
2026/01/14 16:57 1/13 Connexion RPI et ESP32 via UART

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

Connexion RPI et ESP32 via UART

Pour connecter un Raspberry Pi 4 à un ESP32 en utilisant le protocole UART (série), voici les étapes
détaillées :

Matériel nécessaire :

- Raspberry Pi 4 - ESP32 - Câbles de connexion (Dupont) - Optionnel : Résistances (si nécessaire pour
les niveaux de tension)

Connexion physique :

Last
update:
2025/03/01
21:45

start:raspberry:uart:uarttoesp32 https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740861935

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 16:57

Raspberry Pi 4 → ESP32:

Raspberry Pi 4 :
GPIO 14 (TX) → ESP32 GPIO 16 (RX) (Transmission du Raspberry Pi vers l'ESP32)
UART(2)
GPIO 15 (RX) → ESP32 GPIO 17 (TX) (Réception du Raspberry Pi depuis l'ESP32)
UART(2)

OU

GPIO 14 (TX) → ESP32 GPIO 25 (RX) (Transmission du Raspberry Pi vers l'ESP32) UART(1)
GPIO 15 (RX) → ESP32 GPIO 26 (TX) (Réception du Raspberry Pi depuis l'ESP32) UART(1)

Alimentation :
3.3V (Raspberry Pi 4) → 3.3V (ESP32) (L'ESP32 fonctionne en 3.3V, évitez le 5V)
GND → GND

2026/01/14 16:57 3/13 Connexion RPI et ESP32 via UART

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

Important :

Vous devez connecter TX à RX et RX à TX.1.
Le Raspberry Pi utilise un niveau logique de 3.3V, donc assurez-vous que l'ESP32 soit alimenté2.
en 3.3V également. Si vous branchez un câble GPIO directement à un autre périphérique qui
fonctionne à 5V (par exemple, certaines cartes Arduino), vous risquez d'endommager les
broches.

Configuration sur le Raspberry Pi (UART Master) :

1. Activer le port série :

Par défaut, le port série du Raspberry Pi est réservé à la console. Vous devez le libérer pour1.
l'utiliser pour la communication série.

- Ouvrez une terminal et tapez :

exemple003.sh

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=0

Last
update:
2025/03/01
21:45

start:raspberry:uart:uarttoesp32 https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740861935

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 16:57

sudo raspi-config

Allez dans “Interfacing Options” puis “Serial”. Désactivez l'accès à la console série et1.
activez l'interface série.
Redémarrez le Raspberry Pi.2.
Desactiver le Bluetooth sur le Raspberry Pi3.
Installer PySerial4.
Reboot5.

2. Vérifiez que le port série fonctionne :

Une fois le port série activé, vous pouvez vérifier si le périphérique série est détecté. Tapez la1.
commande suivante pour vérifier :

exemple004.sh

ls /dev/ttyAMA*

Vous devriez voir quelque chose comme `/dev/ttyAMA0`.

3. Installer les outils de communication série (si nécessaire) :

Si vous souhaitez envoyer et recevoir des données en ligne de commande, installez minicom ou
screen :

exemple005.sh

sudo apt-get install minicom

4. Testez la connexion série avec `minicom` :

Utilisez minicom pour tester la communication série en vous connectant au port `/dev/ttyAMA0`1.
:

exemple006.sh

minicom -b 115200 -o -D /dev/ttyAMAO

Ctrl + A et ensuite X pour sortir de minicom : Ctrl + A et ensuite Z pour l'Aide : CTRL +
A et ensuite O pour configurer minicom

Remarque : Changez le port si nécessaire (en fonction de la sortie de `ls
/dev/ttyAMA0`).

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=1
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=2
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=3

2026/01/14 16:57 5/13 Connexion RPI et ESP32 via UART

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

Configuration sur l'**ESP32** (UART Slave) :

1. Utiliser l'IDE Arduino pour programmer l'ESP32 :

Si vous n'avez pas encore installé le support pour l'ESP32 dans l'IDE Arduino, allez dans `Outils`1.
→ `Carte` → Sélectionnez votre modèle ESP32.
Assurez-vous que vous avez installé le paquet ESP32 dans le Gestionnaire de cartes de l'IDE2.
Arduino.

2. Code pour l'ESP32 (réception et envoi UART) :

-1-Voici un exemple de code pour configurer l'ESP32 pour communiquer via UART(2) :

exemple11.ino

#define RXD2 16
#define TXD2 17

#define GPS_BAUDS 115200

HardwareSerial mySerial2(2);

int counter = 0;

void setup() {
 Serial.begin(115200);
 mySerial2.begin(GPS_BAUDS, SERIAL_8N1, RXD2, TXD2);
 Serial.println("Serial 2 demarre en 115200 Bds");
}

void loop() {
 while (mySerial2.available() > 0) {
 char gpsData1 = mySerial2.read();
 Serial.print(gpsData1);
 }
 delay(2000);
 Serial.println("--");
 mySerial2.println(String(counter));
 Serial.println("Envoie UART2: " + String(counter));
 counter++;
 delay(2000);
}

Ce code permet à l'ESP32 de lire les caractères envoyés par le Raspberry Pi et de répondre avec un
message.

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=4

Last
update:
2025/03/01
21:45

start:raspberry:uart:uarttoesp32 https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740861935

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 16:57

-2- Voici un exemple de code pour configurer l'ESP32 pour communiquer via UART(1) :

exemple12.ino

#define RXD1 25
#define TXD1 26

#define GPS_BAUDS 115200

HardwareSerial mySerial1(1);

int counter = 0;

void setup() {
 Serial.begin(115200);
 mySerial1.begin(GPS_BAUDS, SERIAL_8N1, RXD1, TXD1);
 Serial.println("Serial 1 25R 26T demarre en 115200 Bds");
}

void loop() {
 while (mySerial1.available() > 0) {
 char gpsData2 = mySerial1.read();
 Serial.print(gpsData2);
 }
 delay(2000);
 Serial.println("--");
 mySerial1.println(String(counter));
 Serial.println("Envoie UART1: " + String(counter));
 counter++;
 delay(2000);
}

Ce code permet à l'ESP32 de lire les caractères envoyés par le Raspberry Pi et de répondre avec un
message.

Code pour l"ESP32M qui recoit sur l'UART1 le RPI et sur l'UART2 l'ESP32E

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=5

2026/01/14 16:57 7/13 Connexion RPI et ESP32 via UART

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

Raspberry Pi 4 → ESP32M ←- ESP32E:

Raspberry Pi 4 :
GPIO 14 (TX) → ESP32M GPIO 25 (RX) (Transmission du Raspberry Pi vers l'ESP32M)
UART(1)
GPIO 15 (RX) ←- ESP32M GPIO 26 (TX) (Réception du Raspberry Pi depuis l'ESP32M)
UART(1)

ESP32M
GPIO 16 (RX) –> ESP32E GPIO 17 (TX) (Transmission de l'ESP32M vers l'ESP32E)
UART(2)
GPIO 17 (TX) ←- ESP32E GPIO 16 (RX) (Réception de l'ESP32M depuis l'ESP32E) UART(2)

Alimentation :
3.3V (Raspberry Pi 4) → 3.3V (ESP32M et E) (L'ESP32 fonctionne en 3.3V, évitez le 5V)
GND → GND

exemple14.ino

#define RXD1 25
#define TXD1 26
#define RXD2 16
#define TXD2 17

#define GPS_BAUDS 115200
HardwareSerial mySerial1(1);
HardwareSerial mySerial2(2);

int counter = 0;

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=6

Last
update:
2025/03/01
21:45

start:raspberry:uart:uarttoesp32 https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740861935

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 16:57

void setup() {
 Serial.begin(115200);
 mySerial1.begin(GPS_BAUDS, SERIAL_8N1, RXD1, TXD1);
 Serial.println("Serial 1 25R 26T demarre en 115200 Bds");
 mySerial2.begin(GPS_BAUDS, SERIAL_8N1, RXD2, TXD2);
 Serial.println("Serial 2 16R 17T demarre en 115200 Bds");
}

void loop() {
 while (mySerial1.available() > 0) {
 char gpsData1 = mySerial1.read();
 Serial.print(gpsData1);
 }
 while (mySerial2.available() > 0) {
 char gpsData2 = mySerial2.read();
 Serial.print(gpsData2);
 }
 delay(2000);
 Serial.println("--");
 mySerial1.println(String(counter));
 Serial.println("Envoie UART1: " + String(counter));
 mySerial2.println(String(counter));
 Serial.println("Envoie UART2: " + String(counter));
 counter++;
 delay(2000);
}

Code pour test sur ESP32E

exemple15.ino

 #define RXD2 16
 #define TXD2 17

 #define GPS_BAUDS 115200

 HardwareSerial mySerial2(2);

 int counter = 0;

 void setup() {
 Serial.begin(115200);
 mySerial2.begin(GPS_BAUDS, SERIAL_8N1, RXD2, TXD2);
 Serial.println("Serial 2 demarre en 115200 Bds");
 }

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=7

2026/01/14 16:57 9/13 Connexion RPI et ESP32 via UART

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

 void loop() {
 while (mySerial2.available() > 0) {
 char gpsData1 = mySerial2.read();
 Serial.print(gpsData1);
 }
 delay(2000);
 Serial.println("--");
 mySerial2.println(String(counter));
 Serial.println("Envoie UART2: " + String(counter));
 counter++;
 delay(2000);
 }

Étapes sur le **Raspberry Pi** (UART Master) :

1. Code Python pour envoyer/recevoir des données via UART :

Voici un exemple de code Python pour communiquer avec l'ESP32M en utilisant le port série
/dev/ttyAMA0 :

Installer le module pyserial sur raspbery :

exemple007.sh

sudo apt-get install python3-serial

exemple010.py

import serial
import time

Configurer le port série pour le Raspberry Pi
ser = serial.Serial('/dev/ttyAMA0', 115200) # Le port série, le même
que pour Minicom
time.sleep(2) # Attendre que la communication soit stable

Envoyer un message à l'ESP32
ser.write(b"Hello ESP32!\n")
print("Envoie Hello ESP32!\n")
Reception des messages de l'ESP32
while True:
 if ser.in_waiting > 0: # Si des données sont reçues
 #received = ser.readline().decode('utf-8').strip() # Lire et
décoder les données reçues de l'ESP32 en utf-8
 received = ser.readline().decode('iso-8859-1').strip() # Lire
et décoder les données reçues de l'ESP32 en iso-8859-1
 print("Reçu de l'ESP32:", received)

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=8
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=9

Last
update:
2025/03/01
21:45

start:raspberry:uart:uarttoesp32 https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740861935

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 16:57

 time.sleep(1)
 # Envoie des messages de l'ESP32
 ser.write(b"Hello ESP32!\n")
 print("Envoie Hello ESP32!\n")

Lancer le programme python sur le raspberry

test001.sh

python3 exemple010.py

Ce script Python envoie un message à l'ESP32 et attend la réponse. Vous pouvez tester la
communication en lisant les réponses dans le

terminal du Raspberry :

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=10

2026/01/14 16:57 11/13 Connexion RPI et ESP32 via UART

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

Terminal ESP32:

Last
update:
2025/03/01
21:45

start:raspberry:uart:uarttoesp32 https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740861935

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 16:57

Vérification et dépannage :

- Si la communication ne fonctionne pas, assurez-vous que les connexions sont correctes, que le code
est bien téléchargé sur l'ESP32 et que le Raspberry Pi utilise le bon port série. - Si vous avez des
problèmes avec le niveau de tension, vous pouvez utiliser un convertisseur logique pour passer du
3.3V à un 5V, mais ce n'est pas nécessaire si vous utilisez 3.3V des deux côtés. - Si vous ne voyez
rien sur le port série (pour le Raspberry Pi), vous pouvez essayer d'utiliser `dmesg | grep tty` pour
voir les messages du système concernant les ports série.

Cela devrait vous permettre d'établir une communication UART entre votre Raspberry Pi 4 et votre
ESP32.

Test la vitesse entre RPI4 et ESP32 sur UART
à 115200Bds

Programme python sur le RPI4

exemple001.py

import serial
import time

Configurer le port série pour le Raspberry Pi
ser = serial.Serial('/dev/ttyAMA0', 115200) # Le port série, le même
que pour >
time.sleep(2) # Attendre que la communication soit stable

Envoyer un message à l'ESP32
ser.write(b"Hello ESP32!\n")
print("Envoie Hello ESP32!\n")
while True:
 if ser.in_waiting > 0: # Si des données sont reçues
 received = ser.readline().decode('utf-8').strip() # Lire et
décoder le>
 print("Reçu de l'ESP32:", received)
 time.sleep(0.008)
 ser.write(b"OK!\n")
 #print("Bien recu du Raspberry!\n")

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=11

2026/01/14 16:57 13/13 Connexion RPI et ESP32 via UART

Castel'Lab le Fablab MJC de Château-Renault - https://chanterie37.fr/fablab37110/

From:
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Château-Renault

Permanent link:
https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740861935

Last update: 2025/03/01 21:45

https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740861935

	Connexion RPI et ESP32 via UART
	Matériel nécessaire :
	Connexion physique :
	Configuration sur l'**ESP32** (UART Slave) :
	-1-Voici un exemple de code pour configurer l'ESP32 pour communiquer via UART(2) :
	-2- Voici un exemple de code pour configurer l'ESP32 pour communiquer via UART(1) :
	Code pour l"ESP32M qui recoit sur l'UART1 le RPI et sur l'UART2 l'ESP32E
	Code pour test sur ESP32E
	Étapes sur le **Raspberry Pi** (UART Master) :
	Lancer le programme python sur le raspberry

	Vérification et dépannage :

	Test la vitesse entre RPI4 et ESP32 sur UART à 115200Bds
	Programme python sur le RPI4

