2026/01/14 16:53

1/13

Connexion RPI et ESP32 via UART

Connexion RPI et ESP32 via UART

Pour connecter un Raspberry Pi 4 a un ESP32 en utilisant le protocole UART (série), voici les étapes

détaillées :

Matériel nécessaire :

- Raspberry Pi 4 - ESP32 - Cables de connexion (Dupont) - Optionnel : Résistances (si nécessaire pour

les niveaux de tension)

Connexion physique :

wand W

GPIO2 (SDA1)

GPIO3 (SCL1)

GPI04 (GPIO_GCLK)
GND

GPIO17 (GPIO_GEND)
GPIO27 (GPIO_GEN2)
GPIO22 (GPIO_GEN3)

GPIO10 (SPI0_MOSI)
GPIOS (SPI0_MISO)
GPIO11 (SPID_CLK)

GND

ID_SD (12C EEPROM)

GPIOS
GPIO6
GPIO13
GPIO19
GPIO26
GND

sV
5V
GND

GPIO14 (UART_TXDO)
GPIO15 (UART_RXDO)

GPIO18 (GPIO_GEN1)
GND

GPI023 (GPIO_GEN4)
GPIO24 (GPIO_GEN$)
GND

GPIO25 (GPIO_GENG)
GPIO8 (SPI_CED_MN)
GPIOT (SPI_CE1_N)
ID_SC (12C EEPROM)
GND

GPIO12

GND

GPIO16

GPI020

GPIO21

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last

;822;8'3/02 start:raspberry:uart:uarttoesp32 https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740934015
17:46
ESP32 Wroom DevKit Full Pinout
® L
33 O a
RESTART/ EN »] O EY WVSPI_MOSI
SADCL @ GPIO36 O O
ADC1 3 GPI039 O O
ADC1_6 GPIO34 o 0o
aDC1_7 GPI035 (o) 0
/TOUCH 3 ADC1 4 G O (o]
/TOUCH 8 ADC1 S (o] (»] [FGRET VSPI_MISO
JIOECITY AOC2_8 O O [TFGEET VSPI_CLK
JNORCIZY ADCZ_9 Of ====g==-= O CAOEY VSPI_CS
JTOUCH 7 ADC2_7 o - °°° 0 GPIO17 ¢ ¥
|/ SD_CLK ' HSPI_CLE TOUCH & ADC2 & GPI014 (s O GPIO1GMP]
| /SDDATZT HSPI_MISO ‘TOUCH_S ADC2_5 GPID12 O O GPIO4 ADC2_ B TOUCH_® /SD_DATL
GND o O GPIOA ADC2_1 TOUCH 1
| /SDNDATS) HSPI_MOSI /TOUCH & ADC2_4 GPTO13 o] (o] GPIOZ ADC2_2 TOUCH_2 /SD_DATS NTEGINNY|
SHD/SD2 ! (n] (n] GPIO1S ADCZ_3 TOUCH_3 [SO_CMD HSPI_CS
Do not Connect [used by internal Flash] § SWE/S03 O:il (o] 4 SD1 /501
C5C/CMD (] o] SD0/508 | Do not Conmect [usad by internal Flash)
o o SCK/CLE
&—— [nput only o ®

#—— |nput / Dutput
~— PLUM Dutput
GPID pins are not 5V tolerant

2xSPI:VSPL & HSPI 2xADC:ADCL & ADC2
' TOUCH SENSOR

A2C [BAE’ (SO UART

Raspberry Pi 4 -» ESP32:

e Raspberry Pi 4 :
o GPIO 14 (TX) » ESP32 GPIO 16 (RX) (Transmission du Raspberry Pi vers I'ESP32)
UART(2)
o GPIO 15 (RX) -» ESP32 GPIO 17 (TX) (Réception du Raspberry Pi depuis I'ESP32)
UART(2)

ou

e GPIO 14 (TX) » ESP32 GPIO 25 (RX) (Transmission du Raspberry Pi vers I'ESP32) UART(1)
e GPIO 15 (RX) -» ESP32 GPIO 26 (TX) (Réception du Raspberry Pi depuis I'ESP32) UART(1)

¢ Alimentation :
e 3.3V (Raspberry Pi 4) - 3.3V (ESP32) (L'ESP32 fonctionne en 3.3V, évitez le 5V)
e GND - GND

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 16:53

2026/01/14 16:53 3/13 Connexion RPI et ESP32 via UART

=) (=

Important :

1. Vous devez connecter TX a RX et RX a TX.

2. Le Raspberry Pi utilise un niveau logique de 3.3V, donc assurez-vous que I'ESP32 soit alimenté
en 3.3V également. Si vous branchez un cable GPIO directement a un autre périphérique qui
fonctionne a 5V (par exemple, certaines cartes Arduino), vous risquez d'endommager les
broches.

Configuration sur le Raspberry Pi (UART Master) :
1. Activer le port série :

1. Par défaut, le port série du Raspberry Pi est réservé a la console. Vous devez le libérer pour
I'utiliser pour la communication série.

- Ouvrez une terminal et tapez :

exemple003.sh

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=0

Last
update:
2025/03/02
17:46

start:raspberry:uart:uarttoesp32 https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740934015

sudo raspi-config

1. Allez dans “Interfacing Options” puis “Serial”. Désactivez I'acces a la console série et
activez l'interface série.

Redémarrez le Raspberry Pi.

Desactiver le Bluetooth sur le Raspberry Pi

Installer le module pip

Installer PySerial

Reboot

ok WwWwN

2. Vérifiez que le port série fonctionne :

1. Une fois le port série activé, vous pouvez vérifier si le périphérique série est détecté. Tapez la
commande suivante pour vérifier :

exemple004.sh

1s /dev/ttyAMA

Vous devriez voir quelque chose comme " /dev/ttyAMAOQ".
3. Installer les outils de communication série (si nécessaire) :

Si vous souhaitez envoyer et recevoir des données en ligne de commande, installez minicom ou
screen :

exemple005.sh

sudo apt-get install minicom

4. Testez la connexion série avec "minicom’ :

1. Utilisez minicom pour tester la communication série en vous connectant au port */dev/ttyAMAQ

exemple006.sh

minicom -b -0 -D /dev/ttyAMAO

(- Ctrl + A et ensuite X pour sortir de minicom : Ctrl + A et ensuite Z pour ['Aide : CTRL +
3 A et ensuite O pour configurer minicom

Remarque : Changez le port si nécessaire (en fonction de la sortie de 'Is

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 16:53

https://pimylifeup.com/raspberry-pi-pip/
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=1
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=2
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=3

2026/01/14 16:53 5/13 Connexion RPI et ESP32 via UART

[%e| /devittyAMAD).

Configuration sur I'**ESP32** (UART Slave) :

1. Utiliser I'IDE Arduino pour programmer I'ESP32 :

1. Si vous n'avez pas encore installé le support pour I'ESP32 dans I'IDE Arduino, allez dans “Outils’
- "Carte’ - Sélectionnez votre modele ESP32.

2. Assurez-vous que vous avez installé le paquet ESP32 dans le Gestionnaire de cartes de I'IDE
Arduino.

2. Code pour I'ESP32 (réception et envoi UART) :

-1-Voici un exemple de code pour configurer I'ESP32 pour communiquer via UART(2) :

exemplell.ino

#define RXD2 16
#define TXD2 17

#define GPS BAUDS 115200
HardwareSerial mySerial2
int counter

void setup
Serial.begin
mySerial2.begin(GPS BAUDS, SERIAL 8N1, RXD2, TXD2
Serial.println("Serial 2 demarre en 115200 Bds"

void loop
mySerial2.available
char gpsDatal = mySerial2.read
Serial.print(gpsDatal

delay

Serial.println("---------mmmmmmm e !
mySerial2.println(String(counter

Serial.println("Envoie UART2: " String(counter

counter

delay

Ce code permet a I'ESP32 de lire les caracteres envoyés par le Raspberry Pi et de répondre avec un

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=4

Last
update:
2025/03/02
17:46

start:raspberry:uart:uarttoesp32 https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740934015

message.

-2- Voici un exemple de code pour configurer I'ESP32 pour communiquer via UART(1) :

exemplel2.ino

#define RXD1 25
#define TXD1 26

#define GPS BAUDS 115200
HardwareSerial mySeriall
int counter

void setup
Serial.begin
mySeriall.begin(GPS_BAUDS, SERIAL 8N1, RXD1l, TXD1
Serial.println("Serial 1 25R 26T demarre en 115200 Bds"

void loop
mySeriall.available
char gpsData2 = mySeriall.read
Serial.print(gpsData2

delay

Serial.println(M-----mmmm e .
mySeriall.println(String(counter

Serial.println("Envoie UART1l: " String(counter

counter

delay

Ce code permet a I'ESP32 de lire les caractéres envoyés par le Raspberry Pi et de répondre avec un
message.

Code pour I"ESP32M qui recoit sur I'UART1 le RPI et sur 'UART2 I'ESP32E

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 16:53

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=5

2026/01/14 16:53 7/13 Connexion RPI et ESP32 via UART

'

]

]
gl] [: |
—m)
I -}
~, B - |
o) ol
] o
Chy o) |
—. B - |
- [}
o o
31] [+ |
— B [)
a1 - [}
~, B - |

)

Raspberry Pi 4 - ESP32M «- ESP32E:

e Raspberry Pi 4 :
o GPIO 14 (TX) » ESP32M GPIO 25 (RX) (Transmission du Raspberry Pi vers I'ESP32M)
UART(1)
o GPIO 15 (RX) «- ESP32M GPIO 26 (TX) (Réception du Raspberry Pi depuis I'ESP32M)
UART(1)
e ESP32M
o GPIO 16 (RX) -> ESP32E GPIO 17 (TX) (Transmission de I'ESP32M vers I'ESP32E)
UART(2)
o GPIO 17 (TX) «- ESP32E GPIO 16 (RX) (Réception de I'ESP32M depuis I'ESP32E) UART(2)

¢ Alimentation :
e 3.3V (Raspberry Pi 4) » 3.3V (ESP32M et E) (L'ESP32 fonctionne en 3.3V, évitez le 5V)
e GND -» GND

exemplel4.ino

#define RXD1 25
#define TXD1 26
#define RXD2 16
#define TXD2 17

#define GPS BAUDS 115200
HardwareSerial mySeriall(l

HardwareSerial mySerial2(2

int counter 0

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=6

Last
update:
2025/03/02
17:46

start:raspberry:uart:uarttoesp32 https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740934015

void setup
Serial.begin (115200
mySeriall.begin(GPS_BAUDS, SERIAL 8N1, RXD1l, TXD1
Serial.println("Serial 1 25R 26T demarre en 115200 Bds"
mySerial2.begin(GPS BAUDS, SERIAL 8N1, RXD2, TXD2
Serial.println("Serial 2 16R 17T demarre en 115200 Bds"

void loop
mySeriall.available 0
char gpsDatal = mySeriall.read
Serial.print(gpsDatal

mySerial2.available 0
char gpsData2 mySerial2.read
Serial.print(gpsData2

delay (2000

Serial.println(M-----cm oo "
mySeriall.println(String(counter
Serial.println("Envoie UART1: "
mySerial2.println(String(counter
Serial.println("Envoie UART2: " String(counter
counter

delay (2000

String(counter

Code pour test sur ESP32E

exemplel5.ino

#define RXD2 16
#define TXD2 17

#define GPS BAUDS 115200
HardwareSerial mySerial2(2
int counter = 0
void setup

Serial.begin (115200

mySerial2.begin(GPS BAUDS, SERIAL 8N1, RXD2, TXD2
Serial.println("Serial 2 demarre en 115200 Bds"

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 16:53

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=7

2026/01/14 16:53 9/13 Connexion RPI et ESP32 via UART

void loop
mySerial2.available 0
char gpsDatal = mySerial2.read
Serial.print(gpsDatal

delay (2000

Serial.println(-----mmmm e
mySerial2.println(String(counter

Serial.println("Envoie UART2: " String(counter

counter

delay (2000

Etapes sur le **Raspberry Pi** (UART Master) :

1. Code Python pour envoyer/recevoir des données via UART :

Voici un exemple de code Python pour communiquer avec I'ESP32M en utilisant le port série
/dev/ttyAMAO :

Installer le module pyserial sur raspbery :

exemple007.sh

sudo apt-get install python3-serial

exemple010.py

serial
time

Configurer le port série pour le Raspberry Pi

ser = serial.Serial('/dev/ttyAMAO', 115200) # Le port série, le méme

que pour Minicom
time.sleep(2) # Attendre que la communication soit stable

Envoyer un message a l'ESP32
ser.write(b"Hello ESP32!'\n"
"Envoie Hello ESP32!'\n"
Reception des messages de l'ESP32
True:
ser.in waiting > 0: # Si des données sont recues

#received = ser.readline().decode('utf-8').strip() # Lire et

décoder les données recues de 1'ESP32 en utf-8

received ser.readline().decode('is0-8859-1"').strip # Lire

et décoder les données recues de l'ESP32 en iso-8859-1
"Recu de 1'ESP32:", received

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=8
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=9

Last
update:
2025/03/02
17:46

start:raspberry:uart:uarttoesp32 https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740934015

time.sleep

Envoie des messages de l'ESP32

ser.write(b"Hello ESP32!\n"
"Envoie Hello ESP32!\n"

Lancer le programme python sur le raspberry

test001.sh

python3 exemple@10.py

Ce script Python envoie un message a I'ESP32 et attend la réponse. Vous pouvez tester la
communication en lisant les réponses dans le

terminal du Raspberry :

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 16:53

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=10

2026/01/14 16:53

11/13

Connexion RPI et ESP32 via UART

Terminal ESP32:

A

Recu de -
Envolie Hello du

Envoie Hello du

Envoie Hello du

Envoie Hello du

Recu de 1'ESP32:

Envolie Hello du
Envoie Hello du
Envoie Hello du

Envole Hello du

Recu de 1'ESP32:

16:39:83.701 -> Hell

Raspberry!
Raspberry!
Raspberry!
Raspberry!

137
Raspberry!

Raspberry!
Raspberry!
Raspberry!

138

o du Raspberry!

16'30'085. 720 -= ccccccceccccccccaam—aa-
16:39:85.7280 -= Envoie: 114

16:39:087.698 -> Hell
16:39:07.730 -> Hell
16:39:07.731 -> Hell
16:39:87.731 -= Hell

o du Raspberry!
0 du Raspberry!
0 du Raspberry!
0o du Raspberry!

16:39:09.716 -> -----------~=-~-~“~~—-~—--
16:39:89.716 -= Envoie: 115

16:39:11.730 -> Hell
16:39:11.730 -> Hell
16:39:11.730 -> Hell
16:39:11.730 -=> Hell

0o du Raspberry!
0 du Raspberry!
o du Raspberry!
0o du Raspberry!

16:39:13.788 -» --------ccccvccrcccan--
16:39:13.788 -> Envoie: 116

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last

;832;8:3/02 start:raspberry:uart:uarttoesp32 https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740934015

17:46

Vérification et dépannage :

- Si la communication ne fonctionne pas, assurez-vous que les connexions sont correctes, que le code
est bien téléchargé sur I'ESP32 et que le Raspberry Pi utilise le bon port série. - Si vous avez des
problemes avec le niveau de tension, vous pouvez utiliser un convertisseur logique pour passer du
3.3V a un 5V, mais ce n'est pas nécessaire si vous utilisez 3.3V des deux cotés. - Si vous ne voyez
rien sur le port série (pour le Raspberry Pi), vous pouvez essayer d'utiliser "dmesg | grep tty" pour
voir les messages du systeme concernant les ports série.

Cela devrait vous permettre d'établir une communication UART entre votre Raspberry Pi 4 et votre
ESP32.

Test la vitesse entre RPI4 et ESP32 sur UART
a 115200Bds

Programme python sur le RPI4

exemple001.py

serial
time

Configurer le port série pour le Raspberry Pi

ser serial.Serial('/dev/ttyAMAO' # Le port série, le méme
que pour >
time.sleep # Attendre que la communication soit stable

Envoyer un message a l'ESP32
ser.write(b"Hello ESP32!\n"
"Envoie Hello ESP32!'\n"

True:
ser.in waiting : # Si des données sont recues
received ser.readline().decode('utf-8').strip # Lire et

décoder le>
"Recu de L1'ESP32:", received
time.sleep
ser.write(b"OK!\n"
#print("Bien recu du Raspberry!\n")

Code C-Arduino sur ESP32

https://chanterie37.fr/fablab37110/ Printed on 2026/01/14 16:53

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=11

2026/01/14 16:53 13/13 Connexion RPI et ESP32 via UART

exemple002.ino

#define RXD2 16
#define TXD2 17

#define GPS BAUDS 115200

//HardwareSerial gpsSerial(2);
HardwareSerial mySerial

int counter

void setup
Serial.begin
mySerial.begin(GPS BAUDS, SERIAL 8N1, RXD2, TXD2
Serial.println("Serial 2 demarre en 115200 Bds"

void loop
mySerial.available
char gpsData mySerial. read
Serial.println(gpsData

delay
//5erial.println(" --------- - e) e
mySerial.println(String(counter
counter
counter

//Serial.println("Envoie: UART2 " + String(counter));
counter
delay(0.005

From:
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Chateau-Renault

Permanent link: e
https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740934015 2L-T

Last update: 2025/03/02 17:46

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=12
https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740934015

	Connexion RPI et ESP32 via UART
	Matériel nécessaire :
	Connexion physique :
	Configuration sur l'**ESP32** (UART Slave) :
	-1-Voici un exemple de code pour configurer l'ESP32 pour communiquer via UART(2) :
	-2- Voici un exemple de code pour configurer l'ESP32 pour communiquer via UART(1) :
	Code pour l"ESP32M qui recoit sur l'UART1 le RPI et sur l'UART2 l'ESP32E
	Code pour test sur ESP32E
	Étapes sur le **Raspberry Pi** (UART Master) :
	Lancer le programme python sur le raspberry

	Vérification et dépannage :

	Test la vitesse entre RPI4 et ESP32 sur UART à 115200Bds
	Programme python sur le RPI4
	Code C-Arduino sur ESP32

