efforcent de tenir à l'écart. Si un piratage résulte de votre
“bidouillage” vous pourrez être condamné à payer des dommages et intérêts
colossaux, en plus d'être renvoyé bien sûr… À bon entendeur.

Tunnel ssh comme proxy "SOCKS"

Dans l'exemple précédent nous avons “partagé” un domaine Internet avec un tunnel inversé, mais
“ssh” peut faire bien mieux, il peut jouer le rôle de proxy de connexion vers l'ensemble du réseau
Internet, par exemple pour des machines ne possédant pas d'accès directe à Internet. Pour cela on
utilise l'option “-D” (pour “dynamic”) :

$ ssh -D 6969 famille@192.168.1.2

Étant donné que la connexion “ssh” n'est pas destiné à obtenir un shell sur la machine distante on
utilisera l'option “-N” (No execute), et on préférera “autossh” (à installer séparément) à “ssh” pour
garder le tunnel ouvert, et le reconnecter en cas de coupure de la connexion. Si vous utilisez une
connexion à faible débit, vous pouvez également activer la compression des données avec l'option “-
C” de “ssh” :

http://www.linuxpedia.fr

Last update: 2023/01/27 16:08 start:raspberry:ssh:doc https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:ssh:doc

https://chanterie37.fr/fablab37110/ Printed on 2026/01/25 00:31

$ autossh -NCD 6969 famille@192.168.1.2

Une fois le tunnel dynamique lancé “ssh” va se comporter comme un proxy SOCKS sécurisé, pour
l'utiliser avec Firefox ouvrez les préférences > avancées > réseau > paramètres, et configurez
manuellement comme dans la capture ci-dessous le proxy SOCKS v5 pour qu'il pointe vers
“localhost:6969”.

À partir de là tout votre trafic Internet est routé à travers le port local 6969, le tunnel “ssh” (qui utilise
le port de “ssh) crypté entre les deux machines, puis vers le réseau Internet à partir de la seconde
machine. Quel peut être l'intérêt ?

Si la première machine n'a pas de connexion vers Internet, c'est un moyen simple de partager
la connexion de la seconde, de façon sécurisée y compris à travers une connexion wifi.
Si vous êtes derrière un pare-feu qui interdit ou filtre les connexions vers Internet, mais autorise
ssh, vous pouvez utiliser votre ordinateur personnel comme proxy.
À l'inverse vous pouvez utiliser ce proxy pour rendre accessible l'intranet de votre bureau

2026/01/25 00:31 15/22 "ssh" : connexion à distance sécurisée

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

depuis votre domicile.
Si vous êtes sur un réseau ouvert publique (cybercafé, “hotspot” wifi), vous pouvez utiliser ce
mécanisme pour vous connecter à travers votre ordinateur personnel, à travers le proxy
sécurisé, plutôt que de surfer “en clair” sur un réseau ouvert.

Soyez conscient que c'est l'adresse ip publique de l'ordinateur qui sert de proxy qui sera visible pour
les sites Internet, et le propriétaire de cet ordinateur sera tenu responsable de l'usage qui en sera
fait.

 Il existe des limitations à cette technique, vous pouvez utiliser une extension à Firefox ”Foxy-
Proxy” pour gérer plus finement comment le proxy est utilisé, et pour quel(s) site(s). Si le port ssh
n'est pas ouvert là où vous vous trouvez vous pouvez utiliser un autre port, ou utiliser une application
spécialisée comme “proxytunnel” pour “déguiser” le tunnel ssh en simple connexion http.
Soyez également conscient que certaines connexions peuvent échapper au proxy, en particulier les
requêtes dns qui peuvent en dire long sur les sites visités. Pour remédier à cela il faut configurer la
connexion Internet de manière globale (au niveau des paramètres système) et pas seulement au
niveau du navigateur Internet.
Attention à ces points si vous voulez offrir un proxy sécurisé à des amis habitant dans des pays où
l'accès Internet est sévèrement filtré, dans ce contexte la moindre erreur de réglage peut leur coûter
très cher… Pour des configurations de proxy avancées il faudra coupler ssh à d'autres proxy comme
“squid”.

Pour voir ce qui se passe lors d'une connexion, utilisez le mode “verbose” ou “debug” de “ssh”
avec l'option “-v”. Un exemple sur une connexion qui établie un tunnel, la clé est stockée par
“ssh-agent”, et “ssh” utilise le port 69222 :

$ ssh -v -L 5901:localhost:5900 famille@192.168.1.2
OpenSSH_5.1p1 Debian-5+b1, OpenSSL 0.9.8g 19 Oct 2007
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Applying options for *
debug1: Connecting to 192.168.1.2 [192.168.1.2] port 69222.
debug1: Connection established.
debug1: identity file /home/geek/.ssh/id_rsa type -1
debug1: identity file /home/geek/.ssh/id_dsa type -1
debug1: Remote protocol version 2.0, remote software version OpenSSH_4.7p1
Debian-8ubuntu1.2
debug1: match: OpenSSH_4.7p1 Debian-8ubuntu1.2 pat OpenSSH_4*
debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-2.0-OpenSSH_5.1p1 Debian-5+b1
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug1: kex: server->client aes128-cbc hmac-md5 none
debug1: kex: client->server aes128-cbc hmac-md5 none
debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY
debug1: Host '[192.168.1.2]:69222' is known and matches the RSA host key.
debug1: Found key in /home/geek/.ssh/known_hosts:3
debug1: ssh_rsa_verify: signature correct

https://addons.mozilla.org/fr/firefox/addon/2464
https://addons.mozilla.org/fr/firefox/addon/2464
http://proxytunnel.sourceforge.net/intro.php

Last update: 2023/01/27 16:08 start:raspberry:ssh:doc https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:ssh:doc

https://chanterie37.fr/fablab37110/ Printed on 2026/01/25 00:31

debug1: SSH2_MSG_NEWKEYS sent
debug1: expecting SSH2_MSG_NEWKEYS
debug1: SSH2_MSG_NEWKEYS received
debug1: SSH2_MSG_SERVICE_REQUEST sent
debug1: SSH2_MSG_SERVICE_ACCEPT received
debug1: Authentications that can continue: publickey
debug1: Next authentication method: publickey
debug1: Offering public key: /home/geek/.ssh/id_rsa
debug1: Server accepts key: pkalg ssh-rsa blen 277
debug1: Authentication succeeded (publickey).
debug1: Local connections to LOCALHOST:5901 forwarded to remote address
localhost:5900
debug1: Local forwarding listening on 127.0.0.1 port 5901.
debug1: channel 0: new [port listener]
socket: Address family not supported by protocol
debug1: channel 1: new [client-session]
debug1: Entering interactive session.
debug1: Sending environment.
debug1: Sending env LANG = fr_FR.UTF-8
debug1: Sending env LC_CTYPE = fr_FR.UTF-8
Last login: Mon Jun 1 21:05:21 2009 from bureau

Transfert de fichiers sécurisé : scp, sftp et sshfs

Si “ssh” permet d'obtenir un shell et exécuter des commandes sur un ordinateur distant, il permet
également de transférer des fichiers entre deux machines, toujours de manière sécurisée.

scp

Le moyen le plus simple et rudimentaire est la commande “scp”, fournie avec “Openssh-client” :

$ scp ~/Documents/fichier.txt famille@192.168.1.2:Documents/

Ici on envoie “fichier.txt” vers la machine distante 192.168.1.2, le fichier sera copié dans le répertoire
“/home/famille/Documents”. Attention à la syntaxe de la cible, les deux point “:” qui suivent l'adresse
indique le répertoire personnel de l'utilisateur. Si vous copiez vers/depuis un sous-répertoire du
répertoire personnel vous devez l'indiquer sans “/” au début, comme dans notre exemple. Si vous
voulez copier par exemple dans /etc/ssh/ il faudra écrire “famille@192.168.1.2:/etc/ssh/”.

Pour faire des copies récursives “scp” supporte l'option “-r” (les liens symboliques sont alors suivis
par “scp”), “-P” permettra d'indiquer un port de connexion.

Avec l'option “-r” le comportement sera différent si le répertoire cible existe ou non lors de la copie,
par exemple :

$ scp -r dossier famille@192.168.1.2:Documents

Si “Documents” existe sur la machine distante, “dossier” sera créé et son contenu copié à l'intérieur

2026/01/25 00:31 17/22 "ssh" : connexion à distance sécurisée

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

de “Documents”. Si “Documents” n'existe pas, la copie de “dossier” sera renommée en “Documents”
et son contenu copié à l'intérieur de ce nouveau répertoire.

Pour copier plusieurs fichiers de la machine locale à la machine distante, il suffit de les mettre à la
suite, séparés par un espace :

$ scp fichier1 fichier2 fichier3 famille@192.168.1.2:

N'oubliez pas les deux points “:” après l'adresse de la machine distante, vous pouvez bien sûr
indiquer des chemins différents.

Vous pouvez utiliser des expressions rationnelles avec “scp”, par exemple pour copier nos trois
fichiers 1,2 et 3 de la machine distante à la machine locale (l'inverse de précédemment) :

$ scp famille@192.168.1.2:fichier[1-3] .

La notation “[1-3]” correspond aux entiers compris entre 1 et 3, cela correspond donc à nos
“fichier1”, “fichier2” et “fichier3”. Le point “.” en fin de commande indique le répertoire courant sur la
machine locale comme cible de la copie.

sftp

Plus évolué, sftp est un programme de transfert de fichier “ftp” sécurisé, fournie avec “openssh-
client”, pour lancer une session “sftp” interactive on procède comme pour “ssh” :

$ sftp famille@192.168.1.2
sftp>put Documents/fichier.txt Desktop/
Uploading Documents/fichier.txt to /home/famille/Desktop/fichier.txt
Documents/fichier.txt 100% 1681 1.6KB/s 00:00

Dans cet exemple on lance un esession sftp vers “famille@192.168.1.2”, puis on utilise la commande
“put” pour envoyer le fichier ~/Desktop/fichier.txt vers /home/famille/Desktop/ . Vous remarquerez
que l'origine des chemins est ici encore le répertoire personnel des utilisateurs. “sftp” donne des
indications pendant les tranferts sur la vitesse de la transaction, sa progression et sa durée.
Pour récupérer un fichier on utilisera cette fois la commande “get” de la même façon que pour “put” :

$ sftp famille@192.168.1.2
sftp>get Desktop/fichier.txt Documents/
Fetching /home/famille/Desktop/fichier.txt to Documents/fichier.txt
/home/famille/Desktop/fichier.txt 100% 1681 1.6KB/s 00:00

Vous remarquez que la syntaxe s'inverse en fonction de la commande :

sftp>get source(distante) destination(locale)

sftp>put source(locale) destination(distante)

“sftp” admet l'option “-P” permettra de conserver les permissions et attributs des fichiers copiés. On
peut également utiliser la plupart des commandes habituelles pour effectuer des opérations sur les

Last update: 2023/01/27 16:08 start:raspberry:ssh:doc https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:ssh:doc

https://chanterie37.fr/fablab37110/ Printed on 2026/01/25 00:31

fichiers comme “mkdir” (créer un répertoire), “chgrp” (change groupe), “chown” (change
propriétaire), “chmod” (change permissions), “rm” et “rmdir” (effacement), “rename” (renommer)
etc… Ces commandes s'appliquent par défaut aux fichiers distants. On peut également obtenir des
informations sur le remplissage du système de fichier distant avec “df”, mais cette comande n'est pas
supporté par toutes les versions de “ssh”.
Enfin les commandes “quit ou “bye” terminent la session “sftp”.

"lftp" comme client "sftp"

“sftp” a quelque lacune par rapport à d'autres programmes de transfert ftp, un des plus gênant est
l'absence de complétion des chemins. La complétion consiste à compléter un chemin ou nom de
fichier que vous êtes en train de taper, en fonction des fichiers et répertoires qui existent réellement
sur ce chemin, cela limite les fautes de frappe. Pour compenser cette lacune il est courant d'utiliser le
logiciel ”lftp“ (à installer séparément) comme client “sftp” afin de cumuler les avantages des deux, en
pratique on bénéficie des fonctions plus avancés de “lftp”, comme la complétion des noms et
chemins, le support de commandes parallèles, la reprise de transferts en cas d'interruption etc… mais
on conserve le gain de sécurité apporté par “sftp”. Pour ouvrir une session on utilise simplement la
directive “open” dans une session “lftp” :

$ lftp
lftp :~> open sftp://famille@192.168.1.2
Mot de passe :

lftp famille@192.168.1.2:~>ls
drwx------ 2 famille famille 4096 Jun 3 09:04 .aptitude
-rw------- 1 famille famille 10185 Jun 4 01:12 .bash_history
-rw-r--r-- 1 famille famille 220 Jan 29 16:43 .bash_logout
-rw-r--r-- 1 famille famille 2928 Jan 29 16:43 .bashrc
drwxr-xr-x 14 famille famille 4096 Feb 15 18:19 .config
drwx------ 2 famille famille 4096 Jan 31 11:43 .cups
drwx------ 3 famille famille 4096 Jun 1 17:45 .dbus
-rw------- 1 famille famille 28 Jun 4 07:35 .dmrc
drwxr-xr-x 32 famille famille 4096 May 25 19:03 .dvdcss
[...]
drwxr-xr-x 2 famille famille 4096 Jun 3 21:29 Desktop
drwxr-xr-x 3 famille famille 4096 May 24 18:03 Documents
drwxr-xr-x 5 famille famille 4096 Jun 2 16:22 Downloads
drwxr-xr-x 2 famille famille 4096 Jan 29 17:09 Music
drwxr-xr-x 3 famille famille 4096 May 31 17:01 My GCompris
drwx------ 2 famille famille 4096 May 28 14:08 PDF
drwxr-xr-x 3 famille famille 4096 Jan 29 18:46 Pictures
drwxr-x--- 4 famille famille 4096 Feb 1 12:31 Podcasts
drwxr-xr-x 2 famille famille 4096 Jan 29 17:09 Public
drwxr-xr-x 2 famille famille 4096 Jan 29 17:09 Templates
drwxr-xr-x 2 famille famille 4096 Jan 29 17:09 Videos

lftp famille@192.168.1.5:~> !ls -l
total 3316328
drwxr-xr-x 4 geek geek 4096 mai 18 15:57 Audio Projects
drwxr-xr-x 11 geek geek 4096 mai 18 10:55 bordel in progress

https://chanterie37.fr/fablab37110/doku.php?id=lftp:start

2026/01/25 00:31 19/22 "ssh" : connexion à distance sécurisée

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

drwxr-xr-x 2 geek geek 4096 jun 3 19:42 Desktop
-rw-r--r-- 1 geek geek 113902 avr 7 23:38 Disk_layout.xcf
drwxr-xr-x 13 geek geek 4096 jun 3 21:41 Documents
drwxr-xr-x 26 geek geek 4096 jun 3 12:14 Downloads
[...]

Le listing de la commande “ls” a été coupé en raison de sa longueur, il permet juste de s'assurer
qu'on a bien ouvert une session sur le compte de “famille”, et de voir que la commande “ls” de “lftp”
liste également les fichiers cachés sur la machine distante.
La seconde commande est précédée du signe “!”, ce qui provoque sont exécution sur le compte local.
On voit également que les commandes “lftp” se comportent comme des commandes Bash, et
admettent des options comme ici “ls -l”. Sans surprise le listing renvoie le contenu du répertoire
personnel de “geek”, celui qui a lancé la session “lftp>sftp” vers “famille”.

“lftp” nécessite un tutoriel propre, en attendant vous pouvez utiliser le manuel pour connaître les
commandes de base, sachez que “get” et “put” ont la même fonction que pour “sftp”, et “exit” ou
“quit” termineront la session. “lftp” supporte également le protocole “fish” basé sur “ssh” également,
vous pouvez ouvrir une session “fish” de la même façon que pour “sftp” :

$ lftp
lftp :~> open fish://famille@192.168.1.2
Mot de passe :

Tout le trafic est crypté, et passe par le port utilisé par “ssh”, aucun besoin d'ouvrir des ports
supplémentaires.

Sur certaines distributions il est possible que “lftp” ne soit pas compilé avec le support
de “ssl”ou “tls” comme moyen d'identification, auquel cas il ne sera pas utilisable
avec “sftp”. Pour vérifier si votre version est compatible utilisez la commande ldd
`which lftp` | egrep '(ssl|tls)' , si celle-ci renvoie quelque chose c'est bon, sinon il
faut recompiler lftp avec le support adéquat, et/ou faire un rapport de bug à votre
distribution.

sshfs

Vous connaissez sans doute “samba” et “nfs” qui permettent de partager des répertoires en les
montant sur une machine distante, et bien “sshfs” fait la même chose en bénéficiant de la sécurité de
“ssh”.

Pour utiliser “sshfs” il est en général nécessaire de l'installer séparément. “sshfs” étant dépendant du
système de fichier en espace utilisateur “fuse” il faut que votre utilisateur soit membre du groupe
“fuse” (sur certaines distribution ce groupe peut s'appeler “fuseuser”). Pour savoir si votre utilisateur
appartient au groupe “fuse” :

$ groups

Si “fuse” n'est pas dans la liste ajoutez votre utilisateur à ce groupe, et activer le changement avec :

Last update: 2023/01/27 16:08 start:raspberry:ssh:doc https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:ssh:doc

https://chanterie37.fr/fablab37110/ Printed on 2026/01/25 00:31

usermod -a -G fuse geek
$ newgrp fuse

Remplacez l”utilisateur “geek” par votre nom d'utilisateur.

L'utilisation de sshfs est ensuite très simple, elle s'apparente à un montage simple, par exemple pour
monter le répertoire “Documents” sur le poste “famille@192.168.1.2” on fera :

$ mkdir sshfs_Documents

$ ls -l sshfs_Documents
total 0

$ sshfs famille@192.168.1.2:Documents ~/sshfs_Documents/

$ ls -l sshfs_Documents
rwxr-xr-x 4 famille famille 4096 déc 9 21:56 articles
drwxr-xr-x 7 famille famille 4096 déc 9 21:56 Boulot
-rw-r--r-- 1 famille famille 75974 déc 24 18:53 COPY INVOICE I10306044.pdf
-rw-r--r-- 1 famille famille 75989 déc 24 18:52 COPY INVOICE I10316756.pdf
drwxr-xr-x 4 famille famille 4096 mai 4 10:57 divers écrits
drwxr-xr-x 3 famille famille 4096 déc 9 21:56 doc international
drwxr-xr-x 2 famille famille 4096 déc 9 21:56 KENYA
[...]

$ fusermount -u sshfs_Documents

$ ls -l sshfs_Documents
total 0

Les commandes ont été séparées par un espace pour plus de lisibilité, nous avons fait dans l'ordre :

Création d'un répertoire ~/sshfs_Documents/ qui servira de point de montage.
Listing du contenu du nouveau répertoire, il est vide (“total 0”).
Montage du répertoire distant ~/Documents sur “famille@192.168.1.2”, avec pour point de
montage local le répertoire “~/sshfs_Documents” créé auparavent.
Listing du contenu du répertoire local ~/sshfs_Documents/, il contient maintenant la même
chose que “famille@192.168.1.2:Documents” qui est monté par “sshfs”. On peut modifier les
fichiers (en fonction de leurs permissions), en créer de nouveaux, les modifications sont
appliquées sur le répertoire distant.
Démontage avec la commande “fusermount -u”, qui prend en argument le point de montage.
Listing du contenu du répertoire local ~/sshfs_Documents/, il est à nouveau vide (“total 0”).

Voilà un moyen simple et rapide de monter à distance un répertoire, sans ouvrir de ports
supplémentaires, sans configurer “nfs” ou “samba”, et de manière sécurisée.

Quelques astuces en vrac

Vous êtes maintenant à même d'utiliser “ssh”, au moins pour les bases, voici quelques “trucs” qui
peuvent vous être utiles :

2026/01/25 00:31 21/22 "ssh" : connexion à distance sécurisée

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

En cas de problème de connexion, vérifiez d'abord les ouvertures de ports dans le(s) pare-feu,
sur la machine locale ET distante, ainsi que la configuration du routeur (utilisation du “NAT” et
nécessité de faire suivre le port de “ssh”).

Si vous vous connectez à travers le réseau Internet, vous devez connaître l'adresse IP publique
(externe) du poste distant. On peut connaître son IP publique en consultant
http://whatismyip.org ou http://checkip.dyndns.com/ . Si l'adresse IP publique est attribuée
dynamiquement par le fournisseur d'accès Internet, on peut créer un compte gratuit sur un
service comme http://www.dyndns.org pour obtenir un nom de domaine fixe (à utiliser en
conjonction avec un programme comme “ddclient”, voir documentation sur le site de
dyndns.org).

Utilisez le programme “autossh” pour vos tunnel, ça évite de voir un tunnel “mourir” en raison
d'une mauvaise connexion ou d'une inactivité prolongée.

Pour vous protéger des attaques “brute de force” contre votre démon sshd, surtout si vous
utilisez le port par défaut 22, vous pouvez utiliser le programme “sshguard”. Celui-ci considère
comme une attaque les tentatives de connexions répétées (comportement configurable) et
bloque les ip des attaquant à l'aide de règles de pare-feu “iptables”. Dans de tels situations les
paquets “fail2ban” ou “denyhosts” pourront être considérés également car ils sont plus
souples et sophistiqués. Sur les noyaux récents le module “recent” de “netfilter” (le pare-feu
intégré au noyau) est une excellente solution. (voir lien “protection attaques brute de force” ci-
dessous).

“ssh” fonctionne en cascade, vous pouvez vous loguer depuis un ordinateur “A” sur un
ordinateur “B”, puis depuis l'ordinateur “B” vous loguer sur une machine “C”. De la même
manière vous pouvez enchaîner des tunnels “ssh” en faisant correspondre les ports
d'entrée/sortie des tunnels sur les machine successives.

Sur Windows le logiciel “putty” peut agir comme un client ssh, avec une interface graphique.

Certains gestionnaires de fichiers, comme Konqueror ou Midnight Commander, supportent le
protocole “fish” basé sur ssh, tapez juste dans la barre d'url “fish://famille@192.168.1.2” (sans
guillemets) et vous naviguerez dans l'arborescence de fichiers distante via ssh. Mais la ligne de
commande est tellement plus simple…

Si vous testez des configurations hasardeuses, qui nécessitent un redémarrage du démon
“sshd” et risquent de vous faire perdre l'accès au serveur “ssh” en cas d'erreur, vous pouvez
utiliser “webmin” comme “assurance”. “webmin” est une interface “web” de configuration de
différents services, elle est accessible à distance avec un simple navigateur Internet, et couvre
la configuration de ssh. Bien que “webmin” n'ait pas toujours une bonne réputation quant à sa
sécurité, cela peut constituer une bonne “assurance” le temps d'être sûr de votre configuration
“ssh”.

Liens

Site officiel de Openssh
Sécuriser ssh, manuel Debian
"Protection attaques brute de force" (“denyhosts”, “fail2ban”, “recent”)(eng)

http://whatismyip.org
http://checkip.dyndns.com/
http://www.dyndns.org
https://www.linuxpedia.fr/doku.php/konqueror/konqueror
https://www.linuxpedia.fr/doku.php/midnight_commander
http://www.webmin.com/index.html
http://www.openssh.com/fr/index.html
http://debian.org/doc/manuals/securing-debian-howto/ch-sec-services.fr.html#s5.1
http://www.h-online.com/security/features/Protecting-SSH-from-brute-force-attacks-746235.html

Last update: 2023/01/27 16:08 start:raspberry:ssh:doc https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:ssh:doc

https://chanterie37.fr/fablab37110/ Printed on 2026/01/25 00:31

From:
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Château-
Renault

Permanent link:
https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:ssh:doc

Last update: 2023/01/27 16:08

https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:ssh:doc

	["ssh" : connexion à distance sécurisée]
	"ssh" : connexion à distance sécurisée
	Installation
	Utilisation basique
	Configuration
	Authentification par clés
	Changement d'identité du serveur ?
	"ssh-agent", garder en mémoire les mots de passe de clés

	Tunnel ssh
	Tunnel inversé
	Tunnel ssh comme proxy "SOCKS"

	Transfert de fichiers sécurisé : scp, sftp et sshfs
	scp
	sftp
	"lftp" comme client "sftp"
	sshfs

	Quelques astuces en vrac
	Liens

