L'informatique au lycée Chapitre 14

Jean-Daniel Nicoud

Didier Miiller

Chapitre 14
Robotique

14.1. Arduino ? Diduino ?

Le systéme Arduino est une plateforme de développement open-source. Il est composé d'une
partie matérielle et d'une partie logicielle. Tout le software est en open-source sur le net : le systéme
de développement, des librairies et des milliers d'applications. La documentation d'Arduino, dont les
cartes sont développées et fabriquées en Italie, est en anglais. Mais on trouve des sites en francais,
par exemple http://arduino.cc/fr/

Arduino peut étre utilisé pour développer des objets interactifs, pouvant recevoir des entrées
d'une grande variété d'interrupteurs ou de capteurs, et pouvant contréler une grande variété de
lumiéres, moteurs ou toutes autres sorties matérielles. Les projets Arduino peuvent étre autonomes,
ou bien ils peuvent communiquer avec des logiciels tournant sur votre ordinateur.

MADE
IN ITALY

™ Diduino#

Les cartes Arduino UNO et Diduino

En Suisse, Jean-Daniel Nicoud, ancien professeur a I'EPFL, a développé Diduino (DIDel-
ArdUINO) et le commercialise via son entreprise Didel. L'avantage de cette version d'Arduino est
son orientation « expérimentation », son prix modique et la disponibilit¢ du hardware nécessaire
pour développer des applications. Une version spécifique pour la robotique existe aussi. Tout ceci est
décrit sur le site de Didel : www.didel.com

Par rapport a d'autres plateformes, I'Arduino a l'avantage de ne pas de nécessiter de
programmateur. La carte se relie & un PC par un cable USB et c'est tout. L'alimentation se fait par ce
cable. Le programme est écrit en langage Arduino, proche du langage C, a l'aide de 1'environnement
de développement Arduino, librement téléchargeable sur le net.

Remerciements

Ce cours est largement inspiré de celui de Brice Canvel. Merci a lui de m'avoir autorisé a
l'utiliser. Adresse : http://mediawiki.e-apprendre.net/index.php/Diduino-Robot.

14-1 avril 2013

http://arduino.cc/fr/
http://mediawiki.e-apprendre.net/index.php/Diduino-Robot
http://www.didel.com/

Robotique

Mise en route

En pratique, il faut écrire le programme sur le PC, le tester afin d'y déceler des erreurs de syntaxe,
le compiler et le télécharger sur la carte Diduino. Une fois la carte « nourrie », il démarrera
automatiquement avec ce programme lors de chaque mise sous tension. Le programme ne s'efface
pas lorsqu'on met la carte hors tension.

Le logiciel Arduino véritable environnement de développement intégré, pour écrire, compiler et
transférer le programme vers la carte. Pour télécharger le programme Arduino, il faut se rendre sur la

page :

http://arduino.cc/en/Main/Software

Choisissez la version 1.0.3.

Il faut ensuite le décompresser et l'installer (cela prendra une dizaine de minutes). On peut
l'installer sur un PC ou un clé USB. Le dossier décompressé pése 246 Mo sous Windows. Il existe
aussi une version Mac OS X et une version Linux.

14.2. Le logiciel Arduino

Ce paragraphe est un résumé de la page http://arduino.cc/fr/Main/DebuterPresentationlogiciel

ARDUINO

Le logiciel Arduino a pour fonctions principales :
* de pouvoir écrire et compiler des programmes pour la carte Arduino
* de se connecter avec la carte Arduino pour y transférer les programmes
* de communiquer avec la carte Arduino

BlinkWithoutDelay | Arduino 1.0.3 (e 0

Fichier Edition Croquis Outils Aide

Barre de Boutons
= Onglets des fichiers ouverts |

BlinkvithoutDelay

#4 set pin mmbers:
const int ledPin = 13; A4 the numher of the LED pin

74 Warighles will chatge:
int led3tate = LOW: /7 led3tate used to set the LED
long previousMillis = 0; A4 will store last time LED was up

44 the follow wariables is a long because the time, measured in i
A4 will gqmickly become a bigger number than can be stored in an in(s
long interwal = 1000; A/ interwval at which to blink (mil|

* Fenétre d'édition
des programmes

woid setup() {
/¢ set the digital pin as output:
pinMode {ledPin, OUTPUT) :

'

void loop () -

<O

-‘—| Zone de messages des actions en cours

- Console d'affichage

des messages de compilation

Arduine Duemilanc

Didier Miiller 14-2 avril 2013

http://arduino.cc/fr/Main/DebuterPresentationLogiciel
http://arduino.cc/fr/Main/TelechargerArduinoFrancais

L'informatique au lycée

Didier Miiller

Chapitre 14

Cet espace de développement intégré (EDI) dédi¢ au langage Arduino et a la programmation des
cartes Arduino comporte :

une barre de menus comme pour tout logiciel une interface graphique (GUI),

une barre de boutons qui donne un acces direct aux fonctions essentielles du logiciel et fait
toute sa simplicité d'utilisation,

un éditeur (a coloration syntaxique) pour écrire le code de vos programme, avec onglets de
navigation,

une zone de messages qui affiche indique 1'état des actions en cours,

une console texte qui affiche les messages concernant le résultat de la compilation du
programme.

Le logiciel Arduino intégre également :

un terminal série (fenétre séparée) qui permet d'afficher des messages textes recus de la
carte Arduino et d'envoyer des caracteres vers la carte Arduino. Cette fonctionnalité permet
une mise au point facilitée des programmes, permettant d'afficher sur l'ordinateur I'état de
variables, de résultats de calculs ou de conversions analogiques-numériques : un élément
essentiel pour améliorer, tester et corriger ses programmes.

/—' Zone de saisie des valeurs a envoyer vers la carte Arduino |

(&) com3 ' =8

B %
Send |

|°Clic" sur Send pour envoi vers la carte Arduino J

Champ de réglage du débit de communication

(Zone d'affichage des

messages el caractéres regus

115200 baud

14.2.1. Principe général d'utilisation

Le code écrit avec le logiciel Arduino est appelé un croquis (sketch en anglais) :

Ces croquis sont écrits dans I'éditeur de texte. Celui-ci a les fonctionnalités usuelles de
copier/coller et de rechercher/remplacer le texte.

La zone de messages donne 1'état de l'opération en cours lors des sauvegardes, des
exportation et affiche également les erreurs.

La console texte affiche les messages produit par le logiciel Arduino incluant des messages
d'erreur détaillés et autres informations utiles.

La barre de boutons vous permet de vérifier la syntaxe et de transférer les croquis, créer,
ouvrir et sauver votre code, et ouvrir le moniteur série.

La barre des menus vous permet d'accéder a toutes les fonctionnalités du logiciel Arduino.

Le logiciel Arduino intégre le concept d'un « carnet de croquis » : un endroit réservé pour stocker
vos programmes. Les programmes que vous mettez dans votre « carnet de croquis » pourront étre
ouvert directement depuis le menu « Fichier > Carnet de croquis » ou a l'aide du bouton « Ouvrir »
dans la barre d'outils (4™ bouton depuis la gauche).

La premicre fois que vous démarrer le logiciel Arduino, un chemin automatique sera créé pour
votre carnet de croquis. Vous pouvez voir ou modifier cette localisation depuis le « Fichier >
Préférences ». Si votre logiciel Arduino se trouve sur une clé¢ USB, il est recommandé de créer un
dossier « croquis » sur votre clé USB aussi.

14-3 avril 2013

Les ports d'entrée-
sortie sont des
¢éléments matériels
de I'ordinateur,
permettant au
systeme de
communiquer avec
des éléments
extérieurs, c'est-a-
dire d'échanger des
données. Le terme
seérie désigne un
envoi de données
via un fil unique :
les bits sont
envoyés les uns a la
suite des autres.

Didier Miiller

Robotique

14.2.2. Prise en main (sous Windows 7)

1.

Connecter le robot

Avant de lancer le programme Arduino, connectez le robot avec le cable USB fourni (s'il était
connecté, déconnectez et rebranchez).

Lancez le logiciel Arduino. Une fenétre apparait.
Dans le menu Outils, choisissez la carte « Arduino Nano w/ATmega328 ».

sketch_marta | Arcuin 10,3 W e = e
Fichier Edition Croquis Aide

Formatage automatigue Ctrl+T

Archiver le croquis

sketch_mar09a Réparer encodage & recharger

Maniteur série Ctrl +Maj+M
Type de carte 3 Arduino Una
Port série i Arduino Duemilanove w/ ATmega328
Arduino Diecimila or Duemilanove w/ ATmegaléd
Programmateur 3

@ Arduino Mano w/ATmega328
Arduino Mano w/ ATmegal68
Arduino Mega 2560 or Mega ADK
Arduino Mega (ATmegal280)

Arduino Leonardo

Graver la séquence d'initialisation

Arduino Esplora

Arduino Micro

Arduino Mini w/ ATmega328
Arduino Mini w/ ATmegal6s
Arduino Ethernet

Arduino Fio

Arduino BT w/ ATmega328

Arduino BT w/ ATmegal68

LilyPad Arduino USB

LilyPad Arduino w/ ATmega328

LilyPad Arduino w/ ATmegalfs

Arduino Pro or Pro Mini (5, 16 MHz) w/ ATmega328
Arduino Pro or Pre Mini (5V, 16 MHz) w/ ATmegal68
Arduino Pro ar Pro Mini (3.3V, 8 MHz) w/ ATmega328
Arduino Pro or Pra Mini (3.3V, 8 MHz) w/ ATmega168
Arduino NG or olderw, ATmegalfd

Arduino NG or olderw/ ATmega8

11 faut ensuite choisir le port série.
11 est possible que la premiére fois, on ne puisse pas choisir ou changer le port série (comme c'est
le cas sur I'image ci-dessus). Dans ce cas :

1.

2.

allez dans le menu « Démarrer » de Windows 7 et choisissez « Périphériques et
imprimantes ». Il apparaitra un périphérique nommé « FT232R USB UART ».
double-cliquez sur l'icone du périphérique

14-4

avril 2013

L'informatique au lycée Chapitre 14

Didier Miiller

choisissez l'onglet « Matériel »

double-cliquez sur le nom FT232R USB UART ; une nouvelle fenétre s'ouvre
choisissez l'onglet « Pilote »

cliquez sur « Mettre a jour le pilote »

il faudra installer le pilote qui est dans le dossier Arduino sous « Drivers » puis « FTDI
USB Drivers ».

Nk w

Une fois le pilote installé, retournez dans le logiciel Arduino pour choisir le port série.
Normalement, il faut choisir le plus grand numéro (p.ex. COMS5).

2. Saisir le programme et vérifier le code

On suppose ici qu'un programme correctement écrit se trouve dans la fenétre éditeur. Pour votre
premiére programmation de la carte, allez dans le menu «Fichier > Exemples > 02.Digital >
BlinkWithoutDelay »: un programme s'ouvre avec du code dans la fenétre éditeur.

Appuyez alors sur le bouton « Vérifier » de la barre d'outils pour lancer la vérification du code.

Si tout va bien, aucun message d'erreur ne doit apparaitre dans la console et la zone de message
doit afficher « Done Compiling » attestant que la vérification s'est bien déroulée.

3. Transférer le programme sur la carte

Cliquez sur le bouton « Téléverser » dans la barre d'outils, ou bien sélectionnez le menu « Fichier
> Téléverser ». La carte Diduino va alors automatiquement se réinitialiser et démarrer le transfert. Si
elle ne se réinitialise pas toute seule, pressez le bouton Reset sur la carte Diduino.

LED de la pin 13

Bouton Reset

4. Voir le résultat

Sur la carte Diduino, une Led est cablée sur la pin 13. Le programme que vous venez d'envoyer
va la faire clignoter avec un délai d'une seconde.

14.3. Le langage Arduino / C

Pour commencer, nous ne verrons que les instructions indispensables. D'autres instructions
apparaitront peut-étre dans les programmes et seront commentées.
Cette mini-référence a été adaptée de celle du site www.hb9afo.ch/arduino

14-5 avril 2013

http://www.hb9afo.ch/arduino

Didier Miiller

Robotique

14.3.1. setup()

La fonction setup () est appelée au démarrage du programme. Cette fonction est utilisée pour
initialiser les variables, le sens des pins, etc.. La fonction setup () n'est exécutée qu'une seule fois,
aprés chaque mise sous tension ou reset (réinitialisation) de la carte Arduino.

La fonction setup (), méme vide, est obligatoire dans tout programme Arduino.

Exemple

int buttonPin = 3; // déclaration d'une variable globale

void setup() // fonction setup - début de 1'exécution du programme
{

Serial.begin(9600) ;

pinMode (buttonPin, INPUT) ;
}

void loop() // fonction loop - est exécutée en boucle
// une fois que la fonction setup a été exécutée
{
// ...
}

14.3.2. loop()

Apres avoir créé une fonction setup (), qui initialise et fixe les valeurs de démarrage du
programme, la fonction loop () s'exécute en boucle sans fin, permettant & votre programme de
s'exécuter et de répondre. Utilisez cette fonction pour contrdler activement la carte Arduino.

La fonction loop () est obligatoire, méme vide, dans tout programme.

Exemple

int buttonPin = 3;

// la fonction setup initialise la communication série
// et une pin utilisée avec un bouton poussoir

void setup ()

{
Serial .begin(9600) ;
pinMode (buttonPin, INPUT) ;
}

// la fonction loop teste 1'état du bouton & chaque passage
// et envoie au PC une lettre H si il est appuyé, L sinon.

void loop ()
{
if (digitalRead (buttonPin) == HIGH)
Serial.write('H');
else
Serial.write('L'");

delay (1000) ;

14.3.3. ;

Le point-virgule est obligatoire a la fin d'une instruction.
Oublier le point virgule en fin de ligne donnera une erreur de compilation. Le texte d'erreur
pourra étre évident, et se référer a un point-virgule oublié, mais parfois cela sera moins évident. Si

14-6 avril 2013

L'informatique au lycée Chapitre 14

une erreur de compilation incompréhensible et apparemment illogique survient, la premicre chose a
vérifier est 'oubli d'un point-virgule juste avant la ligne que le compilateur déclare erronée.

1434. §

Les accolades sont un élément majeur de la programmation en C. Elles sont utilisées dans
plusieurs constructions différentes :

Fonctions

void myfunction (datatype argument) {
// vos instructions ici

}
Boucles

while (boolean expression)

{

// vos instructions ici

}

do
{

// vos instructions ici
} while (boolean expression) ;

for (initialisation; termination condition; incrementing expr)
{

// vos instructions ici
}

Conditions

if (boolean expression)

{

// vos instructions ici
}
else if (boolean expression)
{

// vos instructions ici
}
else
{

// vos instructions ici
}

14.3.5. Commentaires

Les commentaires ont pour seul but de vous aider & vous rappeler comment votre programme
fonctionne et en informer les autres. Il y a deux fagons de créer des lignes de commentaires :

// Commentaire sur une seule ligne

/* Commentaire sur plusieurs lignes
Tout ce texte
est ignoré par le compilateur */

Didier Miiller 14-7 avril 2013

Didier Miiller

Robotique

14.3.6. Opérateurs arithmétiques

o N

~.

NP X
| TR I |
HU X
N O 1+
VoW

; // division entiére si r est un entier

* 1l faut savoir que les constantes entiéres sont par défaut de type int (voir §3.7.1), et des
lors certains calcul entre constantes peuvent déborder (p. ex. 60*1000 donnera un résultat
négatif).

e Choisir des tailles de variables assez grandes pour permettre de stocker les plus grands
résultats issus des calculs.

* Savoir a quel moment votre variable débordera et ce qui se passe dans chaque sens du
débordement.

* Pour les mathématiques qui nécessitent des décimales ou des fractions, utiliser les variables
de type float, mais rester conscient de leurs inconvénients : large taille de mémoire,
vitesse d'exécution des calculs plus lente.

» Utiliser un opérateur de conversion de type, par exemple int (myFloat), pour convertir
une variable d'un type en un autre type « a la volée ».

14.3.7. Types de données

14.3.7.1. int

int ledPin = 13;

Déclare une variable de type int (pour integer, entier en anglais). Les variables de type int sont
le type de base pour le stockage de nombres, et ces variables stockent une valeur sur 2 octets. Elles
peuvent donc stocker des valeurs allant de —32768 a 32767. Quand les variables dépassent la valeur
maximale de leur capacité, elles « débordent » et reviennent a leur valeur minimale, et ceci
fonctionne dans les 2 sens.

Exemple

int x
x = -32768;
x = x-1;
x = 32767;
x = x+1;

143.7.2. byte
byte b = 128;

Déclare une variable de type octet (8 bits) qui stocke un nombre entier non signé, soit une valeur
de 0 a255.

14.3.7.3. float

float ledPin = 1.117;

Déclare des variables de type « virgule-flottante », c'est-a-dire des nombres a virgule. Les
nombres a virgule ainsi stockés peuvent prendre des valeurs aussi élevées que 3.4028235E+38 et
aussi basse que —3.4028235E+38. Ils sont stockés sur 4 octets (32 bits) de mémoire.

Les variables float ont seulement 6 a 7 chiffres de précision. Ceci concerne le nombre total de
chiffres, pas seulement le nombre a droite de la virgule.

14-8 avril 2013

L'informatique au lycée Chapitre 14

Didier Miiller

14.3.7 4. void

Le mot-clé void est utilis¢ uniquement pour les déclarations de fonctions. Il indique au
compilateur que 1'on s'attend a ce que la fonction ne retourne aucune donnée.

14.3.8. Entrées/Sorties numériques

14.3.8.1. pinMode()

Configure la pin spécifiée pour qu'elle se comporte soit en entrée, soit en sortie.

Syntaxe
pinMode (pin,mode)
Parameétres

* pin: le numéro de la pin de la carte Arduino dont le mode de fonctionnement (entrée ou
sortie) doit étre défini.

* mode : soit INPUT (entrée en anglais) ou OUTPUT (sortie)

14.3.8.2. digitalWrite()

Met un niveau logique HIGH ou LOW sur une pin numérique. Si la pin a été configurée en SORTIE
avec l'instruction pinMode (), sa tension est mise a la valeur correspondante : 5 V pour le niveau
HAUT, 0 V pour le niveau BAS.

Syntaxe
digitalWrite (pin,valeur)
Paramétres

* pin: le numéro de la pin de la carte Arduino
* valeur : HIGH ou LOW (ou bien 1 ou 0)

Exemple
int ledPin = 13; // LED connectée a la pin numérique 13
void setup()
{
pinMode (ledPin, OUTPUT) ; // met la pin numérique en sortie
}
void loop()
{
digitalWrite (ledPin, HIGH) ; // allume la LED
delay (1000) ; // attend une seconde
digitalWrite (ledPin, LOW) ; // éteint la LED
delay (1000) ; // attend une seconde
}

14.3.8.3. digitalRead()

Lit 1'état (= le niveau logique) d'une pin précise en entrée numérique, et renvoie la valeur HIGH
ou LOW.

14-9 avril 2013

Didier Miiller

Robotique

Syntaxe
digitalRead (pin)

Parameétre
* pin: le numéro de la pin numérique que vous voulez lire (int).

Exemple

int ledPin = 13; // LED connectée & la pin n°13

int inPin = 7; // un bouton poussoir connecté a la pin 7
// avec une résistance de pulldown
int val = 0; // variable pour mémoriser la valeur lue

void setup()

{
pinMode (ledPin, OUTPUT) ; // configure la pin 13 en SORTIE
pinMode (inPin, INPUT) ; // configure la pin 7 en ENTREE
digitalWrite (inPin, HIGH); // écrit HIGH sur la pin en entrée

}

void loop()
{

val = digitalRead(inPin) ; // lit 1l'état de la pin en entrée
// et met le résultat dans la variable
digitalWrite(ledPin, wval); // met la LED dans 1'état du BP

// (cad allumée si appuyé et inversement)

Dans ce programme, la pin 13 refléte fidélement I'état de la pin 7 qui est une entrée numérique.

14.4. Testez vos réflexes !

Avant de faire rouler le robot, amusons-nous un peu avec un montage simple, histoire de se
familiariser avec le bloc d’expérimentation, les résistances et le moniteur série.

e

Dans un bloc d’expérimentation, les rangées
de 5 trous sont connectées entre elles par un
ressort.

Sur la carte Diduino, les 2 groupes de
connecteurs rouges sont reliés au +5V, Les 2 g
groupes a 4 pins au bas sont a la référence 0V
(noté souvent Gnd pour « ground », « masse »,
« retour de courant »)

Dans le haut de la carte, on a les 16
connexions vers le processeur, comme sur toutes
les cartes Arduino. 11 ne faut pas utiliser les deux
pins de chaque extrémité. Il nous reste 12 entrées
ou sorties, numérotées de 2 a 13.

La pinl3 est reliée a une Led sur la carte.

Sur le bloc d’expérimentation, on peut
brancher des poussoirs ou interrupteurs dont | =
I'état enclenché/déclenché sera lu par le |
processeur sous forme d'une tension OV/5V et
permettra de prendre des décisions. , g B3 88

On va aussi brancher des Leds qui seront &
alimentées par le processeur : si la sortie est au

e
T
‘T iy
‘T r e
ey
e
e
e
e
e ww
' 2 58
e
-
e
-
-

|

e
'TLLr
e
'Ti iy
'Tir L
'Ti i L
'EiE L
'Tii L
R
‘e
EEEEw
e
e
- ww U
-
'L iEE
-

i

14-10 avril 2013

L'informatique au lycée Chapitre 14

+5V, le courant va allumer la Led.

La résistance limite le courant. 1 kQ donne naturellement plus de luminosité que 10 kQ. Ne pas
mettre de résistance est dangereux : la diode sature, le transistor dans le processeur chauffe et finit
par se détruire — a éviter comme toutes les connexions directes entre une pin du processeur et le +5V
ou la masse. Ou entre le + et le —, qui va détruire le circuit de sortie USB dans le PC.

Débranchez le cable USB pendant que vous céblez.

Premiére étape : cablez une Led sur la pin D12 a un et un poussoir sur la pin D11, selon la photo
ci-dessous :

La résistance sur la pin 12 est de 1 kQ (brun-noir-rouge-dor¢), celle sur la pin 11 de 22 kQ
(rouge-rouge-orange-doré). Vous trouverez sur le site web compagnon un outil pour reconnaitre les
résistances d'apres les couleurs des bandes.

Le tige la plus longue de la Led (le +) doit se trouver du coté de la résistance.
Seconde étape : téléchargez le programme ci-dessous.

#define Led 12
#define Poussoir 11

ARDUINO int ent=0;

reflexes int alea;

void setup()
{
pinMode (Led, OUTPUT) ;
pinMode (Poussoir, INPUT) ;
Serial.begin(9600) ;
Serial.println("Pressez quand la Led s'allume");

}

void loop()
{
alea = random (1000, 5000) ;
delay (alea) ; // on attend un temps aléatoire 1-5 sec
digitalWrite (Led, HIGH) ; // allume la led
cnt = 0; // le compteur démarre
while (digitalRead (Poussoir) == HIGH)
{
delay(10) ;
cnt++ ;

Didier Miiller 14-11 avril 2013

Didier Miiller

digitalWrite (Led,LOW);

Robotique

// éteint la led

Serial.print(cnt) ;
Serial.println(" centiemes") ;

}

Déroulement du programme

1.

>

14.5.

La Led s'allume.

Un compteur de centiemes de secondes se met en route et ne s'arrétera que lorsque 1'on aura
appuyé¢ sur le bouton poussoir.

Quand le bouton poussoir est pressé, la Led s'éteint.

Le temps de réaction sera affiché sur le « serial monitor ».

On retourne au point 1.

Controler les moteurs des roues

Remarques préliminaires importantes

1.

2.

Le moteur droit utilise les pattes 4 et 5, tandis que le moteur gauche utilise les pattes 6 et 7.

Pour éviter que votre robot bouge lors de vos essais, mettez-le hors tension ! Il sera alimenté
par le cable USB.

Il est recommandé de faire un reset hardware (bouton sur le Diduino) avant chaque
téléversement.

Pour éviter d'endommager le robot, faites vos essais sous tension sur le sol.

LED moteur droit Mise sous tension

Bouton Reset

LED moteur gauche

Patte 4 Action Patte 5 Vitesse min Vitesse max
0 Avance PWM 255 0
1 Recule PWM 0 255
Patte 7 Action Patte 6 Vitesse min Vitesse max
0 Avance PWM 0 255
1 Recule PWM 255 0

14-12

L'informatique au lycée Chapitre 14

PWM signifie Pulse Width Modulation. Il est trés souvent nécessaire de faire varier la
puissance transmise a une charge. Par exemple, l'intensité d'une lampe doit varier ou la vitesse d'un
moteur doit étre réglée. La premicre idée qui vient a 'esprit est de faire varier la tension ou le courant
dans la charge. Mais il faut pour cela des circuits électronique complexes. Il est généralement
beaucoup plus simple d'alterner des instants ou la puissance maximale est transmise a la charge avec
des moments ou aucune puissance n'est transmise. La technique la plus utilisée est la Modulation de
Largeur d'Impulsion (MLI) ou Pulse Width Modulation (PWM) en anglais.

Pulse Width Modulation

0% Duty Cycle - analogWrite(Q)
Sv ‘

Sv |—|
Ov

25% Duty Cycle - analogWrite(64)

50% Duty Cycle - analogWrite(127)

75% Duty Cyde analcgwme(lgl
Sv i
M
J.OO% Duty Cvcle ana\ogwme 255
Sv ‘ ‘

Pour envoyer des signaux PWM sur le Diduino-Robot, on utilise 'instruction :
analogWrite (patte, pwm val);

La valeur pwm_val est comprise entre 0 (qui correspond a 0%) et 255 (qui correspond a 100%).

ov

Quand les moteurs ne sont pas alimentés (interrupteur sur OFF), ce sont des LEDs qui indiquent
leur état (vert : avance, rouge : recule).

Analysez le programme suivant sans le charger sur le robot. Que fait-il, pensez-vous ?

// Moteur droit

int M1 = 5;

int E1 = 4;

// Moteur gauche

int E2 = 7;

int M2 = 6;
O@ vt rmva-o
ARDUINO void setup()

{

moteurs ;
pinMode (M1, OUTPUT) ;

pinMode (M2, OUTPUT) ;

pinMode (E1, OUTPUT) ;

pinMode (E2, OUTPUT) ;
}

void loop()
{

// Moteur droit en mode avance (LED verte s'allume)
digitalWrite (M1, HIGH) ;

analogWrite (El, 0); // 0: puissance max (en mode avance)
// Moteur gauche en mode avance (LED verte s'allume)
digitalWrite (M2, HIGH) ;

analogWrite(E2, 0); // 0 : puissance max (en mode avance)

delay (200) ;

// Moteur droit en mode avance (LED verte s'allume)

Didier Miiller 14-13 avril 2013

ARDUINO

acceleration

Didier Miiller

Robotique

digitalWrite (M1, HIGH) ;

analogWrite (E1, 255); // 255: puissance min (en mode avance)
// Moteur gauche en mode avance (LED verte s'allume)
digitalWrite (M2, HIGH) ;

analogWrite (E2, 255); // 255 : puissance min (en mode avance)

delay (1000) ;

Maintenant que vous savez faire tourner les moteurs dans les deux sens, vous é&tes capable de
faire avancer votre robot.

Exercice 14.1

Ecrivez un programme qui fait tourner les deux moteurs en méme temps : d'abord en avant
pendant 0.5 seconde, puis s'arréter 1 seconde, puis en arriére pendant 0.5 seconde, puis s'arréter 1
seconde, etc..

Exercice 14.2

Ecrivez un programme qui fera tourner un moteur dans le sens des aiguilles d'une montre et
l'autre moteur dans le sens inverse. Que se passe-t-il ?

14.6. Déplacement du robot

Démarrer les moteurs a pleine vitesse n'est pas trés bon pour le mécanisme. Il est préférable
d'accélérer et de décélérer progressivement. Le programme ci-dessous montre comment.

int M1
int E1
int E2
int M2

’

’

’

[l
S oo

byte pwm val = 0;
void setup() {

pinMode (M1, OUTPUT) ;
pinMode (M2, OUTPUT) ;
pinMode (E1, OUTPUT) ;
pinMode (E2, OUTPUT) ;

// Acceleration
// Moteur gauche en mode avance (LED verte s'allume)
for (pwm_val=0; pwm_val<255; pwm val++) {
// Moteur en mode avance (LED verte s'allume)
digitalWrite (M1, LOW) ;
analogWrite (E1l, pwm_val) ;
delay(10) ;
}

// Deceleration
// Moteur gauche en mode avance (LED verte s'allume)
for (pwm_val=255; pwm val>0; pwm val--) {
// Moteur en mode avance (LED verte s'allume)
digitalWrite (M1, LOW) ;
analogWrite (El, pwm val);
delay (10) ;

14-14 avril 2013

L'informatique au lycée Chapitre 14

void loop() {
}

14.6.1. Ecrire des fonctions pour les déplacements

Une fonction est définie par void (pour le moment) puis le nom de la fonction suivi de (). Le
code exécuté lorsque 1'on appelle la fonction se trouve entre les accolades : { code }.

Pour appeler la fonction, on place tout simplement le nom de la fonction suivi de (); a I'endroit ou
l'on veut qu'elle soit exécutée.

Voici un exemple avec les fonctions avance, tournerDroite (tourner a droite d'environ 90°),
tournerGauche (tourner & gauche d'environ 90°) et recule. A noter qu'il n'est pas possible de faire
tourner le robot d'exactement 90° : il vous faudra ajuster le temps pour votre robot pour les fonctions
tournerGauche €t tournerDroite.

int M1
int E1
int E2
int M2

’

’

’

ARDUINO

I
S oo

deplacements
byte pwm val = 0;

void tourneDroite() {
// Moteur gauche en mode avance (LED verte s'allume)
pwm _val = 255; // Vitesse max
digitalWrite (M1, LOW) ;
analogWrite (E1l, pwm_val) ;

// Moteur droite en mode recule (LED rouge s'allume)
pwm val = 0; // Vitesse max

digitalWrite (M2, HIGH) ;

analogWrite (E2, pwm_val) ;

delay (1000) ;

// Moteur gauche a l'arrét (LED verte s'éteint)
pwm_val = 0;

digitalWrite (M1, LOW) ;

analogWrite (El, pwm_val);

// Moteur droite a 1'arrét (LED rouge s'éteint)
pwm val = 0;
digitalWrite (M2, LOW) ;
analogWrite (E2, pwm_val) ;
}

void tourneGauche () {
// Moteur gauche en mode recule (LED rouge s'allume)
pwm val = 0; // Vitesse max
digitalWrite (M1, HIGH) ;
analogWrite (E1l, pwm_val) ;

// Moteur droite en mode avance (LED verte s'allume)
pwm val = 255; // Vitesse max

digitalWrite (M2, LOW) ;

analogWrite (E2, pwm_val) ;

delay (1000) ;
// Moteur gauche a l'arrét (LED rouge s'éteint)
pwm_val = 0;

digitalWrite (M1, LOW) ;
analogWrite (El, pwm_val) ;

Didier Miiller 14-15 avril 2013

Didier Miiller

}

Robotique

// Moteur droite a 1'arrét (LED
pwm_val = 0;

digitalWrite (M2, LOW) ;
analogWrite (E2, pwm val) ;

void avance () {

}

// Moteur gauche en mode recule
pwm _val = 255; // Vitesse max
digitalWrite (M1, LOW) ;
analogWrite (E1l, pwm_val) ;

// Moteur droite en mode recule
pwm_val = 255; // Vitesse max
digitalWrite (M2, LOW) ;
analogWrite (E2, pwm val) ;

delay (1000) ;

// Moteur gauche a 1'arrét (LED
pwm_val = 0;

digitalWrite (M1, LOW) ;
analogWrite (E1l, pwm_val) ;

// Moteur droite a 1'arrét (LED
pwm_val = 0;

digitalWrite (M2, LOW) ;
analogWrite (E2, pwm val) ;

void recule() {

}

// Moteur gauche en mode avance
pwm val = 0; // Vitesse max
digitalWrite (M1, HIGH) ;
analogWrite (E1l, pwm_val) ;

// Moteur droite en mode avance
pwm _val = 0; // Vitesse max
digitalWrite (M2, HIGH) ;
analogWrite (E2, pwm val) ;

delay (1000) ;

// Moteur gauche a 1'arrét (LED
pwm_val = 0;

digitalWrite (M1, LOW) ;
analogWrite (E1l, pwm_val) ;

// Moteur droite a 1'arrét (LED
pwm_val = 0;

digitalWrite (M2, LOW) ;
analogWrite (E2, pwm val) ;

void setup()

{

}

pinMode (M1, OUTPUT) ;
pinMode (M2, OUTPUT) ;
pinMode (E1, OUTPUT) ;
pinMode (E2, OUTPUT) ;

void loop()

{

14-16

verte s'éteint)

(LED verte s'allume)

(LED verte s'allume)

verte s'éteint)

verte s'éteint)

(LED rouge s'allume)

(LED rouge s'allume)

rouge s'éteint)

rouge s'éteint)

avril 2013

L'informatique au lycée Chapitre 14

avance () ;
tourneDroite() ;
recule () ;
tourneGauche () ;

o Exercice 14.3

's?‘!\-; ' Ecrivez un fonction unique a deux paramétres bouge (int md, int mg) qui permettra de faire

W_’w tous les mouvements possibles (avancer et reculer a la vitesse voulue, prendre un virage plus ou
moins serré a gauche ou a droite, pivoter sur place). Les paramétres md et mg seront les vitesses
signées des moteurs gauches et droits, allant de —255 a +255.

Exercice 14.4

<, b a. Ecrivez un programme qui fera parcourir au robot un chemin en forme de carré.

?;_ y . b. Ecrivez un programme qui fera parcourir au robot un chemin en forme de 8.
- Pour cela, utilisez votre fonction bouge de I'exercice 14.3.

14.77. Détecter les obstacles avec les moustaches

Le robot est équipé de moustaches a I'avant pour détecter les obstacles.

Les moustaches sont reliées au pattes 16 (moustache droite) et 17 (moustache gauche). Elles
fonctionnent comme des interrupteurs.

Quand les moustaches ne sont pas en contact, la valeur que I'on peut lire sur analogRead(16/17);
sera 1. Quand il y a contact, la valeur que 1'on peut lire suranalogRead(16/17); sera 0.

// Utilisation des moustaches
ARDUINO void setup()

moustacheG pinMode (17, INPUT) ;
Serial .begin(9600) ;
}

int moustacheG;

void loop()

{
moustacheG = digitalRead(17) ;
Serial.print ("Moustache gauche: ") ;
Serial.print (moustachegG) ;
Serial.print("\n");
delay (200) ;

Téléversez ce programme sur votre robot, puis observez sur le moniteur série comment évolue la
valeur moustachegG.

o Exercice 14.5

g b Modifiez le code pour que l'information pour la moustache droite soient aussi affichée.

[Ve On a déja vu qu'une LED soudée sur le robot est branchée sur la pin 13. Modifiez le code pour
que cette LED s'allume a chaque fois qu'une moustache est en contact.

Didier Miiller 14-17 avril 2013

Robotique

Le piezo

Nous allons maintenant utiliser un piezo, sorte de petit haut-parleur que nous ferons sonner a
chaque fois que les moustaches entreront en contact. Le piezo doit étre monté dans le bon sens : le —
sur Vss et le + sur D4.

P4 D

Le piezo émet du son lorsque 1'on le fait vibrer, c'est-a-dire lorsque l'on alterne de trés courtes
durées ou le piezo est alimenté et ou il ne 1'est pas.
Essayez ce programme:

// Piezo
#define Piezo 4
ARDUINO
. void setup() {
piezo pinMode (Piezo, OUTPUT) ;
}
void loop() {

digitalWrite (Piezo, HIGH) ;

delayMicroseconds (300) ;

digitalWrite (Piezo, LOW) ;

delayMicroseconds (300) ;

}

Que se passe-t-il ? Changez maintenant la valeur du délai: 2000, 3000, 4000, 5000. Que se passe-
t-il quand le valeur augmente ?

Notez au passage la ligne #define Piezo 4;. Cela permet d'associer a un label une valeur que
l'on peut utiliser dans le code. A chaque fois que Piezo est rencontré dans le code, il est remplacé
par la valeur 4, patte ou est connecté le piezo. Si on change le Piezo de place, il suffit de changer la
ligne #define Piezo 4; et toutle code sera automatiquement a jour.

11 est évidemment possible de faire de la « musique » avec le piezo :

#define Piezo 4
// Fréquence des notes
ARDUINO #define c_ 3830 // 261 Hz
musique #define d_ 3400 // 294 Hz
#define e_ 3038 // 329 Hz
##define £ 2864 // 349 Hz
#define g_ 2550 // 392 Hz
#define a_ 2272 // 440 Hz
#define b_ 2028 // 493 Hz
#define C_ 1912 // 523 Hz

// Longueur des notes
#define longueurNote 16

Didier Miiller 14-18 avril 2013

L'informatique au lycée Chapitre 14

#define pause 16
int i;

void joueNote(int note, int duree) {
for (i=0; i<duree*longueurNote; i++) {
digitalWrite (Piezo, HIGH) ;
delayMicroseconds (note) ;
digitalWrite (Piezo, LOW) ;
delayMicroseconds (note) ;

}

for (i=0; i<pause; i++) {
delayMicroseconds (0) ;
}
}

void setup() {
pinMode (Piezo, OUTPUT) ;
}

void loop() {
joueNote(g_,1);
joueNote(g_,1);
joueNote(g_,1);
joueNote(a_,1);
joueNote (b_,2);
joueNote (a_,2);
joueNote(g_,1);
joueNote (b_,1);
joueNote(a_,1);
joueNote(a_,1);
joueNote(g_,3);

o Exercice 14.6

‘:ﬁ;. \ Le piezo est relié¢ a la pin D4. Nous avons vu ci-dessus comment faire sonner le piezo.

z 7 En utilisant l'instruction if ... else, modifiez votre code et faites sonner le piezo quand les
i moustaches sont en contact. Vous pourrez jouer un son différent pour la moustache gauche et la

moustache droite.

wo Exercice 14.7 : Naviguer avec les moustaches

1-‘:!.-._ . Complétez le programme ci-dessous. Le but est que votre robot puisse se déplacer dans un

K . environnement avec des obstacles en réagissant en cas de contact avec les moustaches.

[Reprenez votre fonction bouge de l'exercice 14.4.

#define patteMoustacheG 17
#define patteMoustacheD 16

void setup()

ARDUINO pinMode (patteMoustacheD, INPUT) ;
naviguer pinMode (patteMoustacheG, INPUT) ;
Serial.begin(9600) ;

}

void loop() {
// Les deux moustaches sont en contact

Didier Miiller 14-19 avril 2013

Didier Miiller

Robotique

if (analogRead (patteMoustacheD)==0 && analogRead (patteMoustacheG)==0) {
// action ?

// La moustache gauche est en contact
} else if (analogRead (patteMoustacheG)==0) {
// action ?

// La moustache droite est en contact
} else if (analogRead (patteMoustacheD)==0) {
// action ?

// Pas de contact
} else {
// action ?

14.8. La course

Nous avons maintenant tout ce qu'il faut pour nous amuser un peu. Nous allons faire une course
d'obstacles avec nos robots.

Durant les qualifications, les robots seront chronométrés individuellement.

Ensuite, deux robots s'affronteront simultanément sur le méme parcours (ce qui veut dire qu'il
pourra y avoir des collisions entre robots). Les couples seront formés selon les résultats des
qualifications (le premier avec le dernier, le deuxiéme avec l'avant-dernier, etc.). Le perdant sera a
chaque fois éliminé. Il y aura des Y de finales, des % finales et la grande finale.

11 vous faudra donc programmer votre robot pour que :
e il aille toujours dans le bon sens de la course ;
» il sache quoi faire quand il touchera un obstacle ou un autre robot ;
* il ne reste pas coincé dans un obstacle.

Vous aurez connaissance du parcours deux heures avant la course et vous pourrez faire des essais.
Il sera possible d'utiliser un programme pour les qualifications et un autre pour les duels.

Que le meilleur gagne !

14-20 avril 2013

