Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Manual02/fr

De FreeCAD Documentation

Manuel

de

FreeCAD

1 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Ceci est le Manuel de FreeCAD. Il comprend les parties
essentielles de la Page de garde de la documentation wiki.
Cette page est spécialement destinée a l'impression, comme un

gros document, donc, si vous lisez ceci en ligne, vous pourrez

préférer aller directement a la version Aide en ligne, qui est
plus facile a parcourir.

2 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Scripts et macros

3 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Macros

4 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Une macro est un moyen pratique et facile de créer une série de
commandes dans FreeCad.

I1 suffit d'enregistrer la série de commandes que vous faites, puis
de sauver cet enregistrement sur disque en lui donnant un nom.
Une fois cet enregistrement (macro) sauvé, vous pourrez
I'exécuter autant de fois que vous le voulez.

Ces macros sont en réalité une liste de commandes écrites en
langage python (http://fr.wikipedia.org/wiki/Python (langage)),
vous pouvez également les modifier, et créer des scripts tres
complexes.

Fonctionnement

Si vous cochez dans menu Edition - Préférences —» Général -
Macro -» Montrer les commandes du script dans la console
Python , vous verrez dans la fenétre " Console Python " que
chaque action que vous exécutez s'affiche, par exemple en
appuyant sur " Afficher la vue de face ", il s'affiche dans la
console Gui.activeDocument().activeView().viewFront() qui
est le code python correspondant.

Toutes ces commandes peuvent étre enregistrées dans une
macro.

Les commandes, qui servent a faire les macros, se trouvent sur la
barre d'outils des macros : | @ -

Sur la barre d'outils, il y a 4 boutons: | ¢ enregistrement |,
arrét de l'enregistrement , | = édition de la macro | et,
exécuter la macro|.

I1 est extrémement facile d'utiliser ces commandes : des que vous
appuyez sur le bouton d'enregistrement, il vous est demandé de
donner un nom a la macro, éventuellement, donnez
I'emplacement ou placer le fichier. Une fois que la macro est
terminée, cliquez sur le bouton | = stop|, et, toutes les actions que
vous avez effectuées sont enregistrée. Pour exécuter la macro,
cliquer sur le bouton d'| = édition | et la boite de dialogue Lancer

5 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

http://www.freecadweb.org/wiki/index.php?title=...

la macro s'affiche.

’
& Execute macro

Macro name:

Execute

Close

ttest.FCMacro

test2.FCMacro

Create

Delete

Edit

i

Macro destination:

C:/Program Files/FreeCAD0.7

L]

Vous pouvez ici gérer les macros enregistrées, lancer, créer,
supprimer ou éditer une macro. L'édition ou la création d'une
macro ouvre une nouvelle fenétre dans FreeCad et vous pouvez
ainsi créer ou modifier le code de la macro éditée.

Exemple

Cliquez sur le bouton d' « Enregistrement|, donnez un nom a la
macro par exemple "cylinder 10x10" puis dans l'atelier Part,
créez un cylindre de rayon = 10 et hauteur = 10. Puis cliquer sur

le bouton

Stop

pour arréter la macro. Dans la fenétre

d'édition de la macro vous pouvez voir le code en langage python
qui a été enregistré et si vous le désirez, en modifier le code.
Exécutez votre macro simplement en cliquant sur le bouton [

Exécuter la macro dans 1'éditeur|. La macro éditée ou la nouvelle

macro est toujours sauvegardée lors de 1'exécution, de maniere a
ne pas perdre les modifications apportées, les macros créées sont
toujours accessibles a chaque nouvelle ouverture de FreeCad.

Personnalisation

6 sur 246

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Bien sir, il n'est pas pratique de charger une macro dans
'éditeur en vue de l'exécuter. FreeCad fournit d'autres moyens
pour exécuter votre macro, vous pouvez assigner un raccourci
clavier a chaque macro ou créer un bouton de lancement sur la
barre de menus. Une fois votre macro créée, ces raccourcis
peuvent étre crées par Outils —» personnaliser - Macros

. S
K- Customze LT Sy
Commands Keyboard Toobars [Toolbox bars Maxros
Setp Custom Madros
Maoro: cyinder FOMacro v
Mery) text:
Jool tp:
Stabus text:
What's this:
Accelerator: none
Pxmap
Add Remove Replace
Help Cose

Customize ToolsBar This way you can make your macro become a
real tool, just like any standard FreeCAD tool. This, added to the
power of python scripting within FreeCAD, makes it possible to
easily add your own tools to the interface. Read on to the
Scripting page if you want to know more about python scripting...

Création de macros sans enregistrement

I1 est aussi possible d’insérer le code python d'une macro avec
copier/coller sans enregistrement d'actions dans l'interface
graphique. Créer simplement le code python de la macro,
éditez-le, copiez-le et collez votre code directement dans 1'éditeur
de macros de FreeCad. Puis vous pouvez la réutiliser comme bon
vous semble et la retrouver dans le répertoire réservé aux
macros, en passant par Macro - Macros ou 1'éditeur de macros
sur la barre de menus

Référence sur les Macros

Visitez la page Recettes Macros pour charger des macros et les

7 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

ajouter a votre installation FreeCad. L'emplacement des macros
est visible en cliquant sur l'icone de 1I'éditeur de macros «
et, en bas de la boite de dialogue Destination de la macro.

< précédent: Standard Menu suivant: Introduction to Python >
Index

8 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Introduction a Python

9 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Ceci est un petit tutoriel créé pour ceux qui veulent débuter en
programmation Python (http://fr.wikipedia.org

/wiki/Python %28programming language%?29), qui est un
langage de programmation (http://fr.wikipedia.org
/wiki/Programming language) open-source et multiplate-forme.
Python a de nombreuses fonctionnalités qui le différencie des
autre langages de programmation, et est facilement accessible a
celui qui veut se lancer dans la programmation.

m J1 a été concgu spécialement pour étre facile a lire par les
étres humains, il est ainsi facile a apprendre et a comprendre

m I1 est interprété. C'est-a-dire que contrairement aux langages
compilés comme le C, votre programme n'a pas besoin d'étre
compilé pour étre exécuté. Le code que vous écrivez peut
étre directement exécuté, une ligne apres l'autre si vous le
souhaitez. Cela permet de l'apprendre et de trouver les
erreurs dans votre code facilement, parce que vous avancez
lentement, une étape apres l'autre.

m 1] peut étre intégré dans d'autres programmes comme
langage de script. FreeCAD possede un interpréteur Python
intégre, vous pouvez ainsi y écrire du code Python. Cela
permet de manipuler des éléments de FreeCAD, par exemple
de créer des objets géométriques. Il s'agit d'une fonction
extrémement puissante, parce qu'au lieu de se contenter de
cliquer sur un bouton appelé "Créer une sphere", qu'un
programmeur aurait placé la pour vous, vous avez la
possibilité de créer simplement vos propres outils pour
générer exactement les objets géométriques que vous
souhaitez.

m [I est extensible; vous pouvez simplement installer de
nouveaux modules Python et étendre ses fonctionnalités. Par
exemple, il existe un module qui permet a Python de lire et
d'écrire des images jpg, de communiquer avec twitter, de
planifier des taches exécutées pour votre systeme
d'exploitation, etc...

Et maintenant au travail ! Soyez conscient que ce qui suit est une
introduction simplifiée, et en aucun cas un tutoriel complet. Mais
nous espérons qu'apres cette lecture vous aurez acquis les bases
nécessaires pour connaitre et exploiter plus profondément les

10 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

mécanismes de FreeCad.

L'interpréteur

Habituellement, lors de 1'écriture d'un programme informatique,
il suffit d'ouvrir votre environnement de programmation préféré
qui, est dans la plupart des cas, un éditeur de texte avec
plusieurs outils autour de lui, écrire votre programme, puis le
compiler et 1'exécuter. Lorsque vous avez fait des erreurs
pendant l'écriture, votre programme ne fonctionnera pas! et vous
obtiendrez un message d'erreur vous indiquant ce qu'il s'est
passé. Ensuite, vous revenez a votre éditeur de texte, corrigez les
erreurs, exécutez a nouveau, et ainsi de suite jusqu'a ce que
votre programme fonctionne parfaitement.

En Python, tout ce processus, peut étre exécuté de maniere
transparente dans l'interpréteur Python. Linterpréteur Python est
une fenétre avec une invite de commande, vous pouvez
simplement y taper votre code Python. Si vous installez Python
sur votre ordinateur (téléchargez (http://www.python.org
/download/) le depuis le site web Python si vous étes sous
Windows ou Mac, installez le a partir des gestionnaire de
paquets, si vous étes sous GNU / Linux), vous aurez l'interpréteur
Python dans votre menu de démarrage. Mais FreeCAD dispose
également d'un interpréteur Python intégré, vous n'étes donc pas
obligé de l'installer, cet interpréteur est visible dans la fenétre
inférieure (Si vous ne voyez pas cette fenétre, cliquez sur
Affichage->Vues->Console Python). Tous ces exemples ont été
relu a partir de l'interpréteur disponible dans FreeCad.

Report view @ %
Python 2.5.1 (r251.54863, Mar 7 2008, 03.56.:44)

[GCC 4.1.3 20070929 (prerelease) (Ubuntu 4.1.2—16ubuntu2)] on linux2

Type help, copyright , credits or license for more information,

>>> Gui.activateWorkbench(“DraftWorkbench”)

>>> App.setActiveDocument(“Unnamed”)

>>> App.ActiveDocument=App.getDocument(“Unnamed”)

>>> |Gul.."-:ctiveDocument=GuI.getDocument(Unnamed”)

>>>

Output | @, Python console |

11 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

(If you don't have it, click on View — Views — Python console.)

Linterpréteur affiche la version de Python installée, puis le
symbole >>>, qui est l'invite de commande pour entrer votre
code Python. L'écriture du code dans l'interpréteur est tres
simple: une ligne, est une instruction. Lorsque vous appuyez sur
ENTREE , votre ligne de code est exécuté (apres avoir été
instantanément compilé et cela de maniere transparente pour
vous).

Par exemple, écrivez ce code:

Ici print est une commande spéciale de Python qui signifie:
affiche ce que je te demande. Lorsque vous pressez | ENTREE |,
I'opération s’exécute et le message "bonjour" s'affiche a 1'écran.
Si vous effectuez une erreur, par exemple, écrivez:

Python vous dira qu'il ne sait pas ce qu'est bonjour. Les
caracteres " (guillemets) spécifient que le contenu est une chaine
de caracteres qui doit étre affichée. Sans les " (guillemets), la
commande d'affichage de bonjour n'est pas reconnue comme du
texte, mais comme un mot-réservé spécial de Python. L'important
est, que vous obtenez immédiatement une notification d'erreur.
En appuyant sur la | fleche HautJ (ou, dans l'interpréteur
FreeCAD, | CTRL + fleche Haut |), vous pouvez revenir a la
derniere commande que vous avez écrite et la corriger.

L'interpréteur Python dispose également d'un systeme d'aide
intégré. Voulez vous taper:

ou, par exemple, nous n'avons pas compris ce qui n'allait pas
avec notre commande d'affichage "help" ci-dessus, et nous allons
demander des informations spécifiques sur la commande "print":

12 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Nous voila devant une longue description sur la commande
"print".

Maintenant, nous dominons totalement notre interpréteur, et
nous pouvons commencer a travailler sérieusement.

Les Variables

Bien siir, vous vous dites que l'affichage de "bonjour" n'est pas
tres intéressant. Il peut y avoir alors des choses plus
intéressantes comme par exemple, l'affichage de choses que vous
ne savez pas, et laisser Python trouver ces choses pour vous.
C'est la que le concept de "variable" entre en jeu. Une variable
est tout simplement une valeur que vous stockez en mémoire
avec un nom identificateur. Par exemple, tapez ceci:

Avez vous compris ce qui s'est passé ? Nous avons «sauvé» en
mémoire la chaine "bonjour" dans la variable qui porte le nom de
a. Maintenant, a n'est plus un nom inconnu ! Nous pouvons
maintenant l'utiliser n'importe ou, comme par exemple dans la
commande d'affichage a l'écran print. Nous pouvons dans Python
utiliser n'importe quel nom que nous voulons, tout en respectant
de simples regles, comme, ne pas utiliser d'espaces ou de signes
de ponctuation. Par exemple, nous pouvons écrire:

'hello = "my own version of hello"
! hello

Compris ? maintenant hello n'est plus un mot inconnu. Que faire
alors si, par inattention ou par méprise nous choisissons un nom
qui existe dans Python? Admettons que nous voulons stocker
notre chaine sous le nom de "print":

13 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Python se rend compte immeédiatement de 1'erreur et vous signale
qu'il est impossible de donner ce nom a votre variable. Il y a
quelques restrictions dans Python, les mots "réservés" ne
peuvent pas étre modifiés! Mais, nos propres variables peuvent
étre modifiées a tout moment, c'est exactement pour cela qu'elles
sont appelées variables, le contenu de la variable peut varier.
Par exemple:

:myVariable = "hello"

: myVariable
myVariable = "good bye"
I myVariable

Nous venons de changer la valeur de myVariable. Nous pouvons
également copier des variables:

Notez qu'il est judicieux de donner des noms descriptifs a vos
variables, lorsque vous écrivez un long programme, vous ne
saurez plus a quoi sert votre variable "a". Mais, si vous la
nommez, par exemple MonMessageDeBienvenue, vous vous
souviendrez facilement a quoi vous l'aviez destinée quand vous la
verrez.

Plus de renseignements sur les variables Python
(http://fr.wikibooks.org/wiki/Programmation Python/Variable)

Les Nombres

Vous savez qu'un programme informatique est utilisé pour traiter
toutes sortes de données, non seulement du texte mais aussi et
surtout des nombres. Une des choses les plus importantes dans
Python, est que Python doit savoir quel type de données seront
traitées. Nous avons vu dans notre exemple d'affichage "bonjour"
que la commande d'affichage print a reconnu «bonjour» comme

14 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

une chaine. C'est grace au (guillemets), que la commande
d'affichage print sait qu'il va traiter une chaine de caracteres
alphabétiques (du texte).

Le type de donnée contenu dans une variable peut étre connu a
n'importe quel moment grace a la commande spéciale de Python

type():

I

myVar = "hello"
itype(myVar)

I

Dans cet exemple, il s'affiche dans la console Python <type 'str'>
dans le langage informatique on dit qu'il est de type "string"
(chaine de caracteres alphabétiques). Il y a d'autres types
(http://fr.wikibooks.org/wiki/Programmation Python/Type) de
données, par exemple: les nombres entier (integer) , les
nombres a virgule flottante (float) . . .:

:firstNumber =10

isecondNumber = 20

X firstNumber + secondNumber
:type(firstNumber)

C'est déja plus intéressant, n'est-ce pas? Maintenant nous avons
une puissante calculatrice! Voyons maintenant comment elle
fonctionne. Python sait que 10 et 20 sont des nombres entiers.
Dong, ils sont stockés en mémoire sous forme "int" (integer), et
Python peut travailler avec eux comme il peut le faire avec des
nombres entiers. Regardez les résultats de ce code:

firstNumber = "10" :
isecondNumber = "20" :
| firstNumber + secondNumber :

1

Vu ? Nous avons forcé Python a considérer nos deux variables
non pas comme de simples nombres, mais comme des parties de
texte. Python peut concaténer deux parties de texte, mais il ne
cherchera pas a trouver leur somme. Nous avons parlé de
nombres entiers, il y a aussi des nombres a virgule flottante. La
différence est, que les nombres entiers n'ont pas de partie
décimale, alors que les nombres a virgule flottante peuvent avoir
une partie décimale:

15 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

13

15.65

! "varl is of type ", type(varl)
! "var2 is of type ", type(var2)

Les types entier et a virgule flottante, Int et Float peuvent
étre mélangés sans probleme:

‘total = varl + var2 :
! total :
I type(total) |

1

Naturellement, la somme comporte des décimales, vrai? Pendant
I'opération, Python automatiquement a décidé que le résultat
serait un type Float (virgule flottante). Dans certains cas comme
celui-ci, Python détermine automatiquement quel type doit étre
choisi pour un résultat. Dans d'autres cas il déclanchera une
erreur. Par exemple:

"hello 123" |
456 I
' varA + varB \

1

Dans cet exemple , varA est une chaine et varB est un int,
Python ne mélange pas les types différents et nous donnera une
erreur. Mais, nous pouvons forcer Python a mélanger des types
différents grace a la conversion:

warA = "hello" |
var = 123 |
I varA + str(varB) :

1

Maintenant, I'opération fonctionne, pourquoi ! Vous avez noté,
que nous avons converti varB en "string" au moment de
I'affichage avec la commande str(), mais nous n'avons pas
modifié le type de varB qui reste un int. Si nous voulons convertir
varB de fagon permanente en une chaine de caracteres pour les
besoins futur du programme, nous aurons besoin de faire:

Nous pouvons également utiliser les commandes int() et float()

16 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

pour convertir une chaine de caracteres str en un int ou float
Pour la conversion, il faut faire:

wvarA = "123" :
! int(varA) i
I float(varA) |
I

1

Note au sujet des commandes Python

Vous avez slirement remarqué que dans cette partie du tutoriel,
nous avons utilisé la commande d'affichage print de plusieurs
manieres. Nous avons affiché des variables, des opérations, des
chaines séparées par des virgules et méme le résultat de la
commande Python type(). Peut-étre avez vous également
remarqué qu'en faisant ces deux commandes,

I
type(varA)
! type(varA)

nous obtenons le méme résultat.

Tout s'affiche automatiquement a 1'écran parce que nous sommes
dans l'interpréteur. Lorsque nous allons écrire des programmes
plus complexes qui s'exécuteront hors de l'interpréteur, ils ne
seront pas affichés a 1'écran, pour les afficher nous aurons besoin
d'utiliser la commande print. Mais maintenant, nous allons
cesser de l'utiliser pour augmenter la vitesse d'exécution.

Donc, nous allons simplement écrire:

I

myVar = "hello friends"
myVar

I

Attention, Python est sensible a la casse, myVar est différent de
myvar !!!

Vous avez remarqué que la plupart des commandes Python (ou
mots-réservés) que nous connaissons ont des parentheses, qui
sont utilisées pour dire avec quoi la commande doit travailler:
type(), int(), str(). . . etc. La seule exception est la commande
print, qui en vérité ne 1'est pas car, elle peut fonctionner aussi
bien avec ou sans parentheses.

17 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Exemple:

print ("bonjour™)
:print "bonjour"

Les Listes (Tableaux)

Un autre type de données intéressant, est le type list. Le type
list est simplement une liste de données. De la méme maniere
que nous définissons une chaine de texte en utilisant " "
(guillemets), nous définirons des listes en utilisant [] (crochets):

:myList = [1,2,3]
‘type(myList)
myOtherList
myMixedList
I

["Bart", "Frank", "Bob"]
["hello", 345, 34.567]

Vous voyez qu'une liste peut contenir n'importe quel type de
données. Les listes sont tres utiles car vous pouvez grouper des
variables ou des données ensembles. Vous pouvez alors faire
toutes sortes de choses au sein de ces groupes, par exemple, les
compter avec len():

I
myName = myOtherList[0]
:myFriendsName = myOtherList[1]

Vous voyez que la commande len() renvoie le nombre d'éléments
dans une liste, la «position» d'un objet dans la liste commence a
0. Le premier élément dans une liste est toujours a la position 0,
donc dans notre myOtherList, "Bob" est a la deuxieme position.
Nous pouvons faire beaucoup plus de choses avec les listes tel
que le tri du contenu, la suppression ou l'ajout d'éléments
d'autres renseignements sur List (http://www.diveintopython.net
/native data types/lists.html).

Une chaine de texte est tres semblable a une liste et chaque

18 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

caractere peut étre adressé séparément! Essayez ce code:

:myvar = "hello" |
Len(myvar) |
:myvar[Z] |

|

Pratiquement, ce que vous faites avec les listes peut également
étre fait avec les chaines de caracteres. En fait, les listes et les
chaines de caractéres sont des séquences que Python voit en
interne de la méme maniere.

Outre les chaines de caracteres "String", les entiers "Integer"”,
les nombres a virgule flottante "float" et les listes "list", il y a
beaucoup de type de données, plus de renseignements sur les
dictionnaires (http://www.diveintopython.net/native data types
/index.html#odbchelper.dict). Vous pouvez méme créer vos
propres types de données avec des classes
(http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm).

L'Indentation

Une maniere pratique et élégante d'afficher chaque élément de la
liste, est de naviguer a l'intérieur de cette liste.
Entrez ce code dans la console:

alldaltons = ["Joe", "william", "Jack", "Averell"] |
! dalton alldaltons: \
I dalton + " Dalton" !

1

Nous venons de faire une "itération" (encore un nouveau mot de
programmeur!) grace a notre boucle " for ... in ... : " nous avons
scruté chaque "champ" de la variable alldaltons. Notez la
syntaxe particuliere de la boucle, la commande se termine avec
un " : " ce qui indique a Python que la suite sera un bloc d'une ou
plusieurs commandes ou instructions.

Apres avoir frappé | ENTREE | derriere le " : ", l'invite de
commande va changer en " ... " ce qui indique a Python que la
suite sera une partie de celui-ci.

Alors comment savoir, combien de ligne(s) sera ou seront

19 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

exécutées par Python a l'intérieur de la boucle ? Pour créer un
bloc, Python utilise l'indentation. Les prochaines lignes ne
commenceront pas au prompt " >>> " mais elles commenceront
par un ou plusieurs espaces vides, ou, une ou plusieurs
tabulations. Les langages de programmation utilisent leurs
propres méthodes , comme, la mise entre parentheses du bloc,
entre un BEGIN ... END etc.

Tant que vous écrirez vos lignes avec la méme indentation, elles
seront considérées comme faisant partie du bloc. Si vous
commencez une ligne avec 2 espaces et la prochaine avec 4
espaces, il y aura une erreur. Lorsque vous avez terminé votre
bloc, il suffit d'écrire la suite du programme sans indentation, ou
appuyez simplement sur Entrée.

Créer des indentations permet aussi d'éclaircir la lecture code
dans le cas de grands programmes. Nous allons voir que de
nombreuses autres commandes indentées peuvent avoir des blocs
de code aussi.

m >>> alldaltons = ["Joe", "William", "Jack", "Averell"]
ENTREE

m >>> for dalton in alldaltons: | ENTREE

m ... ESPACE | ESPACE | print dalton + " Dalton" | ENTREE
m ... ENTREE

E>>>

La commande " for ... in ... : " peut étre utilisée pour de
nombreuses procédures qui doivent étre effectuées plus d'une
fois (en boucle). Elle peut aussi par exemple étre combinée avec
la commande range():

range(1,11)

0

! nsum"

: number serie:

I number

.\ total = total + number
\ " "

1

1

1

Ou des choses plus complexes comme ceci:

20 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

1
alldaltons = ["Joe", "wWilliam", "Jack", "Averell"] !
! n range(4): |
1 alldaltons[n], " is Dalton number ", n X

1

Vous voyez que la commande range() a également la
particularité de commencer a 0 (si vous ne spécifiez pas un
nombre de départ) et que son dernier nombre sera le nombre que
vous aurez spécifié moins un . Bien siir, cette commande
fonctionne parfaitement avec les autres commandes Python.

Par exemple:

:alldaltons = ["Joe", "William", "Jack", "Averell"]
total = len(alldaltons)
' n range(total):

! alldaltons[n]

Une autre fonction intéressante utilisée dans un bloc indenté est
la commande de condition if (si). Avec " if " la suite de la
procédure sera exécutée uniquement si la condition est
remplie.

alldaltons = ["Joe", "william", "Jack", "Averell"]

1
1
: "Joe" alldaltons: :
1
1
1

I "We found that Dalton!!!"

C'est bien, ce code affiche "OK il c'est bien un Dalton !!!" car la
condition est exacte. Mais maintenant essayons cette ligne:

Il ne c'est rien affiché car la condition n'était pas remplie. Nous
pouvons alors lui demander else (si la condition n'est pas remplie
alors):

1
:alldaltons = ["Joe", "William", "Jack", "Averell"] :
! "Lucky" alldaltons: \
: "We found that Dalton!!!" !
else: |
! |
! |

"Such Dalton doesn't exist!"

Les Fonctions

21 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Il n'y a pas beaucoup mots réservés dans Python
(http://docs.python.org/reference

/lexical analysis.html#identifiers), a peine une trentaine, et nous
en connaissons maintenant quelques unes. Imaginons que nous
voulions construire nous méme une commande spéciale! Et bien,
il est extrémement facile de construire sa propre commande dans
Python. Vous pouvez ajouter ces commandes dans votre
installation Python de maniere a en augmenter les capacités et
les utiliser comme bon vous semble. Ces nouvelles commandes
que vous allez créer dans Python, s'appellent des Fonctions.
Elles sont faites de cette maniere:

printsgm(myValue):
str(myValue)+" square meters"

printsgm(45)

Extrémement simple ! Le mot réservé "def()" crée une nouvelle
fonction dans Python. Vous lui donnez un nom, dans l'exemple:
"printsqm". Dans les parentheses, la variable qui va transmettre
les données a la fonction, dans I'exemple: "myValue". A
l'intérieur de la fonction (donc apres le " : " et une indentation) ,
vous définissez les formules, les données ou tout ce que vous
voulez transformer et que la fonction va vous retourner.

Par exemple, regardez la commande (ou mot réservé) len(). Si
vous écrivez len() simplement, Python affichera "TypeError:
len() takes exactly one argument (0 given)" il vous dit, vous
voulez len() de quelque chose alors j'ai besoin d'un argument
pour l'exécuter ! Puis, par exemple, vous allez écrire
len("William") et vous en obtiendrez la longueur. Alors, "William"
ou une variable est un argument que vous passez a la len(). La
fonction len() est définie de telle maniére qu'elle sait exactement
quoi faire avec l'argument qui lui a été transmis.

Le nom de la variable "myValue" peut étre n'importe quel nom,
et cette variable ne sera utilisée qu'a l'intérieur de la fonction.
C'est juste un nom qui représentera l'argument dans la fonction
en vue de l'utiliser, mais elle sert aussi a renseigner la fonction
de combien d'arguments elle disposera. Par exemple, faites ceci:

22 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Cette commande affichera l'erreur "TypeError: printsqm()
takes exactly 1 argument (2 given)" car la fonction "def
printsqm(myValue):" ne demande qu'un seul argument,
"myValue" et, nous lui en avons donné deux, 45 et 34.

Maintenant, écrivez cette fonction:

1

: sum(vall,val2):

, total = vall + val2
! total

isum(45,34)
:myTotal = sum(45,34)

Nous avons créé une fonction qui demande deux arguments, les
exécutes , et nous renvoie le résultat. Le retour du résultat est
tres utile car nous pouvons l'utiliser pour l'afficher ou le stocker
dans une variable myTotal (pour notre exemple mais n'importe
quel nom conviendra) ou les deux. Comme nous sommes dans
l'interpréteur de Python, le résultat s'affiche en faisant:

Mais une fois le programme terminé et exécuté hors de
l'interpréteur il n'y aura pas d'affichage ! Pour afficher le résultat
hors de l'interpréteur Python, il faut bien sir utiliser la
commande print. Alors il faudra faire:

Voila c'est affiché.
Pour plus de renseignements sur les autres possibilités des

fonctions (http://www.diveintopython.net/getting to know python
/declaring functions.html).

Les Modules

23 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Maintenant, vous avez une idée du fonctionnement de Python:
mais comment faire pour travailler avec les fichiers et les
modules.

Jusqu'a présent, nous avons écrit des instructions ligne par ligne
pour travailler dans l'interpréteur Python, pas vrai? Lorsque vous
voulez faire des choses plus complexes, il est commode d'écrire
les premieres lignes de code, puis de les exécuter en une seule
fois. Eh bien, c'est tres facile a faire, et cela permet aussi de
sauver son travail. Il suffit d'ouvrir un éditeur de texte (par
exemple, Le Bloc-notes Windows), et d'écrire toutes les lignes de
code de Python, de la méme maniere qu'elles sont écrites dans
l'interpréteur, avec les indentations, etc. Ensuite, enregistrez le
fichier sur votre disque, de préférence avec l'extension .Py.

Voila, maintenant vous avez un programme Python complet. Bien
sur, il y a de meilleurs éditeurs que le bloc-notes de Windows ou
le terminal (http://www.osxfacile.com/terminal.html) d'OS X
comme l'excellent Notepad++ (http://notepad-plus-plus.org/fr/)
(pour Windows) qui utilise la coloration syntaxique tout comme
XCode (https://developer.apple.com/xcode) (pour OS X) et ceci
démontre qu'un programme Python n'est qu'un fichier texte.

Pour exécuter un programme Python, il ya des centaines de
manieres. Dans Windows, cliquez simplement sur le fichier,
ouvrez-le avec Python, et exécutez le. Mais vous pouvez
également 1'exécuter avec l'interpréteur Python. Pour ce faire,
I'interpréteur doit savoir ou se trouve le programme .Py. Dans
FreeCAD, le plus simple est de placer les fichiers .Py dans le
répertoire par défaut destiné aux programmes Python, cet
endroit connu de l'interpréteur inclut dans FreeCAD est
C:\Program Files\FreeCADOQ.12\bin, mais d'autres endroits
sont aussi connu de FreeCad C:\Program
Files\FreeCADO.12\Mod (tous les outils de FreeCad) et
C:\Travail\Mes documents\. . \FREECAD\Macro ou sont
répertoriés tous vos programmes créés dans l'interpréteur de
FreeCad Macro-->Macros. Le chemin de destination de vos
modules peut étre forcé a partir du menu
Edition-->Préférences-->Macro Chemin de la macro.

24 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Supposons que nous écrivions ce fichier programme:

et, nous allons l'enregistrer en "test.py" dans . . ./FreeCAD/bin.

Maintenant, allons dans FreeCAD, et dans la fenétre de
l'interpréteur, écrivez:

sans l'extension .py.

Le contenu du fichier sera tout simplement exécuté, ligne par
ligne, comme si nous l'avions écrit dans l'interpréteur. La
fonction somme a été créée, et le message "test.py a bien été
chargé" sera affiché. Il ya une grande différence: la commande
import est faite non seulement pour exécuter des programmes
écrits dans des fichiers comme le nétre, mais aussi de charger
des fonctions dans Python, de sorte qu'elles deviennent
disponibles dans l'interpréteur. Les fichiers contenant des
fonctions, comme le nétre, sont appelés modules.

Normalement, lorsque nous écrivons une fonction sum() dans
l'interpréteur, nous l'exécutons simplement comme ceci,

comme nous l'avons fait plus haut.

Mais quand nous importons un module contenant une fonction
comme sum(a,b), la syntaxe est un peu différente. Nous ferons:

Autrement dit, le module est importé comme un «conteneur», et
toutes ses fonctions sont a l'intérieur. Cela est extrémement utile,
parce que nous pouvons importer un grand nombre de modules,

25 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

et de les organiser.

Donc, en bref, quand vous voyez quelque_chose.quelque _chose
(avec un point entre les deux), signifie que quelque chose est a
l'intérieur quelque chose.

Nous pouvons aussi, importer et extraire notre fonction sum()
contenue dans "test.py" directement dans l'interpréteur, comme
ceci:

Théoriquement, tous les modules se comportent de cette
maniere. Vous importez un module, et vous utilisez ses fonctions
de cette maniere: module.fonction(argument(s)).

Les modules travaillent de cette facon: ils définissent les
fonctions, les nouveaux types de données et les classes que vous
pouvez utiliser dans l'interpréteur Python ou dans vos propres
modules, parce que rien ne vous empéche d'importer des
modules a l'intérieur de votre module!

Encore une chose extrémement utile. Comment connaitre les
modules disponibles ? quelles sont les fonctions contenues dans
ces modules et comment les utiliser (c'est a dire quels arguments
sont demandés par la fonction)? Nous avons vu que Python a une
fonction d'aide().

Alors, dans l'interpréteur Python de FreeCad faisons:

1
thelp()
:modules

Will give us a list of all available modules. We can now type g to
get out of the interactive help, and import any of them. We can
even browse their content with the dir() command

Nous voyons maintenant toutes les fonctions contenues dans le
module math, ainsi que des trucs étranges comme: doc_,

26 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

FILE , name _ :

Le doc__ est extrémement utile, il s'agit d'un texte de
documentation. Dans les modules, chaque fonction de fait a une
__doc__ qui explique comment 1'utiliser. Par exemple, nous
voyons qu'il ya une fonction sin dans le module math.

Vous voulez savoir comment utiliser cette fonction ? alors:

I math.sin. doc 1

Et enfin, une dernier chose: Lorsque 1'on travaille sur un nouveau
module, nous avons besoin de le tester. Donc, une fois que nous
avons écrit une partie du code, dans l'interpréteur Python, nous
ferons:

myModule
myModule.myTestFunction()

Mais que faire, si myTestFunction() ne fonctionne pas
correctement? Nous retournons a notre éditeur et nous le
corrigeons. Puis, au lieu de fermer et de rouvrir l'interpréteur
python, nous allons tout simplement mettre a jour le module
comme Ceci:

Déemarrer avec FreeCAD

Eh bien, je pense que maintenant vous devez avoir une bonne
idée de la facon dont Python travaille, et vous pouvez commencer
a explorer ce que FreeCAD peut nous offrir. Les fonctions Python
de FreeCAD sont toutes bien organisées en différents modules.
Certaines d'entre elles sont déja chargées (importées) au
démarrage de FreeCAD. Dong, il suffit de faire:

et lire dans l'interpréteur tous les modules chargés dans
FreeCad, voir Scripts de base dans FreeCad...

27 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Bien siir, nous n'avons vu qu'une tres petite partie de 1'univers
Python. Il existe de nombreux concepts importants que nous
n'avons pas mentionné ici.

Voici deux liens de référence de Python sur le net:

m Le site officiel de Python (http://docs.python.org/reference/)
(en)

= Plongez dans le Wikibook/ Book de Python
(http://www.diveintopython.net) (en)

m Wiki en francais (http://fr.wikibooks.org
/wiki/Programmation Python)

m Un autre aussi en francais (http://www.jchr.be/python
/index.htm)

Pensez a en faire des onglets !

< précédent: Macros Index suivant: Python scripting tutorial >

28 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Python scripting in FreeCAD

FreeCAD a été programmé des la premiere ligne de code dans le
but d'étre totalement contrélé par des scripts écrits en Python.
Presque toutes les procédures de FreeCAD, telles que l'interface,
le contenu des scénes, méme la représentation du contenu des
vues 3D, sont accessibles a partir de l'interpréteur Python ou de
VOS propres scripts.

Par conséquence, FreeCAD est probablement 1'une des
applications d'ingénierie la plus profondément personnalisable et
évolutive disponible actuellement.

Dans son état actuel, FreeCAD a tres peu de commandes de base
pour interagir avec vos objets 3D, FreeCAD est encore jeune et
est encore au stade de développement, de plus, la philosophie du
développement de FreeCAD est orientée de maniere a fournir
une plate-forme CAD plutot qu'une application d'utilisation
spécifique.

Grace aux scripts Python utilisables dans FreeCAD, nous avons
un moyen tres simple et rapide de voir et de tester les nouvelles
fonctionnalités des modules élaborés par la communauté
internationale des utilisateurs, des utilisateurs qui, généralement
connaissent la programmation Python.

Python est 1'un des langages interprétés les plus populaires et,
généralement considéré comme tres facile a apprendre, biento6t,
vous pourrez aussi écrire vos scripts pour modeler "votre propre"
FreeCAD.

Si vous n'étes pas familier avec Python, nous vous recommandons
de chercher des tutoriels sur internet et "jeter un ceil rapide"
(http://python.50webs.com/) sur sa structure. Python est un
langage tres facile a apprendre, en particulier parce qu'il peut
étre exécuté a l'intérieur de l'interpréteur, de la plus simple
commande jusqu'a 1'élaboration de programmes complexes, il
peut étre exécuté a la volée sans avoir besoin de compilateur.
FreeCAD dispose de son propre interpréteur Python intégré. Si
vous ne voyez pas de fenétre intitulée Console Python comme
illustré ci-dessous, vous pouvez l'activer en cliquant dans la barre
d'outils Affichage -> Vues -> Console Python pour afficher

29 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...
I'interpréteur Python.
L'interpréteur Python

A partir de l'interpréteur Python, vous pouvez accéder a
I'ensemble des modules Python installés, les modules originaux
de FreeCAD, ainsi que tous les modules supplémentaires que
vous installerez plus tard dans FreeCAD. La capture d'écran
ci-dessous vous montre l'interpréteur Python:

Report view @ %
Python 2.5.1 (r251.54863, Mar 7 2008, 03.56.:44)

[GCC 4.1.3 20070929 (prerelease) (Ubuntu 4.1.2—16ubuntu2)] on linux2

Type help, copyright', credits or license for more information,

>>> Gul.activateWorkbench(“DraftWorkbhench”)

>>> App.setActiveDocument(“Unnamed”)

>>> App.ActiveDocument=App.getDocument(“Unnamed”)

>>> |Gul.:‘-:cti".-‘eDocument=GuI.getDocurnent(Unnamed”)

>>>

output @, Python console |

A partir de l'interpréteur, vous pouvez exécuter du code Python
et naviguer a travers les classes et fonctions disponibles.
FreeCAD fournit un navigateur de classe tres pratique pour
I'exploration de votre nouvel univers qu'est FreeCAD. Lorsque
vous tapez le nom d'une classe connue suivie d'un "." (point) (ce
qui veut dire que vous voulez ajouter quelque chose apres le
point a partir de cette classe), une fenétre s'ouvre et vous
renseigne sur les options et méthodes disponibles dans cette
classe. Lorsque vous sélectionnez une option, le texte d'aide qui
lui est associé (s'il est disponible) est automatiquement affiché:

30 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Report view @
Python | @ SendMsgToActiveView [a|B. 03:06:44)

[60C 4.l ® ... doo . |activeDocument() -> object or None

Type 'h| @ __name_ __ ||

S>> 6L =@ activateWorkbench Return the active document or None if no one exists
>>> Arl=% | 1D

>>> Ar =@ activeWorkbench L_{ument("Unnamed")

>>> GL -G addCammand Yhent(“Unnamed”)

>>> Gul,

Output @ Python console |

Alors, commencez ici en tapant App. ou Gui. (Attention a la casse
App est différent de app) et regardez ce qui se passe.

Une autre facon plus simple d'explorer Python le contenu des
modules et des classes est d'utiliser la commande d'affichage
dir().

Par exemple, en tapant dir() tous les modules actuellements
repertoriés et chargés dans FreeCAD s'affichent.Si vous tapez
dir(App) tout ce qu'il y a a l'intérieur du module App sera affiché
, etc.

Une autre caractéristique utile de l'interpreteur est la possibilité
de revenir en arriere dans 1'historique des commandes et
récupérer une ligne de code que vous avez tapé plus tot. Pour
naviguer dans l'historique des commandes, il suffit d'utiliser
CTRL + HAUT | ou |CTRL + BAS|.

Si vous cliquez avec le bouton droit de la souris dans la fenétre
de l'interpréteur, vous avez également les options classiques d'un
traitement de texte, telles que copier tout 1'histoire (utile lorsque
vous voulez expérimenter votre code avant de faire votre script
final), ou d'insérer un nom de fichier avec le chemin complet.

Aide Python

Dans le menu Aide de FreeCAD, vous trouverez une entrée
portant la mention Modules Python, qui va ouvrir dans le
navigateur une fenétre contenant la liste complete, de la
documentation de 1'ensemble des modules Python a disposition
de l'interpréteur FreeCAD, c'est a dire les modules fournis avec

31 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Python et ceux intégrés dans FreeCAD. La documentation
disponible dépend de l'effort que le développeur a mis pour
documenter le code son module, les modules Python en général,
ont la réputation d'étre bien documentés. FreeCAD doit rester
ouvert pour travailler avec ce systeme de documentation.

Modules incorporés (Built-in)

FreeCAD étant congu pour étre exécuté sans interface graphique
(GUI), la quasi-totalité de ses fonctionnalités est séparé en deux
groupes: les fonctionnalités de base, nommeés «App», et la
fonctionnalité graphique, nommée «Gui». Donc, nos deux
principaux modules dans FreeCAD sont appelés App et Gui.

Ces deux modules peuvent également étre accessibles a partir
des scripts, respectivement avec les noms FreeCAD et
FreeCADGui. IIs sont accessibles méme hors de l'interpréteur.

m Dans I'App module, vous trouverez tout ce qui concerne
I'application elle-méme, comme, les procédures d'ouvrir ou
fermeture de fichiers, comme l'ouverture de la feuille active
ou lister le contenu de la feuille . . .

= Dans 1'Gui module, vous trouverez des outils pour accéder et
gérer les éléments graphiques, comme les boutons
utilisateurs et leur barres d'outils, et, plus intéressant, la
représentation graphique de 1'ensemble du contenu FreeCAD.

Lister tout le contenu de ces modules est un contre-productif, car
ils grandissent tres vite compte tenu de la progression du
développement de FreeCAD.

Mais les deux outils fourni (le navigateur de classe et de l'aide de
Python) vous donnerons, a tout moment, une complete
documentation mise a jour sur ces modules.

Les objets "App" et "Gui"
Comme nous l'avons dit, dans FreeCAD, tout est séparé entre le

noyau et la représentation du projet. Y compris les objets 3D.
Vous pouvez accéder aux propriétés des objets (appelés

32 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

fonctions dans FreeCAD) via le module App, et modifier la fagon
dont ils sont représentés sur l'écran via le module de Gui.

Par exemple, un cube possede des propriétés qui le définissent,
(comme la largeur, longueur, hauteur) qui sont stockées dans un
App objet et, les propriétés de représentation (comme la couleur
des faces, le mode de dessin) qui sont stockées dans un objet
correspondant Gui.

Cette méthode de travail permet une multitude d'utilisations,
comme des algorithmes travaillant uniquement sur la partie
caractéristiques, sans avoir a se soucier de la partie visuelle,
voire de réorienter le contenu du document a une partie
non-graphique de l'application, tels que des listes, des tableurs,
ou l'analyse d'éléments.

Pour chaque objet App dans votre document, il existe un
objet correspondant Gui.

En fait le document lui-méme possede a la fois des objets App et
des objets Gui. Bien sfir, ceci n'est valable que lorsque vous
exécutez FreeCAD dans son interface graphique. Dans la version
en ligne de commande (sans interface graphique), seuls les
"objets App" sont accessibles.

Notez que la partie "objet Gui" est réactualisé chaque fois qu'un
"objet App" est recalculé (par exemple lorsqu'il y a un
changement de parametres), les changements que vous pourriez
avoir fait directement a 1'objet Gui peuvent étre perdues.

Pour accéder a la partie App d'un objet, vous devez tapez:

ou "ObjectName" est le nom de votre objet.
Le méme résultat est obtenu en tapant:

33 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

ou "ObjectName" est le nom de votre objet.
Le méme résultat est obtenu en tapant:

Si vous n'étes pas dans l'interface graphique (Gui) (par exemple
si vous étes en mode ligne de commande), la derniere ligne
retournée sera 'None'.

Les objets dans un document

Dans FreeCAD tout votre travail est dans un "Document". Ce
document contient vos formes géomeétriquee et peut étre
sauvegardé dans un fichier. Dans FreeCAD, plusieurs documents
peuvent étre ouverts en méme temps. Le document, et les formes
géomeétriques contenues , sont des objets App et des objets Gui.
Les objets App contiennent les définitions des formes
géomeétriques réelles, tandis que les objets Gui contiennent les
différentes vues de votre document.

Vous pouvez ouvrir plusieurs fenétres, chacune de ces fenétres
peut afficher votre projet avec un facteur de zoom différent ou
des vues différentes du projet. Ces vues font toutes partie de
1'objet Gui de votre document.

Pour accéder a la partie App du document ouvert (actif), tapez:

Pour accéder a la partie graphique (Gui) du document ouvert
(actif), tapez:

Pour accéder a la vue courante, tapez:

34 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Modules supplémentaires

Les modules FreeCAD et FreeCADGui sont utilisés uniquement
pour créer et gérer des objets dans le document FreeCAD. Ils ne
sont pas utilisés pour la création ou la modification des formes
géomeétriques.

Les formes géométriques peuvent étre de plusieurs types, elles
sont donc construites par des modules supplémentaires, chaque
module s'occupe la gestion d'un type de forme géométrique
spécifique.

Par exemple, le module "Part utilisé par le noyau OpenCascade,
et donc capable de créer et manipuler des formes géométriques
de type B-rep (http://fr.wikipedia.org

/wiki/Boundary representation), pour lequel OpenCascade est
construit.

Le module "Mesh" est capable de construire et modifier des
objets Mesh (mailles). De cette facon, FreeCAD est capable de
gérer une grande variété de types d'objets, qui peuvent coexister
dans le méme document, et de nouveaux types d'objets pourront
étres ajoutés facilement et constamment.

Création d'objets

Chaque module a sa propre maniere de gérer sa forme
géomeétrique, mais il y a une chose qu'ils peuvent tous faire, c'est
de créer des objets dans le document.

Mais, le document FreeCAD connait tous les types d'objets
disponibles fournis par les modules,

tapez:

...

FreeCAD listera tous les objets possibles que vous pouvez créer.
Par exemple, nous allons créer un objet maillage (traité par le
module "Mesh") et une objet Part (traité par le module le "Part"):

35 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

FreeCAD.ActiveDocument.addObject("Mesh: :Feature", "myMeshName")
FreeCAD.ActiveDocument.addObject("Part::Feature", "myPartName")

Le premier argument est le type d'objet "Mesh::", le second est
le nom de l'objet "myMeshName". Nos deux objets semblent
identiques: Ils ne contiennent pas encore de forme géométrique,
et la plupart de leurs propriétés sont les mémes lorsque vous les
inspecter avec dir(imyMesh) et dir(myPart).

Sauf que, myMesh a une propriété "Mesh" (maille) et myPart a
une propriété "Part" (forme géomeétrique).

C'est de cette maniere que les données de "Mesh" (maillage) et
"Part" (forme géométrique) sont stockées.

Par exemple, nous allons créer un cube (Part) et le stocker dans
notre objet myPart:

| Part |
icube = Part.makeBox(2,2,2) |
myPart.Shape = cube X
I

1

Si vous essayez de stocker le cube avec la propriété objet Mesh
"myMesh", il retournera une erreur de type. Car ces propriétés
sont congues uniquement pour stocker un type d'objet bien
défini.

Dans la propriété objet Mesh "myMesh", vous ne pouvez
enregistrer que des objets créé avec le module Mesh.

Notez que la plupart des modules disposent également d'un
raccourci pour ajouter leur formes géométriques au document:

) Part :
icube = Part.makeBox(2,2,2) :
iPart.show(cube) :
1

1

Modification d'objets
La modification d'un objet est faite de la méme maniere:

\ Part :
icube = Part.makeBox(2,2,2) :
myPart.Shape = cube X
1

1

Maintenant, nous allons construire un cube plus gros:

36 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

I
biggercube = Part.makeBox(5,5,5)
:myPart.Shape = biggercube

Questionner les objets

Vous pouvez toujours connaitre de quel type est un objet.
Faites ceci:

I
myObj = FreeCAD.ActiveDocument.getObject("myObjectName")
! my0bj . Typeld

ou de savoir si un objet fait partie d'un modele de base (Part
Feature, Mesh Feature, etc):

Retourne TRUE ou FALSE

Maintenant vous pouvez commencer a travailler avec FreeCAD!
Pour savoir ce que vous pouvez faire avec le Part Module, lisez
la page Part scripting, ou la page Script Mesh pour travailler
avec le module Mesh .

Notez que, bien que les modules Part et Mesh sont les plus
complets et les plus largement utilisés, les autres modules tels
que le Draft Module (Projet) ont également leurs API scripts qui
peuvent vous étre utiles.

Pour une liste complete de chaque module et de leurs outils
disponibles, visitez la section :Category:API (en).

< précédent: Python scripting tutorial suivant: Mesh Scripting >
Index

37 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Introduction

Avant de commencer, vous devez importer le module Mesh.
Tapez (Attention a la classe Mesh est différent de mesh):

Des que vous avez importé le module de maillage de la classe
Mesh, vous accéderez facilitent aux fonctions C++ Mesh-Kernel
de FreeCAD.

Création et chargement

Pour créer un objet maillage vide il suffit d'utiliser la commande
standard:

Une liste de fichiers compatibles avec "Mesh" (maillage) est
disponible ici.

Ou de créer un ensemble de triangles en les décrivants par leurs
sommets (Vertex):

:planarMesh = [

triangle 1
1[-0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],[-0.5000,0.5000,0.00001,
#triangle 2
:[-0.5000,-0.5000,0.0000],[0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],
I

1

planarMeshObject = Mesh.Mesh(planarMesh)

:Mesh.show(planarMeshObject)

Le kernel-Mesh prend soin de créer une structure correcte de
données topologiques en triant les points communs et des bords
coincidents.

Plus tard, vous verrez comment tester et examiner les données de

38 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...
maillage.

Modeélisation

Pour créer des formes géométriques régulieres, vous pouvez
utiliser le script Python BuildRegularGeoms.py.

Ce script fournit les méthodes pour construire des figures
simples qui ont besoin d'une rotation comme des spheres,
ellipsoides, cylindres, tores et cones.

Et il existe aussi une méthode pour créer un simple cube.
Pour créer un tore, par exemple, nous ferons:

BuildRegularGeoms.Toroid (8.0, 2.0, 50) # list with several thousands triangles |
Mesh.Mesh(t) X
1

Les deux premiers parametres définissent les rayons du tore, et
le troisieme parametre est un facteur de sous-échantillonnage
pour le nombre de triangles qui seront créés. Plus cette valeur
est élevée plus la figure sera lisse et plus cette valeur est basse
plus grossiere sera la figure.

La classe Mesh offre un ensemble de fonctions booléennes qui
peuvent étres utilisées a des fins de modélisation. Il fournit
1'union, l'intersection et la différence entre deux objets maillés.

ml, m2 # are the input mesh objects |
m3 = Mesh.Mesh(ml) # create a copy of ml X
m3.unite(m2) # union of ml and m2, the result is stored in m3 !
m4 = Mesh.Mesh(ml) !
m4.intersect(m2) # intersection of ml and m2 X
m5 = Mesh.Mesh(ml) !
m5.difference(m2) # the difference of ml and m2 \
m6 = Mesh.Mesh(m2) !
:m6.difference(m1) # the difference of m2 and ml, usually the result is different to m5 |

1

Et ici, un exemple complet qui calcule l'intersection entre une
sphere et un cylindre qui coupe la sphere.

) Mesh, BuildRegularGeoms

isphere = Mesh.Mesh(BuildRegularGeoms.Sphere(5.0, 50))

icylinder = Mesh.Mesh(BuildRegularGeoms.Cylinder(2.0, 10.0, True, 1.0, 50))
diff = sphere

diff = diff.difference(cylinder)

d = FreeCAD.newDocument ()

39 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

id.addObject("Mesh::Feature","Diff Sphere Cylinder").Mesh=diff \
id. recompute() :
I

Examens et Test
Ecrire vos propres algorithmes

Exporter

Vous pouvez méme écrire votre modele de maillage dans un
module Python:

:m.write("D:/Develop/Projekte/FreeCAD/FreeCAD70.7/Mod/Mesh/SavedMesh.py“)
' SavedMesh

m2 = Mesh.Mesh(SavedMesh.faces)

1

Relations avec Gui (Interface graphique)

Modules supplémentaires a tester

Une extension (difficile a utiliser) de scripts Mesh qui est a
tester.

Dans cette compilation test, toutes les méthodes sont appelées et
toutes les propriétés et attributs sont manipulés.

Donc si vous étes assez audacieux pour le tester, allez voir
(http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk
/stc/Mod/Mesh/App/MeshTestsApp.py?view=markup) cette
compilation de modules "unifié".

See also Mesh API

< précédent: FreeCAD Scripting Basics Index
suivant: Topological data scripting >

40 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Cette page décrit différentes méthodes pour créer et modifier des
pieces avec Python.

Avant de lire cette page, si vous n'étes pas familier avec la
programmation Python, vous pouvez vous diriger sur cette page
d'introduction a Python et scripts de base en Python pour
FreeCAD.

Introduction

Nous allons ici vous expliquer comment controler la boite a
outils (Part Module) ou de n'importe quel script externe,
directement a partir de l'interpréteur Python inclus dans
FreeCAD, .

Assurez-vous de parcourir l'article de familiarisation et scripts de
base si vous avez besoin de plus amples renseignements sur la
facon dont les scripts Python fonctionnent dans FreeCAD.

Class Diagram
Ceci est un Unified Modeling Language (UML)

(http://fr.wikipedia.org/wiki/Unified Modeling Language) de la
classe la plus importante de Part Module:

41 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

FreeCaD

ComplesGeoData DataBase

jl A
;f

Shape Part
+Edges Geom
+Yertexes
+Wires
+5Shells
+fuse()
+common)
/ T
Vire Yertex Solid \ CompSolid Line Circel
+P1 +Center
+P2 +P1
+p2
Edge Shell Compound
Geometry

The geometric objects are the building block of all topological
objects:

s Geom Base class of the geometric objects

m Line A straight line in 3D, defined by starting point and end
point

m Circle Circle or circle segment defined by a center point and
start and end point

_ And soon some more

Topology

Sont aussi disponibles des données de type topologique:

s Compound Groupe de types différents d'objets topologiques.

42 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

s Compsolid Un groupe de solides reliés par leurs faces. C'est
un concept des notions de WIRE (filaire,bord..) et SHELL
(coquille,enveloppe) des solides.

m Solid Une portion de l'espace limité par son enveloppe. Il est
en 3 dimensions.

m Shell Un groupe de faces reliés par leurs bords.Un "SHELL"
peut étre ouvert ou fermé.

m Face En 2D, c'est une surface plane; en 3D, c'est une seule
face du volume. Sa géométrie est coupée par des contours. Il
est en deux dimensions.

» Wire Un ensemble relié par ses VERTEX (sommets). Il peut
étre de contour ouvert ou fermé suivant si les sommets sont
reliés ou non.

s Edge Elément topologique correspondant a une courbe
retenue. Un "Edge" est généralement limité par des sommets.
Il a une dimension.

m Vertex Elément topologiques correspondant a un point. Il n'a
pas de dimension.

m Shape Est le terme générique pour traduire tout ce qui
précede.

Exemple rapide : Création topologique simple

Nous allons créer une topologie avec

une géométrie toute simple. A R vz
Nous devrons veiller a ce que les L

sommets des piéces géométriques “! X 2
soient a la méme position, quatre

sommets, deux cercles et deux va - v3

lignes.
Création de la géométrie

Nous devons d'abord créer les parties distinctes géométriques en
filaire.

Nous devons veiller a ce que tous les sommets des pieces
géométriques qui vont étres raccordées soient a la méme
position.

Sinon, plus tard nous pourrions ne pas étre en mesure de relier

43 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

les pieces géomeétriques en une topologie!
Donc, nous créons d'abord les points:

| FreeCAD Base :
Base.Vector(0,10,0) X
Base.Vector(30,10,0) :
Base.Vector(30,-10,0) |
Base.Vector(0,-10,0) X

1

—_~ e~~~

Pour créer un arc de cercle, nous créons un point
de repere puis nous créons l'arc de cercle passant
par trois points:

Ve2

VC1 = Base.Vector(-10,0,0)
:Cl = Part.Arc(V1l,VC1,V4)

1

1

1

1 V3
and the second one '

:

1

1

VC2 = Base.Vector(40,0,0)
:C2 = Part.Arc(V2,vC2,V3)

Ligne

La ligne peut étre créée tres simplement en

dehors des points : Vi V2
o - s

L1 = Part.Line(V1,V2)
and the second one
:L2 = Part.Line(V4,V3)

Tout relier

La derniere étape consiste a relier les éléments géométriquement
ensemble, et fagonner une forme topologique:

Construire un prisme

Maintenant nous allons extruder notre forme filaire dans une
direction, et créer une forme en 3 Dimensions:

44 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Part.Wire(S1.Edges)
W.extrude(Base.Vector(0,0,10))

Création de formes simples

Vous pouvez créer facilement des formes topologiques avec
"make...()" qui est une méthode du "Module Part":

1
b = Part.makeBox(100,100,100)
:Part.show(b)

La combinaison de make...() avec d'autres methodes sont
disponibles:

= makeBox(l,w,h): Construit un cube et pointe sur p dans la
direction d et de dimensions (longueur,largeur,hauteur).

m makeCircle(radius): Construit un cercle de rayon (r).

= makeCone(radiusl,radius2,height): Construit un cone de
(rayonl,rayon2,hauteur).

= makeCylinder(radius,height): Construit un cylindre de
(rayon,hauteur).

= makeLine((x1,y1,z1),(x2,y2,z2)): Construit une ligne aux
coordonnées (x1,y1,z1),(x2,y2,z2) dans l'espace 3D.

= makePlane(length,width): Construit un rectangle de
(longueur,largeur).

= makePolygon(list): Construit un polygone (liste de points).

= makeSphere(radius): Construit une sphere de (rayon).

» makeTorus(radiusl,radius2): Construit un tore de
(rayonl,rayon?2).

La liste complete des API du module est sur la page Part API.

Importer les modules nécessaires

45 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Nous avons d'abord besoin d'importer le module Part afin que
nous puissions utiliser son contenu Python.

Nous allons également importer le module Base a l'intérieur du
module de FreeCAD:

Part

Création d'un Vecteur

Les Vecteurs (http://fr.wikipedia.org/wiki/Vecteur) sont 1'une des
informations les plus importantes lors de la construction des
formes géomeétriques.

Ils contiennent habituellement 3 nombres (mais pas toujours) les
coordonnées cartésiennes x, y et z.

Vous pouvez créez un vecteur comme ceci:

Nous venons de créer un vecteur de coordonnées x =3,y = 2, z
= 0.

Dans le module Part, les vecteurs sont utilisés partout.

Le module Part utilise aussi une autre fagon de représenter un
point, appelé Vertex, qui n'est actuellement rien d'autre qu'un
conteneur pour un vecteur.

Vous pouvez accéder aux vecteurs d'un sommet comme ceci:

:myVertex = myShape.Vertexes[0]
' myVertex.Point

> Vector (3, 2, 0)

Création d'une aréte (edge)

Une aréte (bord) n'est rien d'autre qu'une ligne avec deux Vertex
(sommets):

:edge = Part.makeLine((0,0,0), (10,0,0))
\edge.Vertexes
> [<Vertex object at 01877430>, <Vertex object at 014888E0>]

46 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

PS: Vous pouvez aussi créer un aréte en donnant deux Vecteurs:

Base.Vector(0,0,0)
Base.Vector(10,0,0)
Part.Line(vecl,vec2)
line.toShape()

Vous pouvez trouver la longueur et le centre d'une aréte comme
cecl:

I

iedge.Length

> 10.0
\edge.Center0fMass
t> Vector (5, 0, 0)

Mise en forme a l'écran

Jusqu'a présent, nous avons créé un objet a arétes vives (bords),

mais il n'est pas visible a 1'écran.

C'est parce que nous n'avons manipulé que des objets en Python.
L'écran FreeCAD n'affiche uniquement que les vues 3D que vous
lui demandez d'afficher.

Pour cela, nous utilisons une méthode simple:

Un Objet 3D sera affiché dans notre document FreeCAD, et notre
dessin sera affiché sous forme filaire.

Utilisez cette commande chaque fois que vous voudrez afficher
votre forme géométrique a 1'écran.

Création d'un contour (Wire)

Un contour est une ligne multi-arétes, et peut étre créé dans une
liste d'arétes ou méme une liste de lignes (fils):

47 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

,edgel = Part.makelLine((0,0,0), (10,0,0))
ledge2 = Part.makeLine((10,0,0), (10,10,0))
wirel = Part.Wire([edgel, edge2?])

edge3 = Part.makeLine((10,10,0), (0,10,0))
iedged4 = Part.makelLine((0,10,0), (0,0,0))
wire2 = Part.Wire([edge3,edge4d])

'wire3 = Part.Wire([wirel,wire2])

wire3.Edges

> [<Edge object at 016695F8>, <Edge object at 0197AED8>, <Edge object at 01828B20>, <Edge object at 0190/

:Part.show(wire3)

http://www.freecadweb.org/wiki/index.php?title=...

Part.show (wire3) permet d'afficher les 4 bords qui composent
notre contour filaire.
D'autres informations utiles, peuvent étre facilement récupérées:

:wire3.Length
> 40.0

wire3.Center0OfMass

> Vector (5,

5, 0)

:wire3.isClosed()

> True

wire2.isClosed()

:> False

Création d'une face

Seul les faces a contour fermés seront valides.

Dans cet exemple, wire3 est un contour fermé, et Wire2 est un

contour ouvert (voir ci-dessus)

face = Part.Face(wire3)
iface.Area

> 99.999999999999972
:face.CenterOfMass

> Vector (5, 5, 0)
face.Length

> 40.0

face.isValid()

:> True

isface = Part.Face(wire2)
face.isValid()

> False

Seul les faces auront une superficie, mais les lignes et les bords

(arétes) n'en possede pas .
Création d'un cercle

Un cercle est créé simplement comme ceci:

circle = Part.makeCircle(10)
1

48 sur 246

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

circle.Curve |
> Circle (Radius : 10, Position : (0, 0, 0), Direction : (0, 0, 1)) X
I

Si vous voulez le créer a une coordonnée précise, faites comme
ceci:

:ccircle = Part.makeCircle(10, Base.Vector(10,0,0), Base.Vector(1,0,0))
ccircle.Curve
> Circle (Radius : 10, Position : (10, 0, 0), Direction : (1, 0, 0))

ccircle sera créé a une distance de 10 a partir de 1'axe d'origine x
et sera orienté dans la direction de 1'axe x.

Remarque: makeCircle accepte uniquement Base.Vector() pour la
position mais pas les tuples (http://fr.wikipedia.org

/wiki/Modele relationnel) normaux.

Vous pouvez également créer un arc de cercle en donnant l'angle
de départ et l'angle de la fin comme suit:

math pi
iarcl = Part.makeCircle(10, Base.Vector(0,0,
:arc2 = Part.makeCircle(10, Base.Vector(0,0,

, Base.Vector(0,0,1), 0, 180)
, Base.Vector(0,0,1), 180, 360)

Si nous joignions les deux arcs arcl et arc2 nous obtiendrons un
cercle.

L'angle fourni doit étre exprimé en degrés, s'il sont en radians,
vous devez les convertir en degres avec la formule: degrés =
radians * 180/PI ou en utilisant le module mathématiques
Python (apres avoir fait import math, bien sir):

Création d'un arc sur des points (reperes)

Malheureusement, il n'existe pas de fonction makeArc mais nous
avons la fonction Part.Arc pour créer un arc sur trois points de
reférence.

Fondamentalement, nous pouvons supposer un arc attaché sur un
point de départ, passant sur un point central et se termine sur
un point final en .

Part.Arc crée un objet arc pour lequel .ToShape() doit étre
appelée pour obtenir un objet ligne (edge), de cette maniere nous

49 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

utiliserons Part.Line lieu de Part.makeLine.

1

\arc = Part.Arc(Base.Vector(0,0,0),Base.Vector(0,5,0),Base.Vector(5,5,0))
arc

> <Arc object>

:arcfedge = arc.toShape()

Arc travaille uniquement avec Base.Vector() pour les points
mais pas pour les tuples.

arc_edge est ce qui sera affiché a 1'aide Part.show (arc edge).
Vous pouvez également obtenir un arc de cercle en utilisant une
partie de cercle:

! math pi
circle = Part.Circle(Base.Vector(0,0,0),Base.Vector(0,0,1),10)
larc = Part.Arc(c,0,pi)

Les arcs Arc sont des lignes (edges). Ils peuvent donc, étre
utilisés aussi comme contour en filaire.

Création de polygones

Un polygone est tout simplement une ligne (wire) avec de
multiples lignes droites.

La fonction makePolygon crée une liste de points et crée une
ligne de points en points:

Création de courbes de Bézier

Les courbes de Bézier (http://fr.wikipedia.org/wiki/Courbe de B
%C3%A9zier) sont utilisées pour modéliser des courbes lisses a
I'aide d'une série de reperes (points de controle) avec un nombre
de reperes représentants la précision (fluidité de la courbe)
optionnel. La fonction ci-dessous fait un Part.BezierCurve avec
une série de points FreeCAD.Vector. (Note : l'indice du premier
repere et du nombre commencent a 1, et pasa 0.)

I
: makeBCurveEdge(Points):

I geomCurve = Part.BezierCurve()
. geomCurve.setPoles(Points)

50 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

edge = Part.Edge(geomCurve) !
(edge) |
1

e e e e e e e e e e e e e —— 2

Création d'une forme plane

Une forme plane, est tout simplement une surface plane
rectangulaire.

La méthode utilisée pour créer une forme plane est la suivante:
makePlane(longueur, largeur, [point de départ, direction]).
Par défaut point de départ = Vecteur(0,0,0) et direction =
Vecteur(0,0,1).

L'utilisation point de départ = Vecteur(0,0,1) va créer la forme
sur le plan axe z, tandis que direction = Vecteur(1,0,0) va
créer la forme sur le plan axe x:

(Pour s'y retrouver un peu sur les axes, Vecteur (0,0, 1)
est égal a Vecteur (X=0,Y=0,Z=1) I'ordre des axes sera
toujours (x,y, z))

:plane = Part.makePlane(2,2)

plane

:><Face object at 028AF990>

jplane = Part.makePlane(2,2, Base.Vector(3,0,0), Base.Vector(0,1,0))
plane.BoundBox

:> BoundBox (3, 0, 0, 5, 0, 2)

BoundBox est un rectangle qui possede une diagonale
commencant sur le plan (3,0,0) et se terminant a (5,0,2).
L'épaisseur de la boite (Box) dans l'axe y est égal a zéro, car
notre forme est totalement plane.

PS: makePlane accepte uniquement Base.Vector() pour
start_pnt et dir_normal mais ici, pas de tuples

Création d'une ellipse

Pour créer une ellipse, il existe plusieurs fagons:

Créez une ellipse avec, grand rayon = 2, petit rayon = 1 et centre
= (0,0,0)

51 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Crée une ellipse positionnée au point "Center", le plan de
l'ellipse est défini par Center, S1 et S2,

le grand axe est définit par Center et S1,

son grand rayon est la distance entre Center et S1,

son petit rayon est la distance entre S2 et le grand axe.

Crée une ellipse avec un grand rayon MajorRadius et un petit
rayon MinorRadius, et situé dans le plan défini par (0,0,1)

eli = Part.Ellipse(Base.Vector(10,0,0),Base.Vector(0,5,0),Base.Vector(0,0,0)) |
PPart.show(eli.toShape()) X
1

Dans le code ci-dessus, nous avons passé S1 (Grand rayon), S2
(Petit rayon) et le centre (les coordonnées centrales).

De méme que 1'Arc, I'Ellipse crée également un objet Ellipse
mais pas d'aréte (bords), nous avons donc besoin de le convertir
en aréte a l'aide toShape() pour l'afficher.

PS: Arc accepte uniquement Base.Vector() pour les points mais
pas les tuples.

pour construire 1'Ellipse ci-dessus, nous avons entré les
coordonnées centrales, le Grand rayon et le Petit rayon.

Création d'un Tore

Nous créons un Tore en utilisant la méthode makeTorus(
rayonl , rayon2 , [pnt, dir, anglel , angle2, angle]).

52 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Par défaut,

Rayonl = est le rayon du grande cercle

Rayon2 = est le rayon du petit cercle,

pnt = Vecteur(0,0,0),pnt est le centre de tore

dir = Vecteur(0,0,1), dir est la direction normale

anglel = 0, est I'angle de début pour le petit cercle exprimé en
radians

angle2 = 360 est I'angle de fin pour le petit cercle exprimé en
radians

angle = 360 le dernier parametre est la section du tore

Le code ci-dessus créera un tore avec un diametre de 20 (rayon
de 10) et une épaisseur de 4 (rayon du petite cerlce 2)

Le code ci-dessus créera un demi tore, seul le dernier parametre
change a savoir 1'angle et, les angles restants sont prédéfinis.
En donnant un angle de 180 degrés, crée un tore de 0 a 180
degrés, c'est a dire un demi tore.

Création d'un cube ou d'un parallélépipede

Utilisez makeBox (longueur, largeur , hauteur, [pnt, dir]

).
Par défaut pnt=Vector(0,0,0) and dir=Vector(0,0,1)

box = Part.makeBox(10,10,10)
Len(box.Vertexes)
> 8

Création d'une Sphere

53 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Nous utiliserons makeSphere (rayon, [pnt, dir, anglel,
angle2 , angle3]).

rayon = rayon de la sphere par défaut,

pnt = Vecteur (0,0,0),

dir = Vecteur (0,0,1),

anglel = -90, verticale minimale de la sphere

angle2 = 90, verticale maximale de la sphere

angle3 = 360, le diametre de la sphere elle-méme

isphere = Part.makeSphere(10)
themisphere = Part.makeSphere(10,Base.Vector(0,0,0),Base.Vector(0,0,1),-90,90,180)
I

Création d'un Cylindre

Nous utiliserons makeCylinder (radius , height , [pnt , dir
,angle]).

Par défaut,

pnt=Vector(0,0,0),dir=Vector(0,0,1) and angle=360

cylinder = Part.makeCylinder(5,20)
:partCylinder = Part.makeCylinder(5,20,Base.Vector(20,0,0),Base.Vector(0,0,1),180)

Création d'un Cone

Nous utiliserons makeCone (radiusl , radius2 , height, [pnt
, dir , angle]).

Par défaut,

pnt=Vector(0,0,0), dir=Vector(0,0,1) and angle=360

cone = Part.makeCone(10,0,20) :
:semicone = Part.makeCone(10,0,20,Base.Vector(20,0,0),Base.Vector(0,0,1),180) X
1

Modification d'une forme

I1 ya plusieurs manieres de modifier des formes. Certaines sont
de simples opérations de transformation telles que le
déplacement ou la rotation de formes, d'autres, sont plus
complexes, tels que fusion et en soustraction d'une forme a une

54 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

autre. Tenez en compte.

Opérations de Transformation

Transformer une forme

La transformation est l'action de déplacer une forme d'un endroit
a un autre.

Toute forme (aréte, face, cube, etc ..) peut étre transformeé de la
meéme maniere:

myShape = Part.makeBox(2,2,2)
:myShape.translate(Base.Vector(Z,0,0))

Cette commande va déplacer notre forme "myShape" de 2 unités
dans la direction x.

Rotation d'une forme

Pour faire pivoter une forme, vous devez spécifier le centre de
rotation, 1'axe, et 1'angle de rotation:

Cette opération va faire pivoter notre forme de 180 degrés sur
l'axe z.

Transformations génériques avec matrices

Une matrice est un moyen tres simple de mémoriser les
transformations dans le mode 3D. Dans une seule matrice, vous
pouvez définir les valeurs de transformation, rotation et mise a
1'échelle a appliquer a un objet.

Par exemple:

:myMat = Base.Matrix()
myMat.move(Base.Vector(2,0,0))
:myMat.rotateZ(math.pi/Z)

55 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

PS: les matrices de FreeCAD travaillent en radians. En outre,
presque toutes les opérations matricielles qui travaillent avec un
vecteur peut aussi avoir 3 nombres, de sorte que ces 2 lignes
effectuent le méme travail:

I

myMat.move(2,0,0)
myMat.move(Base.Vector(2,0,0))
I

Lorsque notre matrice est paramétrée, nous pouvons l'appliquer
a notre forme. FreeCAD fournit nous fournit 2 méthodes:
transformShape() et transformGeometry().

La différence est que, avec la premiere, vous ne verez pas de
différence (voir "mise a 1'échelle d'une forme" ci-dessous).
Donc, nous pouvons opérer notre transformation comme ceci:

Echelle du dessin (forme)

Changer 1'échelle d'une forme est une opération plus dangereuse,
car, contrairement a la translation ou a la rotation, le changement
d'échelle non uniforme (avec des valeurs différentes pour x, y et
z) peut modifier la structure de la forme!

Par exemple, le redimensionnement d'un cercle avec une valeur
plus élevée horizontalement que verticalement le transformera
en une ellipse, qui mathématiquement tres différent.

Pour modifier 1'échelle, nous ne pouvons pas utiliser le
transformShape, nous devons utiliser transformGeometry():

:myMat = Base.Matrix()
myMat.scale(2,1,1)
:myShape=myShape.transformGeometry(myMat)

Opérations Booléennes

56 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Soustraction

Soustraire une forme d'une autre est appelé, dans le jargon OCC
(http://www.opencascade.org/org/doc/)/FreeCAD "cut" (coupe) et,
se fait de cette maniere:

:cylinder = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))
isphere = Part.makeSphere(5,Base.Vector(5,0,0))

diff = cylinder.cut(sphere)

I

I o = = = = = = = = = = = = = = = = = = e = e = e = = = e = = = = = = = = e = -
Intersection

De la méme maniere, l'intersection entre 2 formes est appelé
"common'" et se fait de cette maniere:

[T T T T T T T T T T T T T T T T E |
:cylinderl = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0)) :
cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1)) \
icommon = cylinderl.common(cylinder?2) !
I o = = = = = = = = = = = = = = = = = = e = e = e = = = e = = = = = = = = e = -
Fusion

La fusion "fuse", fonctionne de la méme maniere:

[T T T T T T T T T T T T T T T T T |
:cylinderl = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0)) :
cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1)) \
:fuse = cylinderl.fuse(cylinder2) !
I e = = = = = e = = e === -

Une section, est l'intersection entre une forme solide et une
forme plane.

Il retournera une courbe d'intersection, et sera composé de bords
(edges, arétes)

I

icylinderl Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))
icylinder2 Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1))
isection = cylinderl.section(cylinder2)

isection.Wires

> (] :

isection.Edges

> [<Edge object at OD87CFE8>, <Edge object at 019564F8>, <Edge object at 0D998458>,
| <Edge object at OD86DE18>, <Edge object at OD9B8E8O>, <Edge object at 012A3640>,
1 <Edge object at OD8F4BB0O>]

57 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Extrusion

L'extrusion est une action de "pousser" une forme plane dans une
certaine direction et résultant en un corps solide.
Par exemple, pousser sur un cercle pour le transformer en tube:

circle = Part.makeCircle(10)
tube = circle.extrude(Base.Vector(0,0,2))
1

Si votre cercle est vide, vous obtiendrez un tube vide.
Mais si votre cercle est un disque, avec une face pleine, vous
obtiendrez un cylindre solide:

wire = Part.Wire(circle)
disc = Part.makeFace(wire)
:cylinder = disc.extrude(Base.Vector(0,0,2))

Exploration de la forme (shape)

Vous pouvez facilement explorer la structure de ses données
topologique:

I Part

b = Part.makeBox(100,100,100)
:b.Wires

w = b.Wires[0]

W

w.Wires
w.Vertexes
:Part.show(w)
w.Edges

e = w.Edges[0]
e.Vertexes

W = e.Vertexes[0]
:v.Point

En tapant ce code dans l'interpréteur Python, vous aurez une
bonne compréhension de la structure de Part objets.

Ici, notre commande makebox() créé une forme solide. Ce
solide, comme tous les solides Part, contiennent des faces. Une
face est constituée de lignes, qui sont un ensemble de bords,
arétes qui délimitent la face. Chaque face a au moins un contour
fermé (il peut en avoir plus si la face comporte un ou plusieurs
trou). Dans une ligne, nous pouvons voir chaque coté
séparément, et nous pouvons voir les sommets (Vertex) de

58 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

chaque bord ou aréte. Lignes et arétes n'ont que deux sommets,
évidemment.

Analyse des aréetes (Edge)

Dans le cas d'un bord (ou aréte), qui est une courbe arbitraire, il
est fort probable que vous voulez faire une discrétisation. Dans
FreeCAD, les bords sont paramétrés par leurs longueurs.

Cela signifie, que vous pouvez suivre une aréte/courbe par sa
longueur:

: Part

ibox = Part.makeBox(100,100,100)
)anEdge = box.Edges[0]

! anEdge.Length

Maintenant, vous pouvez accéder a un grand nombre de
propriétés de 1'aréte en utilisant sa longueur comme une position.
C'est a dire que, si l'aréte(ou bord) a une longueur de 100 mm la
position de départ est 0 et sa position extreme est 100.

I

:anEdge.tangentAt(0.0) # tangent direction at the beginning |
anEdge.valueAt(0.0) # Point at the beginning :
,anEdge.valueAt(100.0) # Point at the end of the edge !
ianEdge.derivativelAt(50.0) # first derivative of the curve in the middle !
\anEdge.derivative2At(50.0) # second derivative of the curve in the middle X
:anEdge.derivative3At(50.0) # third derivative of the curve in the middle 1
ankdge.center0OfCurvatureAt (50) # center of the curvature for that position X
,anEdge.curvatureAt(50.0) # the curvature !
:anEdge.normalAt(SO) # normal vector at that position (if defined) !

Utilisation de la sélection

Ici, nous allons voir comment nous pouvons utiliser la fonction de
sélection, quand l'utilisateur a fait une sélection dans la
visionneuse.

Tout d'abord, nous créons une boite (box), et nous le voyons et la
sélectionnons dans la visionneuse.

| Part
\Part.show(Part.makeBox(160,100,100))
1Gui.SendMsgToActiveView("ViewFit")

1

Sélectionnez maintenant quelques faces ou arétes.
Avec ce script, vous pouvez parcourir tous les objets sélectionnés

59 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

et visionner leurs sous-éléments:

0 Gui.Selection.getSelectionEx():
0.0bjectName
s 0.SubElementNames:
"name: ",s
s 0.SubObjects:
"object: ",s

length = 0.0 |
! 0 Gui.Selection.getSelectionEx(): \
s 0.SubObjects: !

length += s.Length !

"Length of the selected edges:" ,length X
1

Exemple Complet: "The OCC bottle"

Un exemple typique, trouvée sur OpenCasCade Getting Started
Page (http://www.opencascade.org/org/gettingstarted/appli/) vous
montre comment construire une bouteille.

C'est un excellent exercice pour FreeCAD. En fait, vous pouvez
suivre notre exemple ci-dessous et regarder simultanément la
page OCC (http://www.opencascade.org/org/doc/), vous
comprendrez comment les structures OCC sont misent en ceuvre
dans FreeCAD.

Le script complet ci-dessous de MakeBottle.py est également
inclus dans l'installation de FreeCAD dans le dossier Mod/Part et
peut étre appelé a partir de l'interpréteur Python en tapant:

1

: Part

I MakeBottle

bottle = MakeBottle.makeBottle()
:Part.show(bottle)

Le script complet
Ici, le script complet de MakeBottle.py (extension .py):

Part, FreeCAD, math
FreeCAD Base

makeBottle(myWidth=50.0, myHeight=70.0, myThickness=30.0):
aPntl=Base.Vector(-myWidth/2.,0,0)
aPnt2=Base.Vector(-myWidth/2.,-myThickness/4.,0)

60 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

aPnt3=Base.Vector(0, -myThickness/2.,0)
aPnt4=Base.Vector(myWidth/2.,-myThickness/4.,0)
aPnt5=Base.Vector(myWidth/2.,0,0)

aArcO0fCircle = Part.Arc(aPnt2,aPnt3,aPnt4)
aSegmentl=Part.Line(aPntl,aPnt2)
aSegment2=Part.Line(aPnt4,aPnt5)
aEdgel=aSegmentl.toShape()
aEdge2=aArc0fCircle.toShape()
aEdge3=aSegment2.toShape()
aWire=Part.Wire([aEdgel, aEdge2,aEdge3])

aTrsf=Base.Matrix()
aTrsf.rotateZ(math.pi) # rotate around the z-axis

aMirroredWire=aWire.transformGeometry(aTrsf)
myWireProfile=Part.Wire([aWire,aMirroredWire])
myFaceProfile=Part.Face(myWireProfile)
aPrismVec=Base.Vector(0,0,myHeight)
myBody=myFaceProfile.extrude(aPrismVec)
myBody=myBody.makeFillet (myThickness/12.0,myBody.Edges)
neckLocation=Base.Vector(0,0,myHeight)
neckNormal=Base.Vector(0,0,1)

myNeckRadius = myThickness / 4.

myNeckHeight = myHeight / 10

myNeck = Part.makeCylinder(myNeckRadius,myNeckHeight,neckLocation,neckNormal)
myBody = myBody. fuse(myNeck)

faceToRemove = 0
zMax = -1.0

Xp myBody.Faces:

surf = xp.Surface
type(surf) == Part.Plane:
z = surf.Position.z
z > zMax:
zMax = z
faceToRemove = xp

myBody = myBody.makeThickness([faceToRemove], -myThickness/50 , 1.e-3)

Part, FreeCAD, math
FreeCAD Base

Nous aurons besoin, bien stir, du module Part, mais aussi du
module FreeCAD.Base,

qui contient les structures de base de FreeCAD comme les
vectors et matrixes.

makeBottle (myWidth=50.0, myHeight=70.0, myThickness=30.0):
aPntl=Base.Vector(-myWidth/2.,0,0)
aPnt2=Base.Vector(-myWidth/2.,-myThickness/4.,0)
aPnt3=Base.Vector (0, -myThickness/2.,0)
aPnt4=Base.Vector(myWidth/2.,-myThickness/4.,0)
aPnt5=Base.Vector(myWidth/2.,0,0)

61 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Ici, nous définissons notre fonction MakeBottle.

Cette fonction peut étre appelée sans argument, comme nous
'avons fait ci-dessus, les valeurs par défaut, de largeur, hauteur
et épaisseur seront utilisés.

Ensuite, nous définissons une paire de points qui seront utilisés
pour la construction de notre profil de base.

I

i aArcOfCircle = Part.Arc(aPnt2,aPnt3,aPnt4)
aSegmentl=Part.Line(aPntl,aPnt2)

! aSegment2=Part.Line(aPnt4,aPnt5)

C'est ici que nous définissons les formes géomeétriques: un arc,
composé de 3 points, et deux segments de ligne, de 2 points
chacun.

aEdgel=aSegment1l.toShape()
aEdge2=aArc0fCircle.toShape()
aEdge3=aSegment2.toShape()
aWire=Part.Wire([aEdgel, aEdge2,aEdge3])

Rappelez-vous la différence entre la géométrie et les formes?
Nous allons construire les formes de notre forme géomeétrique. 3
bords (bords ou arétes peuvent étre des segments de droites ou
des courbes), puis nous raccordons tous les sommets.

aTrsf=Base.Matrix()

aTrsf.rotatezZ(math.pi) # rotate around the z-axis
aMirroredWire=aWire.transformGeometry(aTrsf)
myWireProfile=Part.Wire([aWire,aMirroredWire])

Jusqu'a présent, nous n'avons construit que la moitié du profil.
Qui est plus facile que de construire 1'ensemble du profil, et nous
allons simplement refléter 1'autre moitié du profil, et coller les
deux moitiés ensemble. Nous allons donc d'abord créer une
matrice. Une matrice, est un mode opératoire pour appliquer des
transformations aux objets dans le monde de la 3D, car, il peut
contenir dans une seule structure toutes les transformations de
base qui peuvent étres fait sur les objets 3D (déplacement,
rotation et échelle). Nous créons la matrice, nous lui faisons subir
un effet miroir, et nous créons une copie de notre dessin avec
cette matrice. C'est de cette fagon, que la transformation est
appliquée. Nous avons maintenant deux contours, et nous
pouvons avec eux faire un troisieme contours, les contours sont

62 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

en fait des listes de bords.

myFaceProfile=Part.Face(myWireProfile)
aPrismVec=Base.Vector(0,0,myHeight)
myBody=myFaceProfile.extrude(aPrismVec)
myBody=myBody.makeFillet (myThickness/12.0,myBody.Edges)

Maintenant, nous avons un contour fermé, il peut étre transformé
en une face. Une fois que nous avons une face, nous pouvons
l'extruder.

Une fois fait, nous avons un solide. Puis, nous appliquons arrondi
a notre objet, car nous voulons lui donner un aspect "design",
n'est-ce pas?

I
. neckLocation=Base.Vector(0,0,myHeight) |
! neckNormal=Base.Vector(0,0,1) X
i myNeckRadius = myThickness / 4. !
. myNeckHeight = myHeight / 10 |
! myNeck = Part.makeCylinder(myNeckRadius,myNeckHeight,neckLocation,neckNormal) X

1

Maintenant, le corps de la bouteille est fait, nous avons encore
besoin de créer le goulot.
Donc, nous construisons un nouveau solide, avec un cylindre.

L'opération de fusion, qui dans d'autres applications est parfois
appelé union, est tres puissante.

Cette opération prendra soin de coller ce qui doit étre collé et
enlever ce qui doit étre enlevé.

Puis, nous revenons a notre bouteille (Part solid), qui est le
résultat de notre fonction (return myBody).

Ce Part solid, comme toute autre forme solide, peut étre
attribuée a un Objet dans un document FreeCAD, avec:

myObject = FreeCAD.ActiveDocument.addObject("Part::Feature", "myObject")
:myObject.Shape = bottle

ou, encore plus simple:

63 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

Cube perceé

Ici un exemple complet de construction d'un cube percé.

http://www.freecadweb.org/wiki/index.php?title=...

La construction se fait face par face et quand le cube est terminé,

il est évidé d'un cylindre traversant.

Draft, Part, FreeCAD, math, PartGui, FreeCADGui, PyQt4

I

I

: math sqrt, pi, sin, cos, asin
: FreeCAD Base

I

size = 10

:poly = Part.makePolygon([(0,0,0), (size, 0, 0), (size, 0, size), (0, 0,
I

:facel = Part.Face(poly)

iface2 = Part.Face(poly)

face3 = Part.Face(poly)

iface4 = Part.Face(poly)

face5 = Part.Face(poly)

:face6 = Part.Face(poly)

1

myMat = FreeCAD.Matrix()
myMat.rotateZ(math.pi/2)
face2.transformShape (myMat)
:faceZ.translate(FreeCAD.Vector(size, 0, 0))
1

myMat.rotateZ(math.pi/2)
iface3.transformShape(myMat)
face3.translate(FreeCAD.Vector(size, size, 0))
1

:myMat.rotateZ(math.pi/Z)
face4.transformShape(myMat)
:face4.translate(FreeCAD.Vector(O, size, 0))

1

:myMat = FreeCAD.Matrix()
myMat.rotateX(-math.pi/2)
face5.transformShape(myMat)

1
face6.transformShape (myMat)
:face6.translate(FreeCAD.Vector(0,0,size))

1

myShell = Part.makeShell([facel, face2,face3, face4, face5,face6])
1

:mySolid = Part.makeSolid(myShell)

:mySolidRev = mySolid.copy()

mySolidRev.reverse()

1

:myCyl = Part.makeCylinder(2,20)
:myCyl.translate(FreeCAD.Vector(size/Z, size/2, 0))
I

:cutfpart = mySolidRev.cut(myCyl)
I

:Part.show(cutipart)
I

Chargement et sauvegarde

size),

(0, 0, 0)1)

Il ya plusieurs facons de sauver votre travail dans le Part Module

64 sur 246

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

. Vous pouvez bien siir sauvegarder votre document au format
FreeCAD, mais vous pouvez également enregistrer les objets
directement dans un format courant de CAQO, tels que BREP
(http://fr.wikipedia.org/wiki/B-Rep), IGS (http://fr.wikipedia.org
/wiki/Initial Graphics Exchange Specification), STEP
(http://en.wikipedia.org/wiki/Step (software)) et STL
(http://fr.wikipedia.org/wiki/STL (format)).

L'enregistrement d'une forme (un projet) dans un fichier est
facile, il y a les fonctions exportBrep(), exportiges(),
exportStl() et exportStep() qui sont des méthodes disponibles
pour toutes les formes d'objets.

Donc, en faisant:

1 Part
is = Part.makeBox(0,0,0,10,10,10)
:s.exportStep(“test.stp”)

Ceci sauve votre box (cube) dans le format .STP
Pour ouvrir un fichier BREP, IGES ou STEP simplement en faisant
le contraire:

Part
is = Part.Shape()
:s.read("test.stp”)

. Part

1 s = Part.Shape()

, s.read("file.stp") # incoming file igs, stp, stl, brep
! s.exportIges("file.igs") # outbound file igs

...

Notez que l'importation ou l'ouverture de fichiers BREP, IGES
ou STEP peut également étre effectuée directement a partir du
Menu Fichier -> Ouvrir, Menu Fichier -> Importer ou l'icone
"Ouvrir un document ou importer des fichiers", et pour
l'exportation d'un fichier par Menu Fichier -> Exporter

< précédent: Mesh Scripting/fr Index suivant: Mesh to Part/fr >

65 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Converting Part objects to Meshes/fr

La conversion des objets de haut niveau tels que les objets
(formes) en objets simples comme les mailles (Mesh) est une
opération facile, ou, toutes les faces d'un Objet Part deviennent
une composition de triangles (exemple sur le site de coin3d un
des moteurs de FreeCAD) (http://www.coin3d.org/usage
/casestudies/users/usageexample.2008-05-30.6001136448
/4ADVista.PNG).

Le résultat de cette triangulation (tessellation
(http://en.wikipedia.org/wiki/Tessellation)) est ensuite utilisé pour
construire un maillage (Mesh):

:#let's assume our document contains one part object
: Mesh
faces =[]
ishape = FreeCAD.ActiveDocument.ActiveObject.Shape
:triangles = shape.tessellate(1l) # the number represents the precision of the tessellation)
! tri triangles[1]:
face = []
i range(3):
vindex = tri[i]
face.append(triangles[0] [vindex])
, faces.append(face)
m = Mesh.Mesh(faces)
:Mesh.show(m)

Parfois, la triangulation de certaines faces offertes par
OpenCascade (http://www.opencascade.org/) sont assez laid. Si
une face a un forme rectangulaire et ne contient pas de trous ou
n'est pas limité par des courbes, vous pouvez également créer un
maillage sur cette forme:

Mesh |
makeMeshFromFace(u,v, face): |
(a,b,c,d)=face.ParameterRange X
pts=[1] |
j range(v): :

i range(u): X
5=1.0/(u-1)*(i*b+(u-1-i)*a) |
t=1.0/(v-1)*(J*d+(v-1-j)*c) |
pts.append(face.valueAt(s,t)) X
1

1

1

1

1

1

1

1

1

1

1

1

1

1

mesh=Mesh.Mesh()
j range(v-1):
i range(u-1):
mesh.addFacet(pts[u*j+i],pts[u*j+i+1],pts[u*(j+1)+1i])
mesh.addFacet (pts[u*(j+1)+i],pts[u*j+i+1],pts[u*(j+1)+i+1])

66 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Conversion de Mailles en Part objects

La conversion des mailles en Part objets est une opération
extrémement importante en CAQ, car, tres souvent vous recevrez
des données 3D au format Mesh (maillage) a partir d'autres
utilisateurs ou émis par d'autres applications de CAO. Les Mailles
sont tres pratiques pour représenter les formes géomeétriques
libres et de grandes scenes visuelles, car il est tres 1éger, mais
pour la CAO nous préférons généralement des objets de niveau
supérieur qui portent beaucoup plus d'informations comme, l'idée
de solides, ou faces sont faites de courbes au lieu de triangles.

La conversion des mailles en un de ces objets de niveau supérieur
(gérée par le Part Module dans FreeCAD) n'est pas une opération
facile. Les Mailles peuvent étres faites de milliers de triangles
(par exemple lorsqu'ils sont générés par un scanner 3D), et des
solides faits du méme nombre de faces serait extrémement lourd
a manipuler. Donc, vous voudrez généralement voir 1'objet
optimisé lors de la conversion.

FreeCAD propose actuellement deux méthodes pour convertir
des Parts objets en mailles. La premiere méthode est simple, la
conversion directe, sans aucune optimisation:

! Mesh,Part

mesh = Mesh.createTorus()

ishape = Part.Shape()

ishape.makeShapeF romMesh (mesh.Topology,0.05) # the second arg is the tolerance for sewing
isolid = Part.makeSolid(shape)

:Part.show(solid)

La seconde méthode, offre la possibilité d'examiner les aspects de
mailles coplanaires, lorsque 1'angle entre eux est sous une
certaine valeur. Cela permet de construire des formes beaucoup
plus simples:

I

I# let's assume our document contains one Mesh object

I Mesh,Part,MeshPart

faces = []

:mesh = App.ActiveDocument.ActiveObject.Mesh

isegments = mesh.getPlanes(0.00001) # use rather strict tolerance here
I

I

! i segments:

I len(i) > 0O:

: # a segment can have inner holes

! wires = MeshPart.wireFromSegment(mesh, i)

67 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

we assume that the exterior boundary is that one with the biggest bounding box
len(wires) > 0:
ext=None
max_length=0
i wires:

i.BoundBox.DiagonalLength > max_ length:

max_length = i.BoundBox.DiagonallLength

ext =1

wires.remove(ext)

all interior wires mark a hole and must reverse their orientation, otherwise Part.Face fails
i wires:
i.reverse()

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
' # make sure that the exterior wires comes as first in the lsit
! wires.insert (0, ext)

\ faces.append(Part.Face(wires))

1

1

:she11=Part.Compound(faces)

WPart.show(shell)

#solid = Part.Solid(Part.Shell(faces))

I#Part show(solid)

< précédent: Topological data scripting suivant: Scenegraph >
Index

68 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

De base, FreeCAD est une puissante compilation de différentes
bibliotheques graphiques, la plus importante étant OpenCascade
(http://en.wikipedia.org/wiki/Open CASCADE), pour la gestion et
la construction des formes géomeétriques, Coin3d
(http://en.wikipedia.org/wiki/Coin3D) pour l'affichage des formes
géomeétriques, et Qt (http://fr.wikipedia.org/wiki/Qt) pour créer
une interface utilisateur graphique (GUI) agréable et
fonctionnelle.

Les formes géométriques qui apparaissent dans les vues 3D de
FreeCAD sont des rendus obtenus par la bibliotheque Coin3D
(Coin3D est une application de Openlnventor standard
(http://fr.wikipedia.org/wiki/Inventor (bibliotheque logicielle))).

Le logiciel OpenCascade fournit les méme fonctionnalités que
coin3D, mais, dans les débuts de FreeCAD, il a été décidé de ne
pas utiliser le moteur d'OpenCascade et de se tourner plutot vers
le logiciel coin3D plus performant. Une bonne facon de se
renseigner sur cette bibliotheque est de lire le livre Open
Inventor Mentor (http://www-evasion.imag.fr/Membres
/Francois.Faure/doc/inventorMentor/sgi html/).

Actuellement OpenInventor (http://fr.wikipedia.org

/wiki/Inventor (bibliotheque logicielle)) est un langage de
description de scenes en 3 dimensions. La scene décrite dans
Openlnventor est restituée en OpenGL sur votre moniteur.
Coin3D prend en charge toutes ces procédures, de telle sorte que
le programmeur n'a pas besoin de traiter les appels complexes
d'OpenGL, il lui suffit simplement de fournir le code
OpenInventor adéquat.

Le gros avantage d'Openlnventor est, qu'il est une norme fort
bien connue et tres bien documentée.

Le gros travail que FreeCAD fait pour vous, consiste
essentiellement a traduire les informations sur les formes
géométriques OpenCascade en langage Openlnventor.

Openlnventor décrit une scene 3D sous la forme d'une scene

graphique (http://fr.wikipedia.org/wiki/Graphe de scene) ,
comme le montre 1'exemple ci dessous:

69 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Separator

Transform
image from Inventor

Property Transform Shape

Path

mentor (http://www-evasion.imag.fr/~Francois.Faure
/doc/inventorMentor/sgi html/index.html)

Openlnventor scenegraph, décrit tout ce qui fait partie d'une
scene 3D, comme les formes géomeétriques, les couleurs, les
matériaux, les lumieres etc., et structure toutes les données
d'une maniere claire et précise.

Cette structure peut étre groupée en sous-structures vous
permettant d'organiser le contenu de votre scéne de la maniere
qui vous conviens le mieux.

Voici un exemple d'un fichier Openlnventor:

#Inventor V2.0 ascii
1
:Separator {
RotationXYZ {
axis Z
angle 0
}
Transform {
translation 0 0 0.5
}
Separator {
Material {
diffuseColor 0.05 0.05 0.05

70 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

| }
' Transform {

! rotation 1 0 0 1.5708

| scaleFactor 0.2 0.5 0.2
: }
1

1

1

1

1

1

1

1
1
1
1
1
|
1
Cylinder { X
1
1
1
1
1
|

Comme vous pouvez le voir, la structure est tres simple. Vous
utilisez des séparateurs (Separator) pour organiser vos blocs de
données, un peu comme vous le feriez pour organiser vos fichiers
dans des dossiers.

Chaque instruction influe celle qui suit, par exemple, les deux
premiers articles a la racine de nos Separator sont une rotation
(RotationXYZ {..}) et une transformation (Transform {..}), ils
auront une incidence directe sur tous les éléments suivants
(comme, si vous changez I'attribut d'un dossier, tous les sous
dossiers seront affectés).

Dans un séparateur, nous définirons la matiere, dans un autre, la
transformation. Notre cylindre sera donc affecté par les deux
transformations, celle qui lui a été appliqué directement et celle
qui a été appliquée a son séparateur parent
(Separator{..Separator{..}} a la maniere des dossiers dans un
disque dur).

Nous avons également beaucoup d'autres d'éléments pour
organiser notre scene (projet), tels que des groupes, des
commutateurs ou des annotations.

Nous pouvons donner a nos objets des définitions tres complexes,
de la couleur, des textures des modes d'ombrage et de
transparence. Nous pouvons aussi définir de la lumiere, des
caméras et, méme du mouvement.

I1 est aussi possible d'intégrer des portions de scripts dans des
fichiers Openlnventor et de définir des comportements plus
complexes.

Si vous voulez en apprendre plus sur Openlnventor, allez tout de
suite sur The Inventor Mentor: Programming Object-Oriented 3D
Graphics with Open Inventor (http://www-evasion.imag.fr
/~Francois.Faure/doc/inventorMentor/sgi html/index.html).

Normalement, dans FreeCAD, nous n'avons pas besoin d'interagir

71 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

directement avec scenegraph Openlnventor.

Dans un document FreeCAD, chaque objet maillage, forme de la
piece ou toute autre chose, est automatiquement converti en
code Openlnventor et est inséré dans la scene graphique que
vous voyez dans la vue 3D.

Toutes modifications dans le document, ajout ou suppression
d'objets, sont en permanence mises a jour dans la scene
graphique. En fait, chaque objet (dans l'espace de 1'Application),
dispose d'un constructeur de la vue (un objet correspondant dans
I'espace Gui), responsable de la création du code Openlnventor.

Mais il y a de nombreux avantages a pouvoir accéder directement
a la scene graphique. Par exemple, nous pouvons modifier
temporairement l'apparence d'un objet, ou nous pouvons ajouter
des objets a la scéne qui n'ont aucune existence réelle dans le
document FreeCAD, tels que la construction de la géométrie, les
aides, conseils graphiques ou des outils qui permettent des
manipulations ou des informations a 1'écran.

FreeCAD dispose de plusieurs outils pour voir ou modifier le code
Openlnventor.

Par exemple, le code Python suivant, montre la représentation
Openlnventor d'un objet sélectionné:

1
:obj = FreeCAD.ActiveDocument.ActiveObject !
viewprovider = obj.ViewObject !
! viewprovider.toString() X

|

Mais nous avons aussi un module Python qui permet un acces
complet a toute chose gérée par Coin3D, comme, notre scene
graphique FreeCAD.

Alors, lisez la suite sur la page de pivy.

< précédent: Mesh to Part Index suivant: Pivy >

72 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Pivy (http://pivy.coin3d.org/) est une bibliotheque de codes qui
sert de passerelle entre Python et Coin3d
(http://www.coin3d.org), la bibliotheque 3D de rendu graphique
utilisé par FreeCAD. Lors de l'importation dans l'interpréteur
Python, Pivy permet de dialoguer immeédiatement avec les
procédures de Coin3d, tels que les vue3D, ou méme d'en créer de
nouvelles.

Pivy est inclus d'origine dans l'installation FreeCAD.

La bibliotheque d'outils est divisée en plusieurs parties,

= coin: pour manipuler formes graphiques (projet) et gérer le
systeme graphique (GUI), tels que plusieurs fenétres ou, dans
notre cas,

m qt : pour les interfaces.

Ces modules sont aussi accessibles a pivy, s'ils sont présents sur
le systeme bien sir.

Le module coin est toujours présent, et de toute facon c'est lui
que nous allons utiliser, nous n'aurons pas besoin de nous
occuper de l'affichage 3D dans une interface, FreeCAD s'en
occupe lui-méme.

Tout ce que nous aurons a faire, c'est:

...

Accéder et modifier une scene
graphique

Nous avons vu dans la page Scenegraph comment coin organise
une scene. Tout ce qui est affiché en 3D dans FreeCAD est
construit et géré par coin.

Nous avons une racine, et tous les objets sur I'écran sont ses

enfants, reliés par des nodes (noeuds). Les enfants aussi
peuvent avoir une descendance.

FreeCAD a un moyen facile d'accéder a la racine d'une scene 3D:

:sg = FreeCADGui.ActiveDocument.ActiveView.getSceneGraph()

73 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Vous pouvez inspecter immédiatement les enfants (branches) de
la scene 3D:

node

Certains de ces nodes, comme SoSeparators ou SoGroups,
peuvent avoir des enfants eux-mémes. La liste complete des coin
objets disponibles peut étre trouvée dans la documentation
official coin documentation (http://doc.coin3d.org
/Coin/classes.html).

Maintenant essayons d'ajouter quelque chose a notre scene
(projet).
Nous allons ajouter un beau cube rouge:

icol = coin.SoBaseColor()
col.rgb=(1,0,0)

icub = coin.SoCube()

myCustomNode = coin.SoSeparator()
myCustomNode .addChild(col)
myCustomNode .addChild (cub)
:sg.addChild(myCustomNode)

et voici notre (beau) cube rouge.
Maintenant, nous allons essayer ceci:

Vu ? Tout est encore accessible et modifiable a la volée.

Pas besoin de recalculer ou redessiner quoi que ce soit, coin
s'occupe de tout. Vous pouvez ajouter ce que vous voulez a votre
scene (projet), propriétés de changements, cacher des objets,
montrer des objets temporairement, faire n'importe quoi.

Bien siir, cela ne concerne que l'affichage de la vue 3D.
L'affichage du document ouvert est recalculé par FreeCAD, et

74 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

recalcule un objet quand il a besoin de 1'étre.

Donc, si vous changez l'aspect d'un objet existant dans FreeCAD,
ces modifications seront perdues si l'objet est recalculé, ou
lorsque vous rouvrez le fichier.

Un truc, pour travailler avec scenegraphs dans vos scripts, vous
pouvez, lorsque c'est nécessaire accéder a certaines propriétés
des nodes que vous avez ajoutés.

Par exemple, si nous voulions faire évoluer notre cube, nous
aurions ajouté un node SoTranslation a notre node personnalisé
et,

il aurait ressemblé a ceci:

:col = coin.SoBaseColor()
col.rgb=(1,0,0)

:trans = coin.SoTranslation()
itrans.translation.setValue([0,0,0])
icub = coin.SoCube()

myCustomNode = coin.SoSeparator()
myCustomNode.addChild(col)
mtCustomNode.addChild(trans)
myCustomNode.addChild(cub)
:sg.addChild(myCustomNode)

Souvenez-vous que dans une scene graphique Openlnventor,
I'ordre est tres important. Un noeud affecte ce qui suit, de sorte
que, si vous dites: couleur rouge, cube, couleur jaune, sphere !
vous obtiendrez un cube rouge et une sphere jaune.

Si nous traduisons maintenant notre noeud personnalisé, il vient
apres le cube, et ne l'affecte pas.

Si nous l'avions inséré lors de sa création, comme l'exemple
ci-dessus,

nous pourrions faire maintenant:

Et notre cube sauterait de 2 unités vers la droite.
Enfin, pour supprimer quelque chose, nous ferons:

Utilisation des mécanismes de rappel

75 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

(callback)

Un mécanisme de rappel (http://fr.wikipedia.org
/wiki/Fonction de rappel) est un systeme qui permet a la
bibliotheque que vous utilisez, comme notre bibliotheque coin de
faire un rappel comme, rappeler une certaine fonction pour
1'Objet Python en cours d'exécution.

Cela est extrémement utile, car, de cette maniere coin peut vous
avertir si un événement particulier survient dans la scéne.

Coin peut voir des choses tres différentes, comme, la position de
la souris, les clics sur un bouton de la souris, les touches du
clavier qui sont pressées, et bien d'autres choses.

FreeCAD dispose d'un moyen facile pour utiliser ces rappels:

I

' ButtonTest:

I __init (self):

' self.view = FreeCADGui.ActiveDocument.ActiveView

: self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.getMouseClic
I getMouseClick(self,event cb):

: event = event cb.getEvent()

: event.getState() == SoMouseButtonEvent.DOWN:

I "Alert!!! A mouse button has been improperly clicked!!!"

: self.view.removeEventCallbackSWIG(SoMouseButtonEvent.getClassTypeld(),self.callback)

I
I
I
I

ButtonTest()

Le rappel doit étre initiée a partir d'un objet, et, cet objet doit
toujours étre actif au moment du rappel.

Voir aussi une liste complete des événements possibles et leurs
parametres (en), ou dans la documentation officielle de coin
(http://doc.coin3d.org/Coin/classes.html).

Documentation

Malheureusement, pivy ne dispose pas encore d'une
documentation appropriée, mais puisqu'il s'agit d'une traduction
exacte de coin, vous pouvez utiliser en toute sécurité la
documentation révérencielle de coin (http://doc.coin3d.org
/Coin/classes.html), et utiliser le style Python au lieu du style c
++ (par exemple SoFile::getClassTypeld() en c++, serait
SoFile.getClassld() en pivy)

76 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

< précédent: Scenegraph Index suivant: PySide >

77 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

PySide

PySide (http://fr.wikipedia.org/wiki/PySide)est un Python
obligatoire de 1'outil mutiplateforme GUI de Qt. FreeCAD utilise
PySide pour tous les GUI (Interface Graphique Utilisateur).
PySidea évolué a partir du package PyQt qui était auparavant
utilisé par FreeCAD pour son interface graphique. Voir
Differences Between PySide and PyQt (http://qt-project.org
/wiki/Differences Between PySide and PyQt) pour plus
d'information sur ces différences.

Les utilisateurs de FreeCAD atteingnent souvent les limites tout
en utilisant l'interface intégrée. Mais pour les utilisateurs qui
souhaitent personnaliser leurs opérations alors l'interface Python
existe et est documentée dans le Didacticiel de scripts Python.
L'interface Python pour FreeCAD avait une grande flexibilité et
de la puissance.Pour cette interaction de l'utilisateur Python avec
Freecad , on utilise PySide, qui est est documenté sur cette page.

Python offre la mention «d'impression» qui donne le code:

...

Avec l'instruction Python print vous avez seulement un controle
limité de l'apparence et du comportement. PySide fournit le
controle manquant et gere également les environnements (tels
que l'environnement de fichier macro FreeCAD) ou les
installations intégrées de Python ne sont pas suffisantes

Les capacités de PySide varient de:

It's almost lunch time

°® ==3

OK

Q_)/

78 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

PySide est décrit dans les 3 pages suivantes qui doivent se suivre
I'une apres l'autre

m Exemples PySide Débutant (Bonjour tout le monde, annonces,
saisir du texte, entrez le numéro)

m Exemples PySide intermédiaire (fenétre dimensionnement,
cacher des widgets, des menus contextuels, position de la
souris, les événements de souris)

m Exemples PySide avancés (widgets, etc.)

Elles divisent 1'objet en 3 parties, différenciées selon le niveau de
connaissance de PySide, Python et 1 FreeCAD. La premiere page
est un apercu et un documents de référence donnant une
description de PySide et comment il est mis en place tandis que
les deuxieme et troisieme pages sont pour la plupart des
exemples de code a différents niveaux.

L'intention est que les pages associées fourniront du code Python
simple pour exécuter PySide de sorte que l'utilisateur travaillant
sur un probléme peut facilement copier le code, le collez-le
dansson propre travail, 1'adapter si nécessaire et retourner a leur
résolution de problemes avec FreeCAD. J'espere qu'ils n' auront
pas a aller fouiller a travers l'Internet a la recherche de réponses
aux questions PySide. Dans le méme temps cette page n' est pas
destinée a remplacer les différents tutoriels PySide complets et
les sites de référence disponibles sur le web.

79 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

< previous: Pivy Index next: Scripted objects >

80 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Outre les types d'objets standards tels que les annotations, les
mailles et les objets Parts, FreeCAD offre également la possibilité
incroyable d'écrire des scripts d'objets 100% Python. Ces "objets"
se comporteront exactement comme n'importe quels autres
objets dans FreeCAD, et sont, sauvegardés et restaurés
automatiquement dans le répertoire de chargement/sauvegarde.
Une particularité doit étre comprise, ces objets sont enregistrés
dans des fichiers FreeCAD FcStd avec le module Python cPickle
(http://docs.python.org/release/2.5/lib/module-
cPickle.html). Ce module transforme un objet (code) Python en
une chaine de caracteres (texte), lui permettant d'étre ajouté au
fichier sauvegardé.

Une fois chargé, le module cPickle utilise cette chaine pour
recréer 1'objet d'origine, a condition qu'il ait acces au code source
qui l'a créé.

Cela signifie que si vous enregistrez un tel objet personnalisé et
I'ouvrez sur une machine ou le code source Python qui a créé
'objet n'est pas présent, 1'objet ne sera pas recréé.

Si vous distribuez ces scripts a d'autres, vous devrez aussi
distribuer l'ensemble du script Python qui 1'a créé.

Les fonctionnalités de Python suivent les mémes regles que
toutes les fonctionnalités de FreeCAD: ils sont séparés en
plusieurs parties celle App (application) et GUI parts
(interface graphique).

La partie Object App (application), définit la forme géométrique
de notre objet, tandis que la partie graphique (GUI), définit la
facon dont 1'objet sera affiché a 1'écran.

L'outil View Provider Object (créateur de vue), comme toutes
les fonctions FreeCAD, n'est disponible que lorsque vous
exécutez FreeCAD dans son interface (GUI).

I1 ya plusieurs manieres et méthodes disponibles pour créer votre
projet. Les méthodes utilisées doivent étres une des méthodes
prédéfinies que vous fourni FreeCAD, et apparaitra dans la
fenétre Propriété, afin qu'ils puissent étre modifiés par
I'utilisateur (onglet Données).

De cette maniere, les objets sont FeaturePython (ont toutes les

81 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

propriétés de Python) et sont totalements paramétriques.
Vous pouvez paramétrer les propriétés et 1'affichage
ViewObject de 1'objet séparément.

Astuce: dans les versions antérieures, nous avons utilisé le
module Python cPickle (http://docs.python.org/release/2.5/1ib
/module-cPickle.html). Cependant, ce module exécute du code
arbitrairement et provoque ainsi des problemes de sécurité.
Alors, nous avons opté pour le module Python json.

Exemples de base

L'exemple suivant (portion) peut étre trouvé sur la page, src/Mod
/TemplatePyMod/FeaturePython.py (http://free-
cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod
/TemplatePyMod/FeaturePython.py?view=markup) qui inclus
beaucoup d'autres exemples:

"Examples for a feature class and its view provider."

FreeCAD, FreeCADGui
pivy coin

Box:
__init (self, obj):
"''"'Add some custom properties to our box feature'''"
obj.addProperty("App::PropertyLength","Length", "Box","Length of the box").Length=1.0
obj.addProperty("App::PropertyLength","Width", "Box","Width of the box").Width=1.0
obj.addProperty("App::PropertyLength","Height", "Box", "Height of the box").Height=1.0
obj.Proxy = self

onChanged(self, fp, prop):
"'"'"'Do something when a property has changed''"'"
FreeCAD.Console.PrintMessage("Change property: " + str(prop) + "\n")

execute(self, fp):
"'''Do something when doing a recomputation, this method is mandatory''"'"
FreeCAD.Console.PrintMessage("Recompute Python Box feature\n")

ViewProviderBox:
__init (self, obj):
"''"'Set this object to the proxy object of the actual view provider'''"
obj.addProperty("App::PropertyColor","Color", "Box","Color of the box").Color=(1.0,0.0,0.0)
obj.Proxy = self

attach(self, obj):

"'''Setup the scene sub-graph of the view provider, this method is mandatory''"'"
self.shaded = coin.SoGroup()

self.wireframe = coin.SoGroup()

self.scale = coin.SoScale()

self.color = coin.SoBaseColor()

data=coin.SoCube()
self.shaded.addChild(self.scale)
self.shaded.addChild(self.color)
self.shaded.addChild(data)

82 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

obj.addDisplayMode(self.shaded, "Shaded");
style=coin.SoDrawStyle()

style.style = coin.SoDrawStyle.LINES
self.wireframe.addChild(style)
self.wireframe.addChild(self.scale)
self.wireframe.addChild(self.color)
self.wireframe.addChild(data)
obj.addDisplayMode(self.wireframe, "Wireframe");
self.onChanged(obj, "Color")

def updateData(self, fp, prop):
"'"*'If a property of the handled feature has changed we have the chance to handle this here
fp is the handled feature, prop is the name of the property that has changed
1 = fp.getPropertyByName("Length")
w = fp.getPropertyByName("Width")
h fp.getPropertyByName("Height")
self.scale.scaleFactor.setValue(l,w,h)
pass

def getDisplayModes(self,obj):
"'"'"'Return a list of display modes.
modes=[1]
modes.append("Shaded")
modes.append("Wireframe")
return modes

def getDefaultDisplayMode(self):
"''"'Return the name of the default display mode. It must be defined in getDisplayModes.
return "Shaded"

def setDisplayMode(self,mode):
"'"'"'"Map the display mode defined in attach with those defined in getDisplayModes.\"'"'
"''Since they have the same names nothing needs to be done. This method is optional''"'"
return mode

def onChanged(self, vp, prop):
"''"'"Here we can do something when a single property got changed''"'"
FreeCAD.Console.PrintMessage("Change property: " + str(prop) + "\n")
if prop == "Color":
c = vp.getPropertyByName("Color")
self.color.rgb.setValue(c[0],c[1],c[2])

def getIcon(self):
"'"'"'Return the icon in XPM format which will appear in the tree view. This method is\'''
"'"'optional and if not defined a default icon is shown.

return
/* XPM */
static const char * ViewProviderBox xpm[] = {
"16 16 6 1",
" c None",
" #141010",

#615BD2",

#C39D55",

#000000",

#57C355",

]
oo o0ooo

" .@EEQ. ++. . ++."
" L@@ .+t
" ,.@@ AL+
"#H#HQEE@Q .A++. .+ "
"H#H#S . QQSH . HH++++. "
"HSHS . $$S. ... ",
S SHAAHH ",
"HESHSSSS# ",
"HSSHSSS# ",
"HSSHSSSSS# ",
" OHSHSSSS#
"OHHSSSS#
" HHHHHH "1;

83 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

__getstate (self):
"'*'When saving the document this object gets stored using Python's json module.\"'''
"'"'Since we have some un-serializable parts here -- the Coin stuff -- we must define thi
"'"'"to return a tuple of all serializable objects or None.''"'"
None

__setstate (self,state):
"*''When restoring the serialized object from document we have the chance to set some internals
"'"'Since no data were serialized nothing needs to be done here.'''"
None

makeBox () :

FreeCAD.newDocument ()
a=FreeCAD.ActiveDocument.addObject("App::FeaturePython", "Box")
Box(a)

ViewProviderBox(a.ViewObject)

Propriétées disponibles

Les propriétés sont les bases des FeaturePython objets.
Grace a elles, 1'utilisateur est en mesure d'interagir et de
modifier son objet.

Apres avoir créé un nouveau ObjetPython dans votre document (
a = FreeCAD.ActiveDocument.addObject ("App ::
FeaturePython", "Box")), ses propriétés sont directement
accessibles, vous pouvez obtenir la liste,

en faisant:

‘App: :PropertyBool .

'App: :PropertyBoolList

App: :PropertyFloat

App: :PropertyFloatList
:App::PropertyFloatConstraint
App::PropertyQuantity

App: :PropertyQuantityConstraint
:App::PropertyAngle

App: :PropertyDistance

‘App: :PropertyLength

'App: :PropertySpeed

App: :PropertyAcceleration
App: :PropertyForce
:App::PropertyPressure
App::PropertyInteger

App: :PropertyIntegerConstraint
:App::PropertyPercent

App: :PropertyEnumeration
:App::PropertyIntegerList
:App::PropertyIntegerSet

WApp: :PropertyMap

\App: :PropertyString

84 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

App: : PropertyUUID :
‘App: :PropertyFont !
:App::PropertyStringList X
App: :PropertyLink :
‘App: :PropertyLinkSub !
'‘App: :PropertylinkList X
App: :PropertyLinkSublList :
App: :PropertyMatrix !
:App::PropertyVector X
App: :PropertyVectorList |
App: :PropertyPlacement I
:App::PropertyPlacementLink X
App::PropertyColor !
App: :PropertyColorList !
:App::PropertyMaterial X
App: :PropertyPath :
App: :PropertyFile !
:App::PropertyFileIncluded X
App: :PropertyPythonObject !
\Part::PropertyPartShape !
:Part::PropertyGeometryList X
PPart::PropertyShapeHistory :
\Part::PropertyFilletEdges !
:Sketcher::PropertyConstraintList X

1

Lors de l'ajout de propriétés a vos objets, prenez soin de ceci:

m Ne pas utiliser de caracteres "<" ou ">" dans les
descriptions des propriétés (qui coupent des portions de code
dans le fichier xml.Fcstd)

m Les propriétés sont stockées dans un fichier texte .Fcstd.

= Toutes les propriétés dont le nom vient apres "Shape" sont
triés dans l'ordre alphabétique, donc, si vous avez une forme
dans vos propriétés, et comme les propriétés sont chargées
apres la forme, il peut y avoir des comportements inattendus!

==Property Type== By default the properties can be updated. It
is possible to make the properties read-only, for instance in the
case one wants to show the result of a method. It is also possible
to hide the property. The property type can be set using

Mode est un int court qui peut avoir la valeur: O -- mode par
défaut, lecture et écriture 1 -- lecture seule 2 -- caché

Autres exemples plus complexes

Cet exemple utilise le module Part Module pour créer un

85 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

http://www.freecadweb.org/wiki/index.php?title=...

octaedre (http://fr.wikipedia.org/wiki/Octaedre), puis crée sa

représentation coin (http://www.coin3d.org/) avec pivy

En premier, c'est 1'objet document lui-méme:

FreeCAl

Octa

D, FreeCADGui, Part

hedron:

__init (self, obj):

"Add some custom properties to our box feature"
addProperty("App::PropertylLength", "Length", "Octahedron","Length of the octahedron").Length=]
addProperty("App::PropertyLength", "Width", "Octahedron", "Width of the octahedron").Width=1.0!
addProperty("App::PropertyLength", "Height", "Octahedron", "Height of the octahedron”).HeightJ

obj.
obj.
obj.
obj.
obj.

addProperty("Part::PropertyPartShape", "Shape", "Octahedron",

Proxy = self

execute(self, fp):

De
vl
v2
v3
v4
v5
v6

fine six

FreeCAD.
FreeCAD.

FreeCAD
FreeCAD

vetices for the shape
Vector(0,0,0)
Vector(fp.Length,0,0)

.Vector (0, fp.Width,0)

.Vector(fp.Length, fp.Width,0)
FreeCAD.
FreeCAD.

Vector(fp.Length/2,fp.Width/2, fp.Height/2)
Vector(fp.Length/2,fp.Width/2, -fp.Height/2)

Make the wires/faces
self.make face(vl,v2,v5)
self.make face(v2,v4,v5)
self.make face(v4,v3,v5)
self.make face(v3,vl,v5)
)
)
)

fl =
f2
f3
fa
f5
f6
7 =
f8 =

fp.S

self.make face(v2,vl,v6

self.make face(v4,v2,v6

self.make face(v3,v4,v6

self.make face(vl,v3,v6)
shell=Part.makeShell([fl,6f2,f3,f4,f5,f6,f7,f8])
solid=Part.makeSolid(shell)

hape = solid

helper mehod to create the faces

make face(self,vl,v2,v3):
= Part.makePolygon([vl,v2,v3,6vl])
= Part.Face(wire)

wire
face

face

"Shape of the octahedron")

Puis, nous avons view provider object, qui est responsable

d'afficher 1'objet dans la scene 3D (votre projet a 1'écran):

86 sur 246

ViewProviderOctahedron:
__init_ (self, obj):

"Set this object to the proxy object of the actual view provider"
obj.addProperty("App::PropertyColor","Color", "Octahedron","Color of the octahedron").Color=(1.0

obj.Proxy = self

attach(self, obj):

"Setup the scene sub-graph of the view provider, this method is mandatory"
shaded =
wireframe = coin.SoGroup()

self.
self.
self.
self.

self.
self.

scale =
color =

coin.SoGroup()

coin.SoScale()
coin.SoBaseColor()

data=coin.SoCoordinate3()
face=coin.SoIndexedLineSet()

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

self.shaded.addChild(self.scale)
self.shaded.addChild(self.color)
self.shaded.addChild(self.data)
self.shaded.addChild(self.face)
obj.addDisplayMode(self.shaded, "Shaded");
style=coin.SoDrawStyle()

style.style = coin.SoDrawStyle.LINES
self.wireframe.addChild(style)
self.wireframe.addChild(self.scale)
self.wireframe.addChild(self.color)
self.wireframe.addChild(self.data)
self.wireframe.addChild(self.face)
obj.addDisplayMode(self.wireframe, "Wireframe");
self.onChanged(obj,"Color")

def updateData(self, fp, prop):
"If a property of the handled feature has changed we have the chance to handle this here"
fp is the handled feature, prop is the name of the property that has changed
if prop == "Shape":
s = fp.getPropertyByName("Shape")
self.data.point.setNum(6)
cnt=0
for i in s.Vertexes:
self.data.point.setlValue(cnt,i.X,1i.Y,1.2)
cnt=cnt+1l

self.face.coordIndex.setlValue(0,0)
self.face.coordIndex.setlValue(1l,1)
self.face.coordIndex.setlValue(2,2)
self.face.coordIndex.setlValue(3,-1)

self.face.coordIndex.setlValue(4,1)
self.face.coordIndex.setlValue(5,3)
self.face.coordIndex.setlValue(6,2)
self.face.coordIndex.setlValue(7,-1)

self.face.coordIndex.setlValue(8,3)
self.face.coordIndex.setlValue(9,4)
self.face.coordIndex.setlValue(10,2)
self.face.coordIndex.setlValue(1ll,-1)

self.face.coordIndex.setlValue(12,4)
self.face.coordIndex.setlValue(13,0)
self.face.coordIndex.setlValue(14,2)
self.face.coordIndex.setlValue(15,-1)

self.face.coordIndex.setlValue(16,1)
self.face.coordIndex.setlValue(17,0)
self.face.coordIndex.setlValue(18,5)
self.face.coordIndex.setlValue(19,-1)

self.face.coordIndex.setlValue(20,3)
self.face.coordIndex.setlValue(21,1)
self.face.coordIndex.setlValue(22,5)
self.face.coordIndex.setlValue(23,-1)

self.face.coordIndex.setlValue(24,4)
self.face.coordIndex.setlValue(25,3)
self.face.coordIndex.setlValue(26,5)
self.face.coordIndex.setlValue(27,-1)

self.face.coordIndex.setlValue(28,0)
self.face.coordIndex.setlValue(29,4)
self.face.coordIndex.setlValue(30,5)
self.face.coordIndex.setlValue(31,-1)

def getDisplayModes(self,obj):
"Return a list of display modes."
modes=[1]
modes.append("Shaded")
modes .append("Wireframe")
return modes

87 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

def getDefaultDisplayMode(self):
"Return the name of the default display mode. It must be defined in getDisplayModes."
return "Shaded"

def setDisplayMode(self,mode):
return mode

def onChanged(self, vp, prop):
"Here we can do something when a single property got changed"
FreeCAD.Console.PrintMessage("Change property: " + str(prop) + "\n")
if prop == "Color":
c = vp.getPropertyByName("Color")
self.color.rgb.setValue(c[0],c[1],c[2])

def getIcon(self):

return """
/* XPM */
static const char * ViewProviderBox xpm[] = {
"16 16 6 1",
" c None",
", c #141010",
"t c #615BD2",
"@ c #C39D55",
Cc #000000",
"$ c #57C355",

" ,.@@ AL+
"H#H#H#QCEQ . ++. .+ "
"H##S . CQSH . "
"HSHS . 5SS, ",
IS SHAHHHH ",
"HSSHSSS# ",
"HSSHSSSIS# ",
"HESHSSSSS# ",
" OHSHSSSS#
" ORHSSSS#
" WA "};

’
’
,
" L@@ LT,
’
,
’

def getstate (self):
return None

def setstate (self,state):
return None

*

Enfin, une fois que notre objet et son viewobject sont définis,
nous n'avons qu'a les appeler:

:FreeCAD.newDocument()

' a=FreeCAD.ActiveDocument.addObject ("App::FeaturePython","Octahedron")
Octahedron(a)

ViewProviderOctahedron(a.ViewObject)

Création d'objets sélectionnables

Si vous voulez travailler sur un objet sélectionné, ou du moins

88 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

une partie de celui-ci, vous cliquez sur 1'objet dans la fenétre,
vous devez inclure la forme géomeétrique a l'intérieur d'un noeud
SoFCSelection node.

Si votre objet a une représentation complexe, avec des widgets,
des annotations, etc, vous pouvez n'inclure qu'une partie de
celui-ci dans un SoFCSelection.

Tout ce qui est SOFCSelection est constamment "scanné" par
FreeCAD pour voir s'il est sélectionné/présélectionné, il est donc
logique de ne rien surcharger avec des scans inutiles.

Voici un exemple de ce que vous devrez faire pour inclure un
self.face:

iselectionNode = coin.SoType.fromName("SoFCSelection").createInstance()
iselectionNode.documentName.setValue(FreeCAD.ActiveDocument.Name)
iselectionNode.objectName.setValue(obj.0bject.Name) # here obj is the ViewObject, we need its associated /
iselectionNode.subElementName.setValue("Face")

:selectNode.addChild(self.face)

e
iself.shaded.addChild(selectionNode)
:self.wireframe.addChild(selectionNode)

Vous créez Simplement un SoFCSelection node (noeud), puis
vous lui ajoutez vos noeuds géométriques, alors seulement vous
'ajoutez a votre noeud principal, au lieu d'ajouter vos noeuds
géomeétriques directement.

Travailler avec des formes simples

Si votre objet paramétrique renvoie simplement une forme, vous
n'avez pas besoin d'utiliser un objet créateur de vue (view
provider object).

La forme sera affichée a l'aide du module standard de
représentation des formes de FreeCAD:

:

I

' __init (self, obj):

! "'"'""App two point properties" '''

| obj.addProperty("App::PropertyVector","pl","Line","Start point")

' obj.addProperty("App::PropertyVector","p2“,“L1ne”,”End point").p2=FreeCAD.Vector(1,0,0)
! obj.Proxy = self
I

I

I

I

I

I

I

I

I

I

execute(self, fp):
'"'"'""Print a short message when doing a recomputation, this method is mandatory" '''
fp.Shape = Part.makeLine(fp.pl,fp.p2)

a=FreeCAD.ActiveDocument.addObject("Part::FeaturePython","Line")

89 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Line(a) |
\a.ViewObject.Proxy=0 # just set it to something different from None (this assignment is needed to run an|
:FreeCAD.ActiveDocument.recompute() !

I
iimport FreeCAD as App
iimport FreeCADGui
import FreeCAD
iimport Part
I
iclass Line:
def init (self, obj):
'"'"'""App two point properties" '''
obj.addProperty("App::PropertyVector","pl","Line","Start point")
obj.addProperty("App::PropertyVector","p2","Line","End point").p2=FreeCAD.Vector(100,0,0)
obj.Proxy = self

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
def execute(self, fp): |
'"'"'""Print a short message when doing a recomputation, this method is mandatory" ''' :
fp.Shape = Part.makeLine(fp.pl,fp.p2) |
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

class ViewProviderLine:
def init (self, obj):
""" Set this object to the proxy object of the actual view provider
obj.Proxy = self

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
:
I
, def getDefaultDisplayMode(self):

I """ Return the name of the default display mode. It must be defined in getDisplayModes. '''
: return "Flat Lines"

I

:a:FreeCAD.ActiveDocument.addObject(“Part::FeaturePython”,”Line")

Line(a)
:ViewProviderLine(a.ViewObject)
1App.ActiveDocument. recompute()
I

< précédent: PySide Index suivant: Embedding FreeCAD >

90 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

FreeCAD a la capacité incroyable de pouvoir étre importé en
tant que module Python dans d'autres programmes ou, dans
une console Python autonome, avec tous ses modules et ses
composants. Il est méme possible d'importer l'interface
graphique (GUI) de FreeCAD en tant que module python avec
toutefois, quelques restrictions.

Utilisation de FreeCAD sans interface graphique
(GUI)

Une premiere application, directe, facile et utile que vous pouvez
faire est d'importer des documents FreeCAD dans votre
programme. Dans l'exemple suivant, nous allons importer Part
geometry d'un document FreeCAD dans blender
(http://www.blender.org). Voici le script complet.

J'espere que vous serez impressionné par sa simplicité:

I

[FREECADPATH = '/opt/FreeCAD/lib' # path to your FreeCAD.so or FreeCAD.dll file
I Blender, sys

isys.path.append (FREECADPATH)

import fcstd(filename):

FreeCAD
ValueError:
Blender.Draw.PupMenu('Errorst|FreeCAD library not found. Please check the FREECADPATH variable in

I

I

I

I

I

I

I

I

:

, :

: scene = Blender.Scene.GetCurrent()

I Part

' doc = FreeCAD.open(filename)

! objects = doc.0Objects

: ob objects:

: ob.Type[:4] == 'Part':

I shape = ob.Shape

' shape.Faces:

! mesh = Blender.Mesh.New()

: rawdata = shape.tessellate(1)
: v rawdata[0]:

I mesh.verts.append((v.x,v.y,v.z))
' f rawdata[1]:

! mesh.faces.append.append(f)
: scene.objects.new(mesh,ob.Name)
: Blender.Redraw()

I
I
I
I
I
I
I
I
I
I
I
I
I

main():
Blender.Window.FileSelector(import fcstd, 'IMPORT FCSTD',
Blender.sys.makename(ext="'.fcstd'))
This lets you import the script without running it

__name_ =='main ':
main()

Premiere chose, s'assurer que Python va trouver notre
bibliotheque FreeCAD. Une fois qu'il 1'a trouvée, tous les modules
FreeCAD comme Part, que nous allons aussi utiliser, seront

91 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

disponibles automatiquement.

Donc, nous utilisons tout simplement la variable sys.path, qui va
donner a Python le chemin des modules a rechercher, et nous
ajoutons le chemin FreeCAD lib. Cette modification n'est que
temporaire, et sera perdue quand nous aurons terminé avec
notre interpréteur Python. Une autre fagon, est de créer un lien
vers votre bibliotheque FreeCAD dans 1'un des chemins (Path) de
recherche Python. Nous placerons le chemin dans une constante
(FREECADPATH), un autre utilisateur du script aura ainsi plus
de facilité pour configurer son propre systeme.

Une fois certain que la bibliotheque a été chargée (the try/except
sequence), nous pourrons travailler avec FreeCAD, de la méme
maniere que si nous le ferions a l'intérieur de l'interpréteur
Python de FreeCAD. Nous ouvrons le document FreeCAD que
nous avons chargé avec la fonction main(), et nous listons ses
objets. Puis, comme nous avons choisi de nous occuper que de la
forme géométrique, nous vérifions si la propriété Type de chaque
objet contient Part, puis nous faison une tesselation
(http://fr.wikipedia.org/wiki/Tesselation).

La tesselation produit une liste de sommets (Vertex) et une liste
de faces définis par les indices de sommets. C'est parfait,
puisque c'est exactement de cette maniere que Blender définit les
mailles. Donc, notre tache est ridiculement simple, nous ajoutons
juste les deux listes des sommets et faces comme un maillage de
Blender. Une fois fait, nous allons juste redessiner 1'écran et, c'est
fini !

Vous avez vu, ce script est trés simple (en fait, j'en ai écris un
plus évolué ici (http://yorik.orgfree.com/scripts
/import_freecad.py)), vous voudrez peut-étre 1'étendre, par
exemple importer des objets "mesh", ou importer "Part geometry"
qui n'a pas de face, ou importer d'autres formats que FreeCAD
peut lire. Vous pouvez également exporter les formes
géomeétriques dans un document FreeCAD, la procédure est la
méme. Vous pouvez également créer un dialogue, afin que
1'utilisateur puisse choisir ce qu'il veut importer, etc . . . En
réalité, la beauté dans tout cela, réside du fait que vous laissez

92 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

faire la totalité du travail a FreeCAD, tout en présentant ses
résultats dans le programme de votre choix.

Utilisation de FreeCAD avec interface graphique
(GUI)

Depuis la version 4.2 de Qt, Qt a la capacité d'intégrer des
plugins Qt-GUI dépendants d'applications hotes non-Qt, et, de
partager la boucle évenementielle de 1'hote.

Principalement pour FreeCAD, cela signifie qu'il peut étre
importé a partir d'une autre application avec son interface
utilisateur entiere (GUI) par conséquences, 1'application hote
prend le controle total de FreeCAD.

L'ensemble du code Python nécessaire pour atteindre ce but, n'a
que deux lignes:

X FreeCADGui
IFreeCADGui.showMainWindow()
1

Si, I'application hote est basée sur Qt, alors cette solution devrait
fonctionner sur toutes les plates-formes supportées par Qt.
Toutefois, 1'hote doit étre de la méme version Qt que la version
utilisée pour FreeCAD, sinon, vous pouvez obtenir des erreurs
d'exécution inattendues.

Cependant, pour les applications non-Qt, il ya quelques
restrictions, que vous devez connaitre:

m Cette solution ne fonctionnera probablement pas avec tous
les autres outils (toolkit):

m Pour Windows, il fonctionnera aussi longtemps que
I'application hote utilisée est compatible avec Win32 ou,
tout autres outils (toolkit) qui utilisent I'API Win32,
comme wxWidgets, MFC ou WinForms.

m Pour le faire fonctionner sous X11
(http://fr.wikipedia.org/wiki/X Window_System)
(Linux), l'application hote doit utiliser la bibliotheque
"glib (http://developer.gnome.org/glib/)".

93 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

PS:pour toute application console, cette solution, bien sir ne
fonctionnera pas car, il n'y a pas de fonctionnement "boucle
évenementielle" dans ce systeme.

< précédent: Scripted objects Index suivant: Code snippets >

94 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Cette page contient, des exemples, des extraits de code en
Python FreeCAD, recueillis aupres d'utilisateurs expérimentés et
de produits de discussions sur les forums
(http://forum.freecadweb.org/).

Lisez les et utilisez les comme point de départ pour vos propres
scripts . .

Un fichier typique InitGui.py

En plus de votre module principal, chaque module doit contenir,
un fichier InitGui.py, responsable de l'insertion du module dans
l'interface principale.

Ceci est un simple exemple.

I
: ScriptWorkbench (Workbench):

1 MenuText = "Scripts"

\ Initialize(self):

: Scripts # assuming Scripts.py 1s your module

I list = ["Script Cmd"] # That list must contain command names, that can be defined in Scripts.py
: self.appendToolbar("My Scripts",list)

I
I

Un fichier module typique

Ceci est I'exemple d'un fichier module principal, il contient tout
ce que fait votre module. C'est le fichier Scripts.py invoqué dans
I'exemple précédent. Vous avez ici toutes vos commandes
personnalisées.

FreeCAD, FreeCADGui

1
:
1
ScriptCmd: |
Activated(self): !
Here your write what your ScriptCmd does... \
FreeCAD.Console.PrintMessage('Hello, World!") |
GetResources(self): !
{'Pixmap' : 'path to an icon/myicon.png', 'MenuText': 'Short text', 'ToolTip': 'More detai

1

1

1

1

FreeCADGui.addCommand('Script Cmd', ScriptCmd())

Importer un nouveau type de fichier

95 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Importer un nouveau type de fichier dans FreeCAD est facile.
FreeCAD ne prends pas en considération l'importation de
n'importe quelle données dans un document ouvert, parce que,
VOus ne pouvez pas ouvrir directement un nouveau type de
fichier.

Donc, ce que vous devez faire, c'est ajouter la nouvelle extension
de fichier a la liste des extensions connues de FreeCAD, et,
d'écrire le code qui va lire le fichier et créer les objets FreeCAD
que vous voulez.

Cette ligne doit étre ajoutée au fichier InitGui.py pour ajouter la
nouvelle extension de fichier a la liste:

Assumes Import Ext.py is the file that has the code for opening and reading .ext files
IFreeCAD.addImportType("Your new File Type (*.ext)","Import Ext")
I

open(filename): |
doc=App.newDocument () \
here you do all what is needed with filename, read, classify data, create corresponding FreeCAD obj¢
doc.recompute() !

Pour exporter votre document avec une nouvelle extension, le
fonctionnement est le méme, mais vous devrez faire:

Ajouter une ligne
Une ligne, a uniquement deux points.

: Part,PartGui

idoc=App.activeDocument()

add a line element to the document and set its points

L=Part.Line()

iL.StartPoint=(0.0,0

L.EndPoint=(1.0,1.0,1.0)
art

Ajouter un polygone

96 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Un polygone est simplement un ensemble de segments
connnectés (un polyline dans AutoCAD) il n'est pas
obligatoirement fermé.

! Part,PartGui
idoc=App.activeDocument()

n=list()

:# create a 3D vector, set its coordinates and add it to the list
w=App.Vector(0,0,0)

in.append(v)

:v=App.Vector(10,0,0)

in.append(v)

#... repeat for all nodes

:# Create a polygon object and set its nodes
jp=doc.addObject("Part::Polygon", "Polygon")
p.Nodes=n

:doc.recompute()

doc=App.activeDocument () |
)grp= =doc.addObject("App: :DocumentObjectGroup", "Group") \
llin=doc.addObject("Part::Feature", "Line") X
grp.addObject(lin) # adds the lin object to the group grp !
Igrp.removeObject(lin) # removes the lin object from the group grp |

1

PS: vous pouvez aussi ajouter un groupe dans un groupe . . .

Ajout d'une maille (Mesh)

I Mesh
doc=App.activeDocument ()
create a new empty mesh
m = Mesh.Mesh()

m.scale(100.0)

add the mesh to the active document
me=doc.addObject("Mesh::Feature", "Cube")
:me.Mesh=m

1
1
1
1
1
:
build up box out of 12 facets |
:m.addFacet(G 0,0.0,0.0, 0.0,0.0,1.0, 0.0,1.0,1.0) :
m.addFacet(0.0,0.0,0.0, 0.0,1.0,1.0, 0.0,1.0,0.0) |
m.addFacet(0.0,0.0,0.0, 1.0,0.0,0.0, 1.0,0.0,1.0) |
:m.addFacet(G 0,0.0,0.0, 1.0,0.0,1.0, 0.0,0.0,1.0) :
m.addFacet(0.0,0.0,0.0, 0.0,1.0,0.0, 1.0,1.0,0.0) |
m.addFacet(0.0,0.0,0.0, 1.0,1.0,0.0, 1.0,0.0,0.0) |
:m.addFacet(G 0,1.0,0.0, 0.0,1.0,1.0, 1.0,1.0,1.0) :
m.addFacet(0.0,1.0,0.0, 1.0,1.0,1.0, 1.0,1.0,0.0) |
m.addFacet(0.0,1.0,1.0, 0.0,0.0,1.0, 1.0,0.0,1.0) |
:m.addFacet(G 0,1.0,1.0, 1.0,0.0,1.0, 1.0,1.0,1.0) :
m.addFacet(1.0,1.0,0.0, 1.0,1.0,1.0, 1.0,0.0,1.0) |
m.addFacet(1.0,1.0,0.0, 1.0,0.0,1.0, 1.0,0.0,0.0) |
scale to a edge langth of 100 X
1
1
1
1
1
1
1

Ajout d'un arc ou d'un cercle

97 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

! Part

doc = App.activeDocument()

¢ = Part.Circle()

ic.Radius=10.0

f o= doc.addObject("Part::Feature", "Circle") # create a document with a circle feature
f.Shape = c.toShape() # Assign the circle shape to the shape property

:doc.recompute()

Accéder et changer la représentation d'un objet

Chaque objet dans un document FreeCAD a un objet vue associé
a une représentation qui stocke tous les parametres qui
définissent les propriétés de 1'objet, comme, la couleur,
1'épaisseur de la ligne, etc ..

I
:gadeui.activeDocument() # access the active document containing all
| # view representations of the features in the
' # corresponding App document

I

:v=gad.get0bject(“Cube”) # access the view representation to the Mesh feature 'Cube'
\v.ShapeColor # prints the color to the console
:v.ShapeColor:(l.@,l.O,1.0) # sets the shape color to white

Observation des évenements de la souris dans la
vue 3D via Python

Le cadre Inventor permet d'ajouter un ou plusieurs noeuds
(nodes) de rappel a la scene graphique visualisée. Par défaut,
FreeCAD, possede un noeud (node) de rappel installé par la
visionneuse (fenétre d'affichage des graphes), qui permet
d'ajouter des fonctions statiques ou globales en C++. Des
meéthodes de liaisons appropriées sont fournies avec Python, pour
permettre 1'utilisation de cette technique a partir de codes
Python.

‘App . newDocument ()
:v=Gui.activeDocument().activeView()
I
#This class logs any mouse button events. As the registered callback function fires twice for 'down' and
#'up' events we need a boolean flag to handle this.
' ViewObserver:
logPosition(self, info):
down = (info["State"] == "DOWN")
pos = info["Position"]
(down) :
FreeCAD.Console.PrintMessage("Clicked on position: ("+str(pos[0])+", "+str(pos[1])+")\n")

ViewObserver()
v.addEventCallback("SoMouseButtonEvent",o.logPosition)

98 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Maintenant, choisissez une zone dans 1'écran (surface de travail)
3D et observez les messages affichés dans la fenétre de sortie.

Pour terminer 1l'observation il suffit de faire:

Les types d’évenements suivants sont pris en charge:

m SoEvent -- tous types d'évenements

m SoButtonEvent -- tous les évenements, boutons, molette

s SoLocation2Event -- tous les évenements 2D (déplacements
normaux de la souris)

s SoMotion3Event -- tous les évenements 3D (pour le
spaceball)

s SoKevyboardEvent -- évenements des touches |fleche haut | et
fleche bas

s SoMouseButtonEvent -- tous les évenements boutons Haut
et Bas de la souris

s SoSpaceballButtonEvent -- tous les événements Haut et
Bas (pour le spaceball)

Les fonctions Python qui peuvent étre enregistrées avec
addEventCallback() attendent la définition d'une bibliotheque.

Suivant la facon dont I’évenement survient, la bibliotheque peut
disposer de différentes clefs.

I1 y a une clef pour chaque événement:

= Type -- le nom du type d'évenement par exemple
SoMouseEvent, SoLocation2Event, ...

m Time -- I'heure courante codée dans une chaine string

= Position -- un tuple de deux integers
(http://docs.python.org/library/functions.html#int),
donant la position x,y de la souris

= ShiftDown -- type boolean, true si| Shift | est pressé sinon,
false

= CtrlDown -- type boolean, true si |Ctrl | est pressé sinon,
false

99 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

= AltDown -- type boolean, true si |Alt| est pressé sinon, false
Pour un évenement bouton comme clavier, souris ou spaceball

m State -- la chaine UP si le bouton est relevé, DOWN si le
bouton est enfoncé ou UNKNOWN si rien ne se passe

Pour un événement clavier:
m Key -- le caractere de la touche qui est pressée
Pour un évenement bouton de souris:

= Button -- le bouton pressé peut étre BUTTONI1, ...,
BUTTONDS ou tous

Pour un évenement spaceball:

= Button -- le bouton pressé peut étre BUTTONI1, ...,
BUTTON?Y ou tous

Et finalement les évenement de mouvements:

» Translation -- un tuple de trois float()
(http://docs.python.org/library/functions.html#float)

m Rotation -- un quaternion, tuple de quattre float()
(http://docs.python.org/library/functions.html#float)

Manipulation de scenes graphiques en Python

I1 est aussi possible d'afficher ou de changer de scéene en
programmation Python, avec le module pivy en combinaison avec
Coin (http://www.coin3d.org/)

pivy.coin * # load the pivy module
wview = Gui.ActiveDocument.ActiveView # get the active viewer
root = view.getSceneGraph() # the root is an SoSeparator node

:root.addChild(SoCube())
:view.fitAll()

L'API Python de pivy est créé en utilisant 1'outil SWIG
(http://www.swig.org/). Comme dans FreeCAD nous utilisons

100 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

certains noeuds (nodes) écrits automatiquement nous ne pouvons
pas les créer directement en Python. Il est cependant, possible de
créer un noeud avec son nom interne. Un exemple de
SoFCSelection, le type peut étre créé avec:

SoType.fromName("SoFCSelection")
type.createInstance()

Ajouter et effacer des objets de la scene

Ajouter de nouveaux noeuds dans la scene graphique peut étre
fait de cette facon. Prenez toujours soin d'ajouter un
SoSeparator pour, contenir les propriétés de la forme
géomeétrique, les coordonnées et le matériel d'un méme objet.
L'exemple suivant ajoute une ligne rouge a partir de (0,0,0) a

(10,0,0):

:' '' |
' pivy coin

1sg = Gui.ActiveDocument.ActiveView.getSceneGraph()

\co coin.SoCoordinate3()

:pts = [[0,0,0],[10,0,0]]
:co.point.setValues(O,len(pts),pts)
ma = coin.SoBaseColor()
ma.rgb = (1,0,0)

:li = coin.SolLineSet()
li.numVertices.setValue(2)
ino = coin.SoSeparator()
:no.addChild(co)
ino.addChild(ma)
ino.addChild(1i)
:sg.addChild(no)

Ajout de widgets personnalisés a l'interface

Vous pouvez créer un widget avec Qt designer
(http://fr.wikipedia.org/wiki/Qt), le transformer en Script Python
et l'incorporer dans l'interface de FreeCAD avec PySide.

Généralement codé comme ceci (il est simple, vous pouvez aussi
le coder directement en Python):

101 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

myWidget Ui(object):

setupUi(self, myWidget):
myWidget.setObjectName("my Nice New Widget")
myWidget.resize(QtCore.QSize(QtCore.QRect(0,0,300,100).size()).expandedTo(myWidget.minimumSizeHint())

self.label.setGeometry(QtCore.QRect(50,50,200,24)) # sets its size
self.label.setObjectName("label") # sets its name, so it can be found by name

retranslateUi(self, draftToolbar): # built-in QT function that manages translations of widgets !
myWidget.setWindowTitle(QtGui.QApplication.translate("myWidget", "My Widget", None, QtGui.QApplicatio

I
I
I
I
I
I
I
|
I
! self.label = QtGui.QLabel(myWidget) # creates a label
I
I
I
I
I
:
I
! self.label.setText(QtGui.QApplication.translate("myWidget", "Welcome to my new widget!", None, QtGui.(

Puis, vous devez créer une référence a la fenétre FreeCAD Qt, lui

insérer le widget personnalisé, et transférer le code Ui du widget
que nous venons de faire dans le vbtre avec:

:app = QtGui.gApp

\FCmw = app.activeWindow() # the active qt window, = the freecad window since we are inside it

myNewF reeCADWidget = QtGui.QDockWidget() # create a new dckwidget

:myNewFreeCADWidget.ui = myWidget Ui() # load the Ui script
myNewFreeCADWidget.ui.setupUi(myNewFreeCADWidget) # setup the ui
:Fme.addDockWidget(QtCore.Qt.RightDockWidgetArea,myNewFreeCADWidget) # add the widget to the main window

m Ici, le code Python est généré par le compilateur Ui Python
avec le module pyuic.py (il existe aussi pyuic4.py attention a
la compatibilité).

m Vous pouvez trouver ce fichier a I'emplacement
"C:\Program Files\FreeCADO.13\bin\PyQt4\uic",

m pyuic.py est I'outil qui convertit les fichiers gt-designer .ui
(Interface Utilisateur) en fichier .py (code Python), la ligne de
commande dans la console DOS est "pyuic -x fichier.ui >
fichier.py"

m vous pouvez créer un fichier .bat pour automatiser la
commande:

m (avec Python27) copier cette ligne dans un fichier texte, et, le
sauver le sous le nom "compile.bat"

(au besoin, adaptez le chemin a votre version de Python)

Si vous utilisez les outils fourni dans FreeCAD, le code sera,

102 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

m et tapez a la ligne de commande " compile fichier " sans
extension, le nom "fichier" entré .ui, sera le nom sortant
avec extension .py

s ATTENTION: il faut que les fichiers soient présents, et,
accessibles, vérifiez que les fichiers sont présents et
que les chemins sont justes !

m pour cet exemple entierement automatique et simplifié,
"compile.bat" est au méme endroit que le fichier.ui a
convertir en fichier.py

Autres liens de documentation "Python and Qt"
(http://www.qtrac.eu/pyqtbook.html) , sur Développez.com
(http://ogirardot.developpez.com/introduction-pyqt/) et bien
d'autres.

Vous pouvez installer une version complete de Python qui
comprend PyQt, Qt Designer ...
(http://www.riverbankcomputing.co.uk/software/pyqt/download)

Ajout d'une liste déroulante

Le code suivant vous permet d'ajouter une liste déroulante dans
FreeCAD, en plus des onglets "Projet" et "taches".

I1 utilise également le module uic pour charger un fichier ui
directement dans cet onglet.

I

create new Tab in ComboView
! PySide QtGui,QtCore
#from PySide import uic

I

I getMainWindow() :

' "returns the main window"

 # using QtGui.qgApp.activeWindow() isn't very reliable because if another
1 # widget than the mainwindow is active (e.g. a dialog) the wrong widget 1is
. # returned

 toplevel = QtGui.gApp.toplLevelWidgets()

i i toplevel:

: i.metaObject().className() == "Gui::MainWindow":

! i

| Exception("No main window found")

|

I

I

I

I

I

I

I

I

I

I

getComboView(mw) :
dw=mw.findChildren(QtGui.QDockWidget)

i dw:
str(i.objectName()) == "Combo View":
i.findChild(QtGui.QTabWidget)
str(i.objectName()) == "Python Console":

103 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

i.findChild(QtGui.QTabWidget)
Exception ("No tab widget found")

I

mw = getMainWindow()

tab = getComboView(getMainWindow())
tab2=QtGui.QDialog()

tab.addTab(tab2,"A Special Tab")

I
:#uic.loadUi("/myTaskPanelforTabs.ui”,tab2)
itab2.show()

:#tab.removeTab(Z)

I PySide QtGui
mw=FreeCADGui.getMainWindow()
:dws:mw.findChildren(QtGui.QDockWidget)

1

objectName may be :
:# "Report view"

"Tree view"

"Property view"

:# "Selection view"

"Combo View"

"Python console"

:# "draftToolbar"

i dws:
i.objectName() == "Report view":

1
1
I
L dw=i
I
1

:va=dw.toggleViewAction()
va.setChecked(True) # True or False
:dw.setVisible(True) # True or False

| WebGui

1
' PyQt4 QtGui, QtWebKit
1@ = QtGui.qApp

mw = a.activeWindow()

W = mw.findChild (QtWebKit.QWebFrame)
:html = unicode(v.toHtml())

1 html

http://www.freecadweb.org/wiki/index.php?title=...

Extraire et utiliser les coordonnées de 3 points

selectionnés

104 sur 246

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

I

-*- coding: utf-8 -*-

:# the line above to put the accentuated in the remarks
If this line is missing, an error will be returned

extract and use the coordinates of 3 objects selected
! Part, FreeCAD, math, PartGui, FreeCADGui

I FreeCAD Base, Console
isel = FreeCADGui.Selection.getSelection() # " sel " contains the items selected
len(sel)!=3 :

If there are no 3 objects selected, an error is displayed in the report view
The \r and \n at the end of line mean return and the newline CR + LF.
Console.PrintError("Select 3 points exactly\r\n")

points=[]
obj sel:
points.append(obj.Shape.BoundBox.Center)

I
I
I
I
I
I
I
I
I
I
I
I
:
| pt points:

| # display of the coordinates in the report view
' Console.PrintMessage(str(pt.x)+"\r\n")

! Console.PrintMessage(str(pt.y)+"\r\n")

i Console.PrintMessage(str(pt.z)+"\r\n")

I

I

I

I

Console.PrintMessage(str(pt[1]) + "\r\n")

% % coding: utf-8 -*- |
' FreeCAD,Draft :
List all objects of the document X
doc = FreeCAD.ActiveDocument '
objs = FreeCAD.ActiveDocument.Objects |
#App.Console.PrintMessage(str(objs) + "\n") X
#App.Console.PrintMessage(str(len(FreeCAD.ActiveDocument.0Objects)) + " Objects" + "\n") !
1
1
1
d

obj objs:

a = obj.Name # list the Name of the object (not modifiﬂ

b = obj.Label # list the Label of the object (modifiable,
. 1
c = obj.LabelText # list the LabeText of the text (modifiablej

App.Console.PrintMessage(str(a) +" "+ str(b) +" "+ str(c) + "\n") # Displays the Name the Label i
. 1

" 1
App.Console.PrintMessage(str(a) +" "+ str(b) + "\n") # Displays the Name and the Label of the ob4

1
#doc. removeObject("Box") # Clears the designated object X
1

-*- coding: utf-8 -*-

'# causes an action to the mouse click on an object

This function remains resident (in memory) with the function "addObserver(s)"
"removeObserver(s) # Uninstalls the resident function

1
1
1
1
1
:
! SelObserver: X
I addSelection(self,doc,obj,sub,pnt): # Selection object :
' #def setPreselection(self,doc,obj,sub): # Preselection object |
: App.Console.PrintMessage("addSelection"+ "\n") :
I App.Console.PrintMessage(str(doc)+ "\n") # Name of the document :
: App.Console.PrintMessage(str(obj)+ "\n") # Name of the object !
: App.Console.PrintMessage(str(sub)+ "\n") # The part of the object name :
I App.Console.PrintMessage(str(pnt)+ "\n") # Coordinates of the object :
: App.Console.PrintMessage(" "+ "\n") !
I
1
E removeSelection(self,doc,obj,sub): # Delete the selected object :

105 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

App.Console.PrintMessage("removeSelection"+ "\n")

I 1
1

: setSelection(self,doc): # Selection in ComboView

\ App.Console.PrintMessage("setSelection"+ "\n") !

' clearSelection(self,doc): # If click on the screen, clear the selection

I

App.Console.PrintMessage("clearSelection"+ "\n") # If click on another object, clear the previoy
is =SelObserver()
\FreeCADGui.Selection.addObserver(s) # install the function mode resident
:#FreeCADGui.Selection.removeObserver(s) # Uninstall the resident function

-*- coding: utf-8 -*-

This function list the components of an object

'# and extract this object its XYZ coordinates,

its edges and their lengths center of mass and coordinates
its faces and their center of mass

'# its faces and their surfaces and coordinates

8/05/2014

Draft,Part
detail():
sel = FreeCADGui.Selection.getSelection() # Select an object
len(sel) != 0: # If there is a selection then
Vertx=[]
Edges=[]
Faces=[]
compt V=0
compt_E=0
compt F=0
pas =0
perimetre
EdgesLong

0.0
[1

Displays the "Name" and the "Label" of the selection
App.Console.PrintMessage("Selection > " + str(sel[0].Name) + " " + str(sel[0].Label) +"\n"+"\n"

j enumerate(sel[0].Shape.Edges): # Search the "Edges"
compt E+=1

Edges.append("Edge%sd" % (j[0]1+1))

EdgesLong.append(str(sel[0].Shape.Edges[compt E-1].Length)) |
perimetre += (sel[0].Shape.Edges[compt E-1].Length) # calculates the per;

Displays the "Edge" and its length i
App.Console.PrintMessage("Edge"+str(compt_E)+" Length > "+str(sel[0].Shape.Edges[compt E-1].!

1
Displays the "Edge" and its center mass |

1
App.Console.PrintMessage("Edge"+str(compt_E)+" Center > "+str(sel[0].Shape.Edges[compt E-1].(

num = sel[0].Shape.Edges[compt E-1].Vertexes[0]

Vertx.append("X1l: "+str(num.Point.x))

Vertx.append("Y1l: "+str(num.Point.y))

Vertx.append("Z1l: "+str(num.Point.z))

Displays the coordinates 1

App.Console.PrintMessage("X1: "+str(num.Point[0])+" Y1: "+str(num.Point[1])+" Z1: "+str(num.

num = sel[0].Shape.Edges[compt E-1].Vertexes[1]
Vertx.append("X2: "+str(num.Point.x))
Vertx.append("Y2: "+str(num.Point.y))
Vertx.append("Z2: "+str(num.Point.z))

Vertx.append("-")
Vertx.append("-")
Vertx.append("-")
Displays the coordinates 2
App.Console.PrintMessage("X2: "+str(num.Point[0])+" Y2: "+str(num.Point[1])+" Z2: "+str(num.

106 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

App.Console.PrintMessage("\n")
App.Console.PrintMessage("Perimeter of the form

App.Console.PrintMessage("\n")
FacesSurf = []
J enumerate(sel[0].Shape.Faces):
compt F+=1

Faces.append("Face%sd" % (j[0]+1))

Displays 'Face' and its surface

Displays 'Face' and its CenterOfMass

Displays 'Face' and its Coordinates

FacesCoor = []

Displays 'Face' and its Coordinates

Displays 'Face' and its Volume
App.Console.PrintMessage("\n")

Displays the total surface of the form
App.Console.PrintMessage("Surface of the form

Displays the total Volume of the form
App.Console.PrintMessage("Volume of the form

detail()

I
I FreeCADGUi

' FreeCAD Console

10 = App.ActiveDocument.ActiveObject
op = 0.PropertiesList

' p op:

! Console.PrintMessage("Property:

"+ str(p)+ " Value:

Search and data extraction

: "+str(perimetre)+"\n")

FacesSurf.append(str(sel[0].Shape.Faces[compt
>

App.Console.PrintMessage("Face"+str(compt F)+'

App.Console.PrintMessage("Face"+str(compt F)+'

fco =0
fo sel[0].Shape.Faces[compt F-1].Vertexes: # Search the Vertex¢
fco += 1
FacesCoor.append("X"+str(fco)+": "+str(f0.Point.x))
FacesCoor.append("Y"+str(fco)+": "+str(f0.Point.y))
FacesCoor.append("Z"+str(fco)+": "+str(f0.Point.z))

App.Console.PrintMessage("Face"+str(compt_F)+"

App.Console.PrintMessage("Face"+str(compt_F)+"

: "+str(sel[0].Shape.Area)+"\n")

: "+str(sel[0].Shape.Volume)+"\n")

+ str(o.getPropertyByName(p))+"\r\n")

http://www.freecadweb.org/wiki/index.php?title=...

Search the "Faces

F-1].Area))

Surface "+str(sel[0].Shape.Faces[compt F-1

' > Center “+str(se1[0].Shape.Faces[compt_F-li

> (Coordinate"+str(FacesCoor)+"\n")

> Volume "+str(sel[0].Shape.Faces[compt F-1

Examples of research and decoding information on an object.

Each section is independently and is separated by
"HHHHHAHAH#H#H#H#H#" can be copied directly into the Python
console, or in a macro or use this macro. The description of the

macro in the commentary.

107 sur 246

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Displaying it in the "View Report" window (View > Views > View
report)

'# -*- coding: utf-8 -*-
! ~ future unicode literals

'# Exemples de recherche et de decodage d'informations sur un objet
Chaque section peut etre copiee directement dans la console Python ou dans une macro ou utilisez la maq
certaines commandes se repetent seul 1'approche est differente

Examples of research and decoding information on an object
Each section can be copied directly into the Python console, or in a macro or uses this macro
'# Certain commands as repeat alone approach is different

rev:29/09/2014

: FreeCAD Base

: DraftVecUtils, Draft, Part
1

1

mydoc = FreeCAD.activeDocument () .Name # Name of active Document
:App.Console.PrintMessage("Active docu : "+str(mydoc)+"\n")
R i e i

isel = FreeCADGui.Selection.getSelection() # select object with getSelect;
object_Label = sel[0].Label # Label of the object (modifiaq
App.Console.PrintMessage("object Label : "+str(object Label)+"\n") |
B e X
! 1
:sel = FreeCADGui.Selection.getSelection() # select object with getSelectj
:App.Console.PrintMessage("sel : "+str(sel[0])+"\n\n") # sel[0] first object selecty
R R e e ad !
! 1
isel = FreeCADGui.Selection.getSelection() # select object with getSelect;
object_Name = sel[0].Name # Name of the object (not modi1
App.Console.PrintMessage("object Name : "+str(object Name)+"\n\n")

B e e]

SubElement = FreeCADGui.Selection.getSelectionEx() # sub element name with getSel¢

App.Console.PrintMessage("Oups"+"\n\n")

1
1
1
1
1
:
1
element = SubElement[0].SubElementNames[0] # name of 1 element selected
1
1
:
i i i i i i i :

1

1

I

I

I

I

:

I

! App.Console.PrintMessage("elementSelec : "+str(element)+"\n\n")
! .
I

I

I.

I

I

isel = FreeCADGui.Selection.getSelection() # select object with getSelect*
1App.Console.PrintMessage("sel : "4str(sel[0])+"\n\n") # sel[0] first object selected,
B X
! 1
I
1ISubElement = FreeCADGui.Selection.getSelectionEx() # sub element name with getSelJ
:App.Console.PrintMessage("SubElement : "+str(SubElement[0])+"\n\n") # name of sub element
R e
I
isel = FreeCADGui.Selection.getSelection() # select object with getSelect:
i=0

j enumerate(sel[0].Shape.Edges): # list all Edges

i+4=1

1
1
1
1
1
1
1
1
1
1
|
1
App.Console.PrintMessage("Edges n : "+str(i)+"\n") 1
a = sel[0].Shape.Edges[j[0]].Vertexes[0] \
App.Console.PrintMessage("X1 : "+str(a.Point.x)+"\n") # coordinate XYZ first point
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

App.Console.PrintMessage("Y1 : "+str(a.Point.y)+"\n")
a = sel[0].Shape.Edges[j[0]].Vertexes[1]
App.Console.PrintMessage("X2 : "+str(a.Point.x)+"\n") # coordinate XYZ second point
App.Console.PrintMessage("Y2 : "+str(a.Point.y)+"\n")

App.Console.PrintMessage("Z2 : "+str(a.Point.z)+"\n")

I
I
I
I
I
I
I
I
I
I
|
I
! App.Console.PrintMessage("Z1 ¢ "+str(a.Point.z)+"\n")
! .
I
I
I
I
I
I
| :
\ App.Console.PrintMessage("Oups"+"\n")

108 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

iApp.Console.PrintMessage("\n")
B B i i i i i i i i i g i g i i

SubElement = FreeCADGui.Selection.getSelectionEx() # sub element name with getSel¢
subElementName = Gui.Selection.getSelectionEx()[0].SubElementNames[0] # sub element name with getSels
App.Console.PrintMessage("subElementName : "+str(subElementName)+"\n")

I

I

I

I

I

I

I

|

I

' subObjectX = Gui.Selection.getSelectionEx()[0].SubObjects[0].Point.x # sub element coordinate X
! App.Console.PrintMessage("subObject X ¢ "+str(subObjectX)+"\n")

| subObjectY = Gui.Selection.getSelectionEx()[0].SubObjects[0].Point.y # sub element coordinate Y
' App.Console.PrintMessage("subObject Y : "+str(subObjectY)+"\n")

! subObjectZ = Gui.Selection.getSelectionEx()[0].SubObjects[0].Point.z # sub element coordinate Z
| App.Console.PrintMessage("subObject Z : "+str(subObjectZ)+"\n")
:

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

subObjectLength = Gui.Selection.getSelectionEx()[0].SubObjects[0].Length # sub element Length
App.Console.PrintMessage("subObjectLength: "+str(subObjectLength)+"\n")

surfaceFace = Gui.Selection.getSelectionEx()[0].SubObjects[0].Area # Area of the 1 face
App.Console.PrintMessage("surfaceFace : "+str(surfaceFace)+"\n\n")

App.Console.PrintMessage("Oups"+"\n\n")
B i i i i i i i o

Isel = FreeCADGui.Selection.getSelection() # select object with getSelect:
isurface = sel[0].Shape.Area # Area object complete
App.Console.PrintMessage("surfaceObjet 1 "+str(surface)+"\n\n")

:##

isel = FreeCADGui.Selection.getSelection() # select object with getSelectj
:CenterOfMass = sel[0].Shape.CenterOfMass # Center of Mass of the object,
App.Console.PrintMessage("CenterOfMass : "+str(CenterOfMass)+"\n") |
App.Console.PrintMessage("Center0fMassX : "+str(Center0fMass[0])+"\n") # coordinates [0]=X [1]=Y [2]=a
:App.Console.PrintMessage("CenterOfMassY : "+str(CenterOfMass[1])+"\n") X
App.Console.PrintMessage("Center0OfMassZ : "+str(CenterOfMass[2])+"\n\n") |
B e !
! 1
isel = FreeCADGui.Selection.getSelection() # select object with getSelect!
' j enumerate(sel[0].Shape.Faces): # List alles faces of the objed
! App.Console.PrintMessage("Face : "+str("Face%sd" % (j[O]+1))+"\n") '

:App.Console.PrintMessage("\n\n”)
R

isel = FreeCADGui.Selection.getSelection() # select object with getSelect:
wvolume_ = sel[0].Shape.Volume # Volume of the object
1App.Console.PrintMessage("volume : "+str(volume)+"\n\n")

e e 2 2 e]
I

1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
:boundBox_: sel[0].Shape.BoundBox # BoundBox of the object
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

I
isel = FreeCADGui.Selection.getSelection() # select object with getSelect:
App.Console.PrintMessage("boundBox_ : "+str(boundBox)+"\n")
I
boundBoxLX = boundBox_.XLength # Length x boundBox rectangle
boundBoxLY = boundBox_.YLength # Length y boundBox rectangle
boundBoxLZ = boundBox .ZLength # Length z boundBox rectangle
:App.Console.PrintMessage("boundBoxLX : "+str(boundBoxLX)+"\n")
App.Console.PrintMessage("boundBoxLY : "+str(boundBoxLY)+"\n")
:App.Console.PrintMessage("boundBoxLZ : "+str(boundBoxLZ)+"\n\n")
B i 2 i 2
I
1
I
:sel = FreeCADGui.Selection.getSelection() # select object with getSelect,
pl = sel[0].Shape.Placement # Placement Vector XYZ and Yaw!
App.Console.PrintMessage("Placement : "+str(pl)+"\n") !
:## X
1
I
isel = FreeCADGui.Selection.getSelection() # select object with getSelectj
ipl = sel[0].Shape.Placement.Base # Placement Vector XYZ
:App.Console.PrintMessage("PlacementBase ¢ "+str(pl)+"\n\n")

B e s

I
isel
Yaw

FreeCADGui.Selection.getSelection() # select object with getSelect:
sel[0].Shape.Placement.Rotation.toEuler()[0] # decode angle Euler Yaw

109 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

:##

:App.Console.PrintMessage("Yaw : "+str(Yaw)+"\n") :
\Pitch = sel[0].Shape.Placement.Rotation.toEuler()[1] # decode angle Euler Pitch
1App.Console.PrintMessage("Pitch : "+str(Pitch)+"\n") \
Roll = sel[0].Shape.Placement.Rotation.toEuler()[2] # decode angle Euler Yaw
App.Console.PrintMessage("Yaw : "+str(Roll)+"\n\n") !
:## X
| 1
isel = FreeCADGui.Selection.getSelection() # select object with getSelectJ
Iorlpl X = sel[0].Placement.Base[0] # decode Placement X
.orlpl Y = sel[0].Placement.Base[1] # decode Placement Y
oripl_Z = sel[0].Placement.Base[2] # decode Placement Z
! 1
:App.Console.PrintMessage("oriplix : "+str(oripl X)+"\n") :
App.Console.PrintMessage("oripl_Y : "+str(orip1 Y)+"\n") !
lApp Console.PrintMessage("oripl Z : "+str(oripl Z)+"\n\n") \
.## :
! 1
:sel = FreeCADGui.Selection.getSelection() # select object with getSelect)
rotation = sel[0].Placement.Rotation # decode Placement Rotation
App.Console.PrintMessage("rotation : "+str(rotation)+"\n\n") !
:
1
1

I##

isel = FreeCADGui.Selection.getSelection() # select object with getSelect:
ipl = sel[0].Shape.Placement.Rotation # decode Placement Rotation otl
:App.Console.PrintMessage("Placement Rot : "+str(pl)+"\n\n") !
R s I

1
I

1
isel = FreeCADGui.Selection.getSelection() # select object with getSelect!
Pl = sel[0].Shape.Placement.Rotation.Angle # decode Placement Rotation Ang
1App.Console.PrintMessage("Placement Rot Angle ¢ "+str(pl)+"\n\n") :
B :
I

1
I
isel = FreeCADGui.Selection.getSelection() # select object with getSelect]
Rot_@ = sel[0].Placement.Rotation.Q[0] # decode Placement Rotation 0 !
App.Console.PrintMessage("Rot_0 : "+str(Rot 0)+ " rad , "+str(180 * Rot 0 / 3.1416)+" deg "+"\n!

1
I

1
:Rotil = sel[0].Placement.Rotation.Q[1] # decode Placement Rotation 1 :
App.Console.PrintMessage("Rot_1 : "+str(Rot 1)+ " rad , "+str(180 * Rot 1 / 3.1416)+" deg "+"\n!

1
I

1
:Rot72 = sel[0].Placement.Rotation.Q[2] # decode Placement Rotation 2 :
App.Console.PrintMessage("Rot_2 : "+str(Rot 2)+ " rad , "+str(180 * Rot 2 / 3.1416)+" deg "+"\n!

1
I

1
:Rot 3 = sel[0].Placement.Rotation.Q[3] # decode Placement Rotation 3 !
App.Console.PrintMessage("Rot_3 : "+str(Rot_3)+"\n\n") !

1

1

1

Extract the coordinate X,Y,Z and Angle giving the label !

App.Console.PrintMessage("Base.x : ”+str(FreeCAD ActiveDocument.getObjectsByLabel("Cylindre")[0].P}
1App.Console.PrintMessage("Base.y : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylindre")[0].P]
:App.Console.PrintMessage("Base.z : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylindre")[0].P
App.Console.PrintMessage("Base.Angle : ”+str(FreeCAD.ActiveDocument.getObjectsByLabel(“Cylindre”)[0].P1

L

PS: Usually the angles are given in Radian to convert :

1. angle in Degrees to Radians :
m Angle in radian = pi * (angle in degree) / 180
m Angle in radian = math.radians(angle in degree)
2. angle in Radians to Degrees :

110 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

m Angle in degree = 180 * (angle in radian) / pi
m Angle in degree = math.degrees(angle in radian)

Cartesian coordinates

This code displays the Cartesian coordinates of the selected item.

Change the value of "numberOfPoints" if you want a different
number of points (precision)

i, n X", p.X, n Y", p.y, n Z”, p.Z

I 1
:numberOfPoints = 100 # Decomposition number (or r
iselectedEdge = FreeCADGui.Selection.getSelectionEx()[0].SubObjects[0].copy() # select one element
points = selectedEdge.discretize(numberOfPoints) # discretize the element
11=0 1
| p points: # list and display the coori
i+=1 |
1
1

I

| Part

' FreeCAD Base

I

:c=Part.makeCylinder(2,10) # create the circle
Part.show(c) # display the shape

slice accepts two arguments:

#+ the normal of the cross section plane

#+ the distance from the origin to the cross section plane. Here you have to find a value so that the pl
:s=c.slice(Base.Vector(O,1,0),0) #

I

here the result is a single wire

depending on the source object this can be several wires
15=s[0]

I

if you only need the vertexes of the shape you can use
I

v=[1]

! i s.Vertexes:

v.append(i.Point)

but you can also sub-sample the section to have a certain number of points (int) ...
ipl=s.discretize(20)

Draft.makeWire(pl,closed=False, face=False,support=None) # to see the difference accuracy (20)

ii=0

! i pl:

I ii+=1

| i # Vector()

! ii, "o Xe", iox, " YRt iy, " Z:%, iz # Vector decode
I

I

I

i## uncomment to use

#import Draft

#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True) # first transform the DWire in Wire
#Draft.downgrade (App.ActiveDocument.ActiveObject, delete=True) # second split the Wire in single objects
W

##Draft.upgrade(FreeCADGui.Selection.getSelection(),delete=True) # to attach lines contiguous SELECTED us

... or define a sampling distance (float)
Ip2=s.discretize(0.5)
111=0

111 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Draft.makeWire(p2,closed=False, face=False,support=None) # to see the difference accuracy (0.5)

| i p2:

' ii+=1

! i # Vector()

| ii, "o Xe", i.x, "y:", i.y, " zZ:", i.z # Vector decode
I

1

uncomment to use

#import Draft

:#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True) # first transform the DWire in Wire
#Draft.downgrade (App.ActiveDocument.ActiveObject,delete=True) # second split the Wire in single objects
[}

#

I 1
:##Draft.upgrade(FreeCADGui.Selection.getSelection(),delete=True) # to attach lines contiguous SELECTED us

I
: FreeCAD

' obj FreeCAD.ActiveDocument.Objects:

! obj.Name # display the object Name
| objName = obj.Name

' obj = App.ActiveDocument.getObject(objName)

! Gui.Selection.addSelection(obj) # select the object

select one face of the object

' FreeCAD, Draft

:App=FreeCAD

mnameObject = "Box" # objet
faceSelect = "Face3" # face to selection
Loch=App.ActiveDocument.getObject(nameObject) # objet
iGui.Selection.clearSelection() # clear all selection
\Gui.Selection.addSelection(loch, faceSelect) # select the face specified
is = Gui.Selection.getSelectionEx()

:#Draft.makeFacebinder(s) #

create one object of the position to camera with "getCameraOrientation()"
the object is still facing the screen
' Draft
I
:plan = FreeCADGui.ActiveDocument.ActiveView.getCameraOrientation()
plan = str(plan)
#i#### extract data
a o=
! i plan:
i ("012345678%e.- "):
a+=1
a = a.strip(" ")
a = a.split(" ")
HH####S extract data
I
:#print a
#print a[o]
#print all]
#print al[2]
#print a[3]

112 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

xP = float(al[0])
yP = float(a[l])
izP = float(a[2])
P = float(al[3])

I

:pl = FreeCAD.Placement()

pLl.Rotation.Q = (xP,yP,zP,qP) # rotation of object

ipl.Base = FreeCAD.Vector(0.0,0.0,0.0) # here coordinates XYZ of Object
rec = Draft.makeRectangle(length=10.0,height=10.0,placement=pl, face=False, support=None) # create rectang.
#rec = Draft.makeCircle(radius=5,placement=pl, face=False, support=None) # create circle)
! rec.Name !

' Draft E
ipl = FreeCAD.Placement() |
:pl.Rotation = FreeCADGui.ActiveDocument.ActiveView.getCameraOrientation() X
pl.Base = FreeCAD.Vector(0.0,0.0,0.0) !
:rec = Draft.makeRectangle(length=10.0,height=10.0,placement=pl, face=False, support=None) :

< précédent: Embedding FreeCAD Index
suivant: Line drawing function >

113 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Cette page montre comment construire facilement des
fonctionnalités avancées en Python. Dans cet exercice, nous
allons construire un nouvel outil qui trace une ligne. Cet outil
peut alors étre lié a une commande FreeCAD, et cette commande
peut étre appelée par n'importe quel élément de l'interface,
comme un élément de menu ou un bouton de la barre d'outils.

Script principal

Premiere chose, nous allons écrire un script contenant toutes nos
fonctionnalités, puis, nous allons I'enregistrer dans un fichier, et
I'importer dans FreeCAD, alors toutes les classes et fonctions que
nous écrirons seront accessibles a partir de FreeCAD.

Alors, lancez votre éditeur de texte favori, et entrez les lignes
suivantes:

FreeCADGui, Part
pivy.coin *

line:
"this class will create a line after the user clicked 2 points on the screen"
_init (self):
self.view = FreeCADGui.ActiveDocument.ActiveView
self.stack = []
self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeld(),self.getpoint

event = event cb.getEvent()
event.getState() == SoMouseButtonEvent.DOWN:
pos = event.getPosition()
point = self.view.getPoint(pos[0],pos[1])
self.stack.append(point)
len(self.stack) == 2:
1 = Part.Line(self.stack[0],self.stack[1])
shape = 1.toShape()
Part.show(shape)

I
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| :
I
! getpoint(self,event cb): |

1
' !
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
! I
I
i self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeld(),self.callback)
I

|

Part, FreeCADGui
pivy.coin *

En Python, lorsque vous voulez utiliser les fonctions d'un autre
module, vous avez besoin de l'importer.

Dans notre cas, nous aurons besoin de fonctions du Part
Module, pour la création de la ligne, et du Gui module

114 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

(FreeCADGui), pour accéder a la vue 3D.

Nous avons également besoin de tout le contenu de la
bibliotheque de pieces, afin que nous puissions utiliser
directement tous les objets comme coin, SoMouseButtonEvent
(événement souris) etc ..

Ici, nous définissons notre classe principale.

Mais pourquoi utilisons-nous une classe et non une fonction ? La
raison en est que nous avons besoin que notre outil reste "vivant"
en attendant que l'utilisateur clique sur 1'écran.

m Une fonction se termine lorsque sa tache est terminée,
m mais un objet, (une classe définit un objet) reste en vie
(actif) jusqu'a ce qu'il soit détruit.

En Python, toutes les classes ou fonctions peuvent avoir une
description.

Ceci est particulierement utile dans FreeCAD, parce que quand
vous appelez cette classe dans l'interpréteur, la description sera
affichée comme une info-bulle.

Les classes Python doivent toujours contenir une fonction
init__, qui est exécutée lorsque la classe est appelée pour créer
un objet.

Donc, nous allons mettre ici tout ce que nous voulons produire
lorsque notre outil de création de ligne commence (appelé).

Dans une classe, il est généralement souhaitable d'ajouter self.
devant un nom de variable, de sorte que la variable sera
facilement accessible a toutes les fonctions a l'intérieur et a
I'extérieur de cette classe.

115 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Ici, nous allons utiliser self.view pour accéder et manipuler la
vue active 3D.

Ici, nous créons une liste vide qui contiendra les points en 3D
envoyés par la fonction GetPoint.

Ceci est un point important:

Du fait qu'il s'agit d'une scéne coin3D (http://www.coin3d.org/),
FreeCAD utilise les mécanismes de rappel de coin, qui permet a
une fonction d'étre appelée a chaque fois qu'un évenement se
passe sur la scene.

Dans notre cas, nous créons un appel pour SoMouseButtonEvent
(http://doc.coin3d.org/Coin/group events.html), et nous le lions a
la fonction GetPoint.

Maintenant, chaque fois qu'un bouton de la souris est enfoncé ou
relaché, la fonction GetPoint sera exécutée.

Notez qu'il existe aussi une alternative a
addEventCallbackPivy() appelée addEventCallback() qui
dispense l'utilisation de pivy. Mais, pivy est un moyen tres simple
et efficace d'accéder a n'importe quelle partie de la scéne coin, il
est conseillé de 1'utiliser autant que possible !

Maintenant, nous définissons la fonction GetPoint, qui sera
exécutée quand un bouton de la souris sera pressé dans une vue
3D.

Cette fonction recevra un argument, que nous appellerons
event_cb. A partir de I'appel de cet événement, nous pouvons
accéder a l'objet événement, qui contient plusieurs éléments
d'information (plus d'informations sur cette page
(http://www.freecadweb.org/wiki/index.php?title=Code_snippets
/fr#0Observation des .C3.A9v.C3.A8nements de la souris dans la

116 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

La fonction GetPoint sera appelée des qu'un bouton de la souris
est enfoncé ou relaché. Mais, nous ne voulons prendre un point
3D uniquement lorsqu'il est pressé (sinon, nous aurons deux
points 3D tres proches 1'un de l'autre).

Donc, nous devons vérifier cela avec:

Ici, nous avons les coordonnées du curseur de la souris sur
I'écran

1
Epoint = self.view.getPoint(pos[0],pos[1]) E

Cette fonction nous donne le vecteur (X, y, z) du point qui se
trouve sur le plan focal, juste sous curseur de notre souris.

Si vous étes dans la vue caméra, imaginez un rayon provenant de
la caméra, en passant par le curseur de la souris, et en appuyant
sur le plan focal.

C'est notre point dans la vue 3D. Si l'on est en mode orthogonal,
le rayon est paralléle a la direction de la vue.

Nous ajoutons notre nouveau point sur la pile

[T T T T T T T T T T T T T T T T EE |
| len(self.stack) == E
Avons nous tous les points ? si oui, alors nous allons tracer la
ligne !

[T T T T T T T T T T T T T T E T |
El = Part.Line(self.stack[0],self.stack[1]) E

Ici, nous utilisons la fonction line() de Part Module qui crée une
ligne de deux vecteurs FreeCAD.

Tout ce que nous créons et modifions l'intérieur de Part Module,
reste dans le Part Module.

117 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Dongc, jusqu'a présent, nous avons créé une Line Part. Il n'est lié
a aucun objet de notre document actif, c'est pour cela que rien ne
s'affiche sur 1'écran.

Le document FreeCAD ne peut accepter que des formes a partir
de Part Module. Les formes sont le type le plus courant de Part
Module.

Donc, nous devons transformer notre ligne en une forme avant de
1'ajouter au document.

Le Part module a une fonction tres pratique show() qui crée un
nouvel objet dans le document et se lie a une forme.

Nous aurions aussi pu créer un nouvel objet dans le premier
document, puis le lier a la forme manuellement.

Maintenant, nous en avons fini avec notre ligne, nous allons
supprimer le mécanisme de rappel, qui consomme de précieux
cycles de CPU.

Tester et utiliser un script

Maintenant, nous allons enregistrer notre script dans un endroit
ou l'interpréteur Python de FreeCAD le trouvera.

Lors de l'importation de modules, I'interpréteur cherchera dans
les endroits suivants:

m]les chemins d'installation de python,
m le répertoire bin FreeCAD,
m et tous les répertoires des modules FreeCAD.

Donc, la meilleure solution est de créer un nouveau répertoire
dans le répertoire Mod de FreeCAD , et sauver votre script dans
ce répertoire.

118 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Par exemple, nous allons créer un répertoire "myscripts", et
sauver notre script comme "exercise.py".

Maintenant, tout est prét, nous allons commencer par créez un
nouveau document FreeCAD, et, dans l'interpréteur Python,
tapons:

Si aucun message d'erreur n'apparait, cela signifie que notre
script exercise a été chargé.
Nous pouvons maintenant lister son contenu avec:

La commande dir() est une commande intégrée dans python, et
lister le contenu d'un module. Nous pouvons voir que notre
classe line() est la qui nous attend.

Maintenant, nous allons le tester:

Puis, cliquez deux fois dans la vue 3D, et bingo, voici notre ligne !
Pour la faire de nouveau, tapez juste exercise.line(), encore et
encore, et encore ... C'est bien, non?

Enregistrement du script dans
l'interface de FreeCAD

Maintenant, pour que notre outil de création de ligne soit
vraiment cool, il devrait y avoir un bouton sur l'interface, nous
n'aurons donc pas besoin de taper tout ce code a chaque fois.
Le plus simple est de transformer notre nouveau répertoire
myscripts dans un plan de travail FreeCAD. C'est facile, tout ce
qui est nécessaire de faire, est de mettre un fichier appelé
InitGui.py a l'intérieur de votre répertoire myscripts.

Le fichier InitGui.py contiendra les instructions pour créer un
nouveau plan de travail, et s'ajoutera notre nouvel outil.

119 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Sans oublier, que nous aurons aussi besoin de transformer un peu
notre code exercise, de sorte que l'outil line() soit reconnu
comme une commande FreeCAD officielle.

Commencons par faire un fichier InitGui.py, et écrivons le code
suivant a l'intérieur:

MyWorkbench (Workbench):
MenuText = "MyScripts"
Initialize(self):
exercise
commandslist = ["line"]
self.appendToolbar("My Scripts",commandslist)
Gui.addWorkbench (MyWorkbench())

Actuellement, vous devriez comprendre le script ci-dessus par
vous-méme, du moins, je pense:

Nous créons une nouvelle classe que nous appelons
MyWorkbench, nous lui donnons un nom (MenuText), et nous
définissons une fonction Initialize() qui sera exécutée quand le
plan de travail sera chargé dans FreeCAD.

Dans cette fonction, nous chargeons le contenus de notre fichier
'‘exercise, et ajoutons les commandes FreeCAD trouvées dans
une liste de commandes. Ensuite, nous faisons une barre d'outils
appelée "Mes scripts" et nous attribuons notre liste des
commandes.

Actuellement, bien sir, nous n'avons qu'un seul outil, puisque
notre liste de commandes ne contient qu'un seul élément. Puis,
une fois que notre plan de travail est prét, nous l'ajoutons a
l'interface principale.

Mais, cela ne fonctionne toujours pas, car une commande
FreeCAD doit étre formatée d'une certaine fagon pour travailler.
Nous aurons donc besoin de transformer un peu notre outil
ligne().

Notre nouveau script exercise.py va maintenant ressembler a
ceci:

I
I FreeCADGui, Part

' pivy.coin *

! line:

1 "this class will create a line after the user clicked 2 points on the screen"
' Activated(self):

I self.view = FreeCADGui.ActiveDocument.ActiveView

! self.stack = []

I

120 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.getpoint)
getpoint(self,event cb):
event = event cb.getEvent()
event.getState() == SoMouseButtonEvent.DOWN:
pos = event.getPosition()
point = self.view.getPoint(pos[0],pos[1])
self.stack.append(point)
len(self.stack) == 2:
1 = Part.Line(self.stack[0],self.stack[1])
shape = 1.toShape()
Part.show(shape)
self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeld(),self.callback)
GetResources(self):
{'Pixmap' : 'path to an icon/line icon.png', 'MenuText': 'Line', 'ToolTip': 'Creates a line
FreeCADGui.addCommand('line', line())

Qu'avons fait ici ? nous avons transformé notre fonction __ init__
() en une fonction Activated(), parce que lorsque les commandes
sont exécutées dans FreeCAD, il exécute automatiquement la
fonction Activated().

Nous avons également ajouté une fonction GetResources(), qui
informe FreeCAD ou se trouve l'icone de 1'outil, le nom et
'info-bulle de 1'outil.

Toute image, jpg, png ou svg peut étre utilisé comme icone, il
peut étre de n'importe quelle taille, mais il est préférable
d'utiliser une taille standard qui est proche de 1'aspect final,
comme 16x16, 24x24 ou 32x32.

Puis, nous ajoutons notre class line() comme une commande
officielle de FreeCAD avec la méthode addCommand().

Ca y est, nous avons juste besoin de redémarrer FreeCAD et nous
aurons un plan de travail agréable avec notre nouvel outil ligne
tout neuf !

Vous voulez en savoir plus ?

Si vous avez aimé cet "exercise", pourquoi ne pas essayer
d'améliorer ce petit outil ? Il y a beaucoup de choses a faire,
comme par exemple:

m Ajouter des Commentaires utilisateur: jusqu'a présent nous
avons fait un outil tres dépouillé, 1'utilisateur peut étre un
peu perdu lors de son utilisation. Vous pouvez ajouter vos
commentaires, en guidant l'utilisateur. Par exemple, vous
pourriez émettre des messages a la console FreeCAD. "Jetez"

121 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

un oeil dans le module FreeCAD.Console

m Ajouter la possibilité d'entrer les coordonnées 3D
manuellement . Regardez les fonctions Python input(), par
exemple

m Ajouter la possibilité d'ajouter plus de 2 points

m Ajouter des événements pour d'autres fonctions: Maintenant
que nous venons d'apprendre les événements de bouton de
souris, si nous souhaitons également faire quelque chose
quand la souris est déplacée, comme par exemple 1l'affichage
des coordonnées actuelles?

= Donnez un nom a l'objet créé et bien d'autres choses

N'hésitez pas de commenter vos idées ou questions sur le forum
(http://forum.freecadweb.org/) !

< précédent: Code snippets Index suivant: Dialog creation >

122 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Dans cette page nous allons vous montrer comment construire
une simple boite de dialogue avec Qt Designer (http://qt-
project.org/doc/qt-4.8/designer-manual.html), Qt Designer, est
1'outil officiel de Qt pour la conception d'interfaces (Gui), puis de
le convertir en code Python, et l'utiliser a l'intérieur de FreeCAD.
Je vais supposer, que pour l'exemple, vous savez déja comment
modifier et exécuter un script Python, et que vous pouvez
travailler avec des choses simples dans une fenétre de terminal
tel que se déplacer, etc . . Bien sur, vous devez également avoir
installé PySide.

Construire une boite de dialogue

Dans les applications de CAOQO, bien concevoir une Ul (interface
utilisateur) est tres important.

Tout ce que l'utilisateur fera, se fera a travers un outil de
l'interface: la lecture des boites de dialogue, appuyer sur les
boutons, le choix entre les icones, etc . .

I1 est donc tres important de réfléchir attentivement a la
conception de votre boite de dialogue, comment vous voulez que
'utilisateur se comporter avec la boite, et comment sera le flux
de travail de votre action.

Il y a une deux choses a savoir lors de la conception de
l'interface:

m Boites de dialogue modales ou non-modale
(http://fr.wikipedia.org/wiki/Fenétre modale) :

= Une boite de dialogue modale apparait en face de votre
écran et, arréte 1'action de la fenétre principale, forgant
'utilisateur a répondre a la boite de dialogue.

m Une boite de dialogue non modale ne vous empéche pas
de travailler sur la Fenétre principale, vous pouvez
travailler sur les deux fenétres.

Dans certains cas, le premier est préférable, dans d'autres cas
non.

m Identifier ce qui est nécessaire et ce qui est optionnel:
m Assurez-vous que l'utilisateur sait ce qu'il doit faire.

123 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Prévoyez des étiquettes avec des descriptions
appropriées, des info-bulles d'utilisation, etc . .
m Séparez les commandes a partir de parametres:

m Cela se fait habituellement avec des boutons et des
champs de saisie de texte.

m L'utilisateur sait que cliquer sur un bouton va produire
une action, tout en changeant une valeur dans un champ
de texte, va changer un parametre quelque part.
Cependant, aujourd'hui, les utilisateurs savent
généralement bien ce qu'est un bouton, ce qu'est un
champ de saisie, etc . . .

La boite a outils de l'interface Qt que nous utilisons, est une boite
a outils state-of-the-art (interface graphique avancée), et nous
n'aurons pas beaucoup d'inquiétudes pour rendre les choses
claires, car elles sont déja tres claires par elles-mémes.

Donc, maintenant que nous avons bien défini ce que nous ferons,
il est temps d'ouvrir Qt Designer.

Nous allons concevoir treés facilement une simple boite de
dialogue, comme ceci:

0§ Dialog - untitled* a x
. Plane-0-Matic . . . '

- Width

. Height

Create!

Nous allons ensuite utiliser cette boite de dialogue dans FreeCAD
pour produire une belle surface plane rectangulaire.

Vous ne trouverez peut-étre pas tres utile de produire de beaux
plans rectangulaires, mais il sera facile de le changer plus tard et
de faire des choses plus complexes.

Lorsque vous 1'ouvrez, Qt Designer ressemble a ceci:

124 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

LI - Ot Designer
File Edit Form View Settings Window Help

DBk RH S = NEMETEEIN
Widgaet Box @R Objact Inspector
Object Class
2 Layouts |a)
55 vertical Layout
)] Horzontal Layowt
;22 Gnd Layout Dialog with Buttans Bottom
Dialag with Buttans Right
Dialog without Buttons

- S]
PIcers b Main Window
B Horzontal Spacer Widget

' Vertical Spacer ,_;,,.2*,‘9991‘,,,, _
= Buttons | 8 Custom Widgets
lﬁ) Push 8utton

@ Tool Button

@ Radic Button

@ check Box

Q Command Link 8utton
m Button Box Embedded Design

2 v
] Form Layout

Property Editor

Property Value

[= Item Views...del.Based) |

:i Lst View

Rasource Browser
] Tree View

@ Table View c

(I column view ¥ Show this Dialog on Startup <fesource root>

= Item Widg...em-Based) | Open.
i ust Widget -

b 8 Tree Widget

@ Table Widget

S Conainers |
:j Group Box

Eg Scroll Area vl

Device:

Screen Size: ;D'g'fwaqlrtr Vs;tzier

SignalSlot Edkor ~ Action Editor

Il est tres simple a utiliser. Sur la barre de gauche vous avez des
éléments qui peuvent étre glissés sur votre widget (tous les
outils). Sur le c6té droit vous avez des panneaux d'affichage de
propriétés de toutes sortes, des propriétés de certains éléments
modifiables.

Donc, commencez par créer un nouveau widget. Sélectionnez
"Dialog without buttons", car nous ne voulons pas de boutons
par défaut Ok/Annuler. Ensuite, faites glisser sur votre widget 3
labels, un pour le titre, un pour l'écriture "Height" (Hauteur) et
I'autre pour l'écriture "Width" (Largeur).

Les labels (étiquettes) sont de simples textes qui apparaissent
sur votre widget, il servent a informer 1'utilisateur.

Si vous sélectionnez un label, sur le c6té droit apparaissent
plusieurs propriétés que vous pouvez modifier, comme le style de
police, taille, etc . . .

Ensuite, ajoutez 2 LineEdits , qui sont des champs texte que
1'utilisateur peut remplir, un pour la hauteur et l'autre pour la

125 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

largeur.

Ici aussi, nous pouvons modifier les propriétés. Par exemple,
pourquoi ne pas définir une valeur par défaut ? Par exemple 1,00
pour chacun d'eux.

De cette facon, lorsque l'utilisateur verra la boite de dialogue, les
deux valeurs seront déja remplies et si les valeurs conviennent, il
peut directement appuyer sur le bouton, gain de temps précieux.
Ensuite, ajoutez un PushButton , qui est le bouton, que
1'utilisateur devra appuyer apres avoir rempli les 2 champs.

Notez que j'ai choisi ici des contréles tres simples, mais Qt a
beaucoup plus d'options, par exemple, vous pouvez utiliser
spinbox au lieu de LineEdits, etc ..

Regardez tout ce qui est disponible, vous aurez stirement
d'autres idées.

C'est a peu pres tout ce que nous devons faire dans Qt Designer.
Une derniere chose, nous allons renommer tous nos éléments
avec des noms faciles, de sorte qu'il sera plus facile de les
identifier dans nos scripts:

|

Object Inspector

Object Class
- =g Dialog QDialog
= foreate
height #a) QLineEdit
- label_height O QLabel
label_width O QLabel
- title O QLabel
width #a) QLineEdit

Property Editor

create
QPushButton

Property Value

Conversion de notre boite de dialogue
en code Python avec "pyuic”

126 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Maintenant, nous allons sauver notre widget quelque part. Il sera
sauvegardé dans un fichier .Ui, que nous allons facilement
convertir en script Python avec pyuic.

Dans windows, le programme est livré avec pyuic pyqt (a
vérifier), sur Linux, vous aurez probablement besoin de 1l'installer
séparément a partir de votre gestionnaire de paquets (sur
debian-systémes basés sur, il fait partie du paquet pyqt4-
dev-tools).

Pour faire la conversion, vous aurez besoin d'ouvrir une fenétre
de terminal (ou une fenétre d'invite de commandes), accédez a
I'endroit ou vous avez enregistre votre fichier ui :

m pyuic.py est I'outil qui convertit les fichiers gt-designer .ui
(Interface Utilisateur) en fichier .py (code Python), la ligne de
commande dans la console DOS est :

m vous pouvez créer un fichier .bat pour automatiser la
commande:

m copiez cette ligne dans un fichier texte et sauvez le sous le
nom "compile.bat"

m puis tapez a la ligne de commande " compile fichier " sans
extension, le nom "fichier" entré .ui, sera le nom sortant
avec extension .py

s ATTENTION: il faut que les fichiers soient présents et
accessibles, vérifiez que les fichiers sont présents et
que les chemins sont justes !

m pour cet exemple entierement automatique et simplifié,
"compile.bat" est au méme endroit que le fichier.ui a
convertir en fichier.py

Autres liens de documentation "Python and Qt"
(http://www.qtrac.eu/pyqtbook.html) , sur Développez.com
(http://ogirardot.developpez.com/introduction-pyqt/) et bien
d'autres.

127 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Sur certains systemes, le programme est appelé pyuic4 au lieu
de pyuic (attention a la compatibilité). Il sert simplement de
convertisseur de fichier .Ui en un script python .py.

Si nous ouvrons le fichier mywidget.py, son contenu est tres facile
a comprendre:

PySide QtCore, QtGui

I

|

I

' Ui Dialog(object):

! setupUi(self, Dialog):

: Dialog.setObjectName("Dialog")
: Dialog.resize(187, 178)

I self.title = QtGui.QLabel(Dialog)

: self.title.setGeometry(QtCore.QRect (10, 10, 271, 16))
! self.title.setObjectName("title")

\ self.label width = QtGui.QLabel(Dialog)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

self.retranslateUi(Dialog)
QtCore.QMetaObject.connectSlotsByName(Dialog)

retranslateUi(self, Dialog):
Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None, QtGui.QApplication.|
self.title.setText(QtGui.QApplication.translate("Dialog", "Plane-0-Matic", None, OtGui.OApplicat1

Comme vous voyez, il a une structure tres simple: une classe
nommeée Ui_Dialog est créé, qui stocke les éléments de
l'interface de notre widget.

Cette classe dispose de deux méthodes, une pour la mise en place
du widget, et 1'autre pour traduire son contenu, qui fait partie du
meécanisme général de Qt pour la traduction des éléments
d'interface.

La méthode de configuration, crée simplement, un par un, les
widgets tels que nous les avons définis dans Qt Designer, et
définit leurs options aussi comme nous avons décidé plus tot.

Puis, toute l'interface est traduite, et enfin, les "slots" se
connectent (nous en reparlerons plus tard).

Nous pouvons maintenant créer un nouveau widget, et utiliser
cette classe pour créer son interface.

Nous pouvons déja voir notre widget en action, en mettant notre
fichier mywidget.py dans un endroit ou FreeCAD la trouvera
(dans le répertoire bin FreeCAD, ou dans 1'un des
sous-répertoires Mod), et, dans l'interpréteur Python de
FreeCAD, faisons:

128 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

PySide QtGui

) mywidget

'd = QtGui.QWidget()

d.ui = mywidget.Ui Dialog()
d.ui.setupUi(d)

:d.show()

Et notre boite de dialogue apparaitra! Notez que notre
interpréteur Python fonctionne toujours, nous avons une boite de
dialogue non modale.

Donc, pour la fermer, nous pouvons (a part cliquer sur son icone,
bien sir) faire:

Faire quelque chose avec notre boite de
dialogue

Maintenant que nous pouvons afficher et masquer notre boite de
dialogue, nous avons juste besoin d'ajouter la derniere partie,
pour en faire quelque chose !

Si vous explorez un peu Qt Designer, vous découvrirez
rapidement toute une section appelée "signaux et slots".
Fondamentalement, cela fonctionne comme ceci, ce sont les
éléments sur vos widgets (dans la terminologie de Qt, ces
éléments sont eux-mémes des widgets) qui peuvent envoyer des
signaux.

Ces signaux different selon le type de widget. Par exemple, un
bouton peut envoyer un signal quand il est pressé et quand il est
relaché.

Ces signaux peuvent étre connectés a des créneaux, qui peuvent
étre des fonctionnalités spéciales d'autres widgets (par exemple
une boite de dialogue a un bouton "Fermer" sur lequel vous
pouvez connecter le signal a partir d'un autre bouton "Fermer"),
ou, peuvent étre des fonctions personnalisées.

La documentation de référence PyQt
(http://www.riverbankcomputing.co.uk/static/Docs/PyQt4
/html/classes.html) répertorie tous les widgets Qt, ce qu'ils
peuvent faire, ce qu'ils signalent, ce qu'ils peuvent envoyer, etc . .

129 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Ce que nous allons faire ici, c'est créer une nouvelle fonction qui
permettra de créer une surface plane basée sur la hauteur et la
largeur, et, relier cette fonction au bouton "Create!".

Donc, nous allons commencer par importer nos modules
FreeCAD, en mettant la ligne suivante en haut du script, ou nous
importons déja QtCore et QtGui:

Ensuite, nous allons ajouter une nouvelle fonction a notre classe
Ui_Dialog:

createPlane(self):
first we check if valid numbers have been entered
w = float(self.width.text())
h = float(self.height.text())

ValueError:
"Error! Width and Height values must be valid numbers!"

pl = FreeCAD.Vector(0,0,0)
p2 = FreeCAD.Vector(w,0,0)
p3 = FreeCAD.Vector(w,h,0)
p4 = FreeCAD.Vector(0,h,0)

pointslist = [pl,p2,p3,p4,pl]

mywire = Part.makePolygon(pointslist)
myface = Part.Face(mywire)
Part.show(myface)

self.hide()

1
1
I
1
1
1
1
1
1
1
1
1
| :
' # create a face from 4 points
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Puis, nous avons besoin d'informer Qt pour qu'il se connecte sur
le bouton de la fonction, en placant la ligne suivante juste avant
QtCore.QMetaObject.connectSlotsByName(Dialog):

Il s'agit, comme vous le voyez, de relier le signal du bouton
enfoncé de 1'objet a créer ("Create!" Bouton), a un
emplacement nommeé createPlane, dont nous venons de définir.
Ca y est | Maintenant, la touche finale, nous pouvons ajouter une
petite fonction, pour créer la boite de dialogue, elle sera plus
facile a appeler.

En dehors de la classe Ui_Dialog class, nous allons ajouter le
code suivant:

130 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

131 sur 246

plane():
_init (self):
self.d = QtGui.QWidget()
self.ui = Ui Dialog()
self.ui.setupUi(self.d)
self.d.show()

(Rappel sur Python : la méthode __init__ est une classe qui
s'exécute automatiquement chaque fois qu'un nouvel objet est
créé !)

Puis, a partir de FreeCAD, nous avons seulement besoin de faire:

mywidget
:myDialog = mywidget.plane()

Voila, c'est tout ...

Maintenant, vous pouvez essayer toutes sortes de choses, comme
par exemple l'insertion de votre widget dans l'interface FreeCAD
(voir la page Code snippets), ou, faire des outils personnalisés
beaucoup plus avancés, en utilisant d'autres éléments dans votre
widget.

Le script complet

Ceci est le script de référence complet:

-*- coding: utf-8 -*-
I
\# Form implementation generated from reading ui file 'mywidget.ui'

I
Created: Mon Jun 1 19:09:10 2009
by: PyQt4 UI code generator 4.4.4
Modified for PySide 16:02:2015
\# WARNING! All changes made in this file will be lost!
I
PySide QtCore, QtGui
FreeCAD, Part

Ui Dialog(object):

setupUi(self, Dialog):

Dialog.setObjectName("Dialog")

Dialog.resize(187, 178)

self.title = QtGui.QLabel(Dialog)
self.title.setGeometry(QtCore.QRect (10, 10, 271, 16))
self.title.setObjectName("title")

self.label width = QtGui.QLabel(Dialog)

self.label width.setGeometry(QtCore.QRect(10, 50, 57, 16))
self.label width.setObjectName("label width")

self.label height = QtGui.QLabel(Dialog)

self.label height.setGeometry(QtCore.QRect(10, 90, 57, 16))
self.label height.setObjectName("label height")

self.width = QtGui.QLineEdit(Dialog)
self.width.setGeometry(QtCore.QRect (60, 40, 111, 26))

http://www.freecadweb.org/wiki/index.php?title=...

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

self.width.setObjectName("width")

self.height = QtGui.QLineEdit(Dialog)
self.height.setGeometry(QtCore.QRect (60, 80, 111, 26))
self.height.setObjectName("height")

self.create = QtGui.QPushButton(Dialog)
self.create.setGeometry(QtCore.QRect (50, 140, 83, 26))
self.create.setObjectName("create")

1

1

1

1

1

1

1

1

1

1

:
self.retranslateUi(Dialog) \
QtCore.QObject.connect(self.create,QtCore.SIGNAL("pressed()"),self.createPlane) :
QtCore.QMetaObject.connectSlotsByName(Dialog) i
1

1

retranslateUi(self, Dialog): !
Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None, QtGui.QApplication. U
self.title.setText(QtGui.QApplication.translate("Dialog", "Plane-0-Matic", None, QtGui.QApplicati(
self.label width.setText(QtGui.QApplication.translate("Dialog", "Width", None, QtGui.QApplication:
self.label height.setText(QtGui.QApplication.translate("Dialog", "Height", None, QtGui.QApplicatiq
self.create.setText(QtGui.QApplication.translate("Dialog", "Create!", None, QtGui.QApplication.Una

createPlane(self):

first we check if valid numbers have been entered
w = float(self.width.text())
h = float(self.height.text())
ValueError:
"Error! Width and Height values must be valid numbers!"

create a face from 4 points

pl = FreeCAD.Vector(0,0,0)
p2 = FreeCAD.Vector(w,0,0)
p3 = FreeCAD.Vector(w,h,0)
p4 = FreeCAD.Vector(0,h,0)

pointslist = [pl,p2,p3,p4,pll]

mywire = Part.makePolygon(pointslist)
myface = Part.Face(mywire)
Part.show(myface)

plane():
__init (self):
self.d = QtGui.QWidget()
self.ui = Ui Dialog()
self.ui.setupUi(self.d)
self.d.show()

Création d'une boite de dialogue avec
ses boutons

Meéthode 1

Un exemple d'une boite de dialogue complete avec ses
connections.

#o-k- coding: utf-8 -*-
'# Create by flachyjoe

PySide QtCore, QtGui

_fromUtf8 = QtCore.QString.fromutf8
AttributeError:
_fromUtf8(s):
s

132 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

_encoding = QtGui.QApplication.UnicodeUTF8
def translate(context, text, disambig):
return QtGui.QApplication.translate(context, text, disambig, encoding)
except AttributeError:
def translate(context, text, disambig):
return QtGui.QApplication.translate(context, text, disambig)

class Ui MainWindow(object):

def init (self, MainWindow):
self.window = MainWindow

MainWindow.setObjectName(fromUtf8("MainWindow"))
MainWindow.resize (400, 300)

self.centralWidget = QtGui.QWidget(MainWindow)
self.centralWidget.setObjectName(fromUtf8("centralWidget"))

self.pushButton = QtGui.QPushButton(self.centralWidget)
self.pushButton.setGeometry(QtCore.QRect (30, 170, 93, 28))
self.pushButton.setObjectName(fromUtf8("pushButton"))
self.pushButton.clicked.connect(self.on pushButton clicked) #connection pushButton

self.lineEdit = QtGui.QLineEdit(self.centralWidget)
self.lineEdit.setGeometry(QtCore.QRect (30, 40, 211, 22))
self.lineEdit.setObjectName(fromUtf8("lineEdit"))
self.lineEdit.returnPressed.connect(self.on lineEdit clicked) #connection lineEdit

self.checkBox = QtGui.QCheckBox(self.centralWidget)
self.checkBox.setGeometry(QtCore.QRect (30, 90, 81, 20))
self.checkBox.setChecked(True)

self.checkBox.setObjectName(fromUtf8("checkBoxON"))
self.checkBox.clicked.connect(self.on checkBox clicked) #connection checkBox

i
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

:

I

! self.radioButton = QtGui.QRadioButton(self.centralWidget)

: self.radioButton.setGeometry(QtCore.QRect (30, 130, 95, 20))

: self.radioButton.setObjectName(fromUtf8("radioButton"))

i self.radioButton.clicked.connect(self.on radioButton clicked) #connection radioButton
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I.
I
I
I
I
I
I
I

MainWindow.setCentralWidget(self.centralWidget)

self.menuBar = QtGui.QMenuBar(MainWindow)
self.menuBar.setGeometry(QtCore.QRect(0, 0, 400, 26))
self.menuBar.setObjectName(fromUtf8("menuBar"))
MainWindow.setMenuBar(self.menuBar)

self.mainToolBar = QtGui.QToolBar(MainWindow)
self.mainToolBar.setObjectName(fromUtf8("mainToolBar"))
MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.mainToolBar)

self.statusBar = QtGui.QStatusBar(MainWindow)
self.statusBar.setObjectName(fromUtf8("statusBar"))
MainWindow.setStatusBar(self.statusBar)

self.retranslateUi(MainWindow)

def retranslateUi(self, MainWindow):
MainWindow.setWindowTitle(translate("MainWindow", "MainWindow", None))
self.pushButton.setText(translate("MainWindow", "OK", None))
self.lineEdit.setText(translate("MainWindow", "tyty", None))
self.checkBox.setText(translate("MainWindow", "CheckBox", None))
self.radioButton.setText(translate("MainWindow", "RadioButton", None))

def on_checkBox clicked(self):
if self.checkBox.checkState()==0:

App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox KO\r\n")

else:

App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox OK\r\n")
App.Console.PrintMessage(str(self.lineEdit.setText("tititi"))+" LineEdit\r\n") #write text to t)
str(self.lineEdit.setText("tititi")) #écrit le texte dans la fenétre lineEdit

App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit\r\n")

def on_radioButton clicked(self):
if self.radioButton.isChecked():

133 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio OK\r\n")
else:
App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio KO\r\n")

I

I

I

:

I

! def on_lineEdit clicked(self):

if self.lineEdit. textChanged():

' App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit Display\r\n")
I
I
I
I
I
I
I

def on_pushButton clicked(self):
App.Console.PrintMessage("Terminé\r\n")
self.window.hide()
MainWindow = QtGui.QMainWindow()
ui = Ui MainWindow(MainWindow)
:MainWindow.show()

#ooke coding: utf-8 -*-

f rom PySide import QtCore, QtGui
I

I
try:
\ _fromUtf8 = QtCore.QString.fromUtf8
'except AttributeError:

def fromUtf8(s):

return s

try:
_encoding = QtGui.QApplication.UnicodeUTF8
def translate(context, text, disambig):
return QtGui.QApplication.translate(context, text, disambig, encoding)
except AttributeError:
def translate(context, text, disambig):
return QtGui.QApplication.translate(context, text, disambig)

class Ui MainWindow(object):

def init (self, MainWindow):
self.window = MainWindow
path = FreeCAD.ConfigGet("UserAppData")
path = FreeCAD.ConfigGet("AppHomePath")

MainWindow.setObjectName(fromUtf8("MainWindow"))
MainWindow.resize (400, 300)

self.centralWidget = QtGui.QWidget(MainWindow)
self.centralWidget.setObjectName(fromUtf8("centralWidget"))

self.pushButton = QtGui.QPushButton(self.centralWidget)
self.pushButton.setGeometry(QtCore.QRect (30, 170, 93, 28))
self.pushButton.setObjectName(fromUtf8("pushButton"))
self.pushButton.clicked.connect(self.on pushButton clicked) #connection pushButton

self.lineEdit = QtGui.QLineEdit(self.centralWidget)
self.lineEdit.setGeometry(QtCore.QRect (30, 40, 211, 22))
self.lineEdit.setObjectName(fromUtf8("lineEdit"))
self.lineEdit.returnPressed.connect(self.on lineEdit clicked) #connection lineEdit

self.checkBox = QtGui.QCheckBox(self.centralWidget)
self.checkBox.setGeometry(QtCore.QRect (30, 90, 100, 20))
self.checkBox.setChecked(True)

self.checkBox.setObjectName(fromUtf8("checkBoxON"))
self.checkBox.clicked.connect(self.on checkBox clicked) #connection checkBox

self.radioButton = QtGui.QRadioButton(self.centralWidget)
self.radioButton.setGeometry(QtCore.QRect (30, 130, 95, 20))
self.radioButton.setObjectName(fromUtf8("radioButton"))
self.radioButton.clicked.connect(self.on radioButton clicked) #connection radioButton

MainWindow.setCentralWidget(self.centralWidget)

134 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

self.menuBar = QtGui.QMenuBar(MainWindow)
self.menuBar.setGeometry(QtCore.QRect(0, 0, 400, 26))
self.menuBar.setObjectName(fromUtf8("menuBar"))
MainWindow.setMenuBar(self.menuBar)

self.mainToolBar = QtGui.QToolBar(MainWindow)
self.mainToolBar.setObjectName(fromUtf8("mainToolBar"))
MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.mainToolBar)

self.statusBar = QtGui.QStatusBar(MainWindow)
self.statusBar.setObjectName(fromUtf8("statusBar"))
MainWindow.setStatusBar(self.statusBar)

self.retranslateUi(MainWindow)

Affiche un icbne sur le bouton PushButton

self.image 01 = "C:\Program Files\FreeCADO.13\iconeOl.png" # adapt the icon name
self.image 01 = path+"iconeOl.png" # adapt the name of the icon

icon0l = QtGui.QIcon()

icon0l.addPixmap(QtGui.QPixmap(self.image 01),QtGui.QIcon.Normal, QtGui.QIcon.O0ff)
self.pushButton.setIcon(icon01)

self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direction ¢

Affiche un icone sur le bouton RadioButton

self.image 02 = "C:\Program Files\FreeCADO.13\icone02.png" # adapt the name of the icon

self.image 02 = path+"icone02.png" # adapter le nom de 1'icdne

icon02 = QtGui.QIcon()

icon02.addPixmap(QtGui.QPixmap(self.image 02),QtGui.QIcon.Normal, QtGui.QIcon.O0ff)
self.radioButton.setIcon(icon02)

self.radioButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direct:

Affiche un icbne sur le bouton CheckBox

self.image 03 = "C:\Program Files\FreeCADO.13\icone0@3.png" # the name of the icon
self.image 03 = path+"icone03.png" # adapter le nom de 1'icdne

icon03 = QtGui.QIcon()

icon03.addPixmap(QtGui.QPixmap(self.image 03),QtGui.QIcon.Normal, QtGui.QIcon.O0ff)
self.checkBox.setIcon(icon03)

self.checkBox.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direction (

def retranslateUi(self, MainWindow) :

MainWindow.setWindowTitle(translate("MainWindow", "FreeCAD", None))
self.pushButton.setText(translate("MainWindow", "OK", None))
self.lineEdit.setText(translate("MainWindow", "tyty", None))
self.checkBox.setText(translate("MainWindow", "CheckBox", None))
self.radioButton.setText(translate("MainWindow", "RadioButton", None))

def on_checkBox clicked(self):

if self.checkBox.checkState()==0:
App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox KO\r\n")
else:
App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox OK\r\n")

App.Console.PrintMessage(str(self.lineEdit.setText("tititi"))+" LineEdit\r\n") # write text

str(self.lineEdit.setText("tititi")) #écrit le texte dans la fenétre lineEdit
App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit\r\n")

def on_radioButton clicked(self):

if self.radioButton.isChecked():
App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio OK\r\n")
else:
App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio KO\r\n")

def on_lineEdit clicked(self):

1if self.lineEdit.textChanged():
App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit Display\r\n")

def on_pushButton clicked(self):

App.Console.PrintMessage("Terminé\r\n")
self.window.hide()

MainWindow = QtGui.QMainWindow ()
ui = Ui_MainWindow(MainWindow)
:MainWindow.show()

135 sur 246

http://www.freecadweb.org/wiki/index.php?title=...

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

ici le code pour afficher l'icone sur le pushButton, modifiez le
nom pour un autre bouton, (radioButton, checkBox) ainsi que
le chemin de l'icone.

I
' # Affiche un icéne sur le bouton PushButton |
I # self.image 01 = "C:\Program Files\FreeCADO.13\icone@l.png" # the name of the icon :
' self.image 01 = path+"iconeOl.png" # the name of the icon :
! icon0l = QtGui.QIcon() !
i icon0l.addPixmap(QtGui.QPixmap(self.image 01),QtGui.QIcon.Normal, QtGui.QIcon.Off) X
' self.pushButton.setIcon(icon01) !
! self.pushButton.setlLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direction |
1

La commande UserAppData donne le chemin utilisateur
AppHomePath donne le chemin d'installation de FreeCAD

path = FreeCAD.ConfigGet("UserAppData") |
I path = FreeCAD.ConfigGet("AppHomePath") X
1

gauche

Meéthode 2

Une autre méthode pour afficher une fenétre, ici en créant un
fichier QtForm.py qui renferme 1'entéte du programme (module
appelé avec import QtForm), et d'un deuxieme module qui
renferme le code de la fenétre tous ces accessoires, et votre code
(le module appelant).

Cette méthode nécessite 2 fichiers distincts, mais permet de
raccourcir votre programme, en utilisant le fichier QtForm.py en
import. Il faut alors distribuer les deux fichiers ensemble, ils sont
indissociables.

Le fichier QtForm.py

#ooke coding: utf-8 -*-
'# Create by flachyjoe
PySide QtCore, QtGui

_fromUtf8 = QtCore.QString.fromUtf8
AttributeError:
_fromUtf8(s):

136 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

return s

try:
_encoding = QtGui.QApplication.UnicodeUTF8
def translate(context, text, disambig):
return QtGui.QApplication.translate(context, text, disambig, encoding)
except AttributeError:
def translate(context, text, disambig):
return QtGui.QApplication.translate(context, text, disambig)

class Form(object):
def init (self, title, width, height):
self.window = QtGui.QMainWindow()
self.title=title
self.window.setObjectName(fromUtf8(title))
self.window.setWindowTitle(translate(self.title, self.title, None))
self.window.resize(width, height)

def show(self):
self.createUI()
self.retranslateUI()
self.window.show()

def setText(self, control, text):
control.setText(translate(self.title, text, None))

Le fichier appelant, qui contient la fenétre et votre code.
Le fichier mon_fichier.py

Les connections sont a faire, un bon exercice.

-*- coding: utf-8 -*-

Create by flachyjoe

from PySide import QtCore, QtGui
import QtForm

I
class myForm(QtForm.Form):

' def createUI(self):

self.centralWidget = QtGui.QWidget(self.window)
self.window.setCentralWidget(self.centralWidget)

self.pushButton = QtGui.QPushButton(self.centralWidget)
self.pushButton.setGeometry(QtCore.QRect (30, 170, 93, 28))
self.pushButton.clicked.connect(self.on pushButton clicked)

self.lineEdit = QtGui.QLineEdit(self.centralWidget)
self.lineEdit.setGeometry(QtCore.QRect (30, 40, 211, 22))

self.checkBox.setGeometry(QtCore.QRect (30, 90, 81, 20))
self.checkBox.setChecked(True)

self.radioButton = QtGui.QRadioButton(self.centralWidget)
self.radioButton.setGeometry(QtCore.QRect (30, 130, 95, 20))

def retranslateUI(self):
self.setText(self.pushButton, "Fermer")
self.setText(self.lineEdit, "essai de texte")
self.setText(self.checkBox, "CheckBox")
self.setText(self.radioButton, "RadioButton")

def on_pushButton clicked(self):
self.window.hide()

I
myWindow=myForm("Fenétre de test",400,300)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
self.checkBox = QtGui.QCheckBox(self.centralWidget) !
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
:myWindow.show() X

1

137 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Quelques commandes utiles

Here the code to display the icon on the pushButton''"',
'# change the name to another button, ('''radioButton, checkBox''') as well as the path to the icon,

1
1
1
:
Displays an icon on the button PushButton |
self.image 01 = "C:\Program Files\FreeCADO.13\icone@l.png" # he name of the icon X
self.image 01 = path+"icone0l.png" # the name of the icon 1
icon@l = QtGui.QIcon() X
icon0l.addPixmap(QtGui.QPixmap(self.image 01),QtGui.QIcon.Normal, QtGui.QIcon.O0ff) !
self.pushButton.setIcon(icon01) \
self.pushButton.setlLayoutDirection(QtCore.Qt.RightTolLeft) # This command reverses the direction o
1
1
1
1
1
1
1
1
1
1
1
1
1
1

FreeCAD.ConfigGet("UserAppData") # gives the user path
FreeCAD.ConfigGet ("AppHomePath") # gives the installation path of FreeCAD

This command reverses the horizontal button, right to left
:self.pushButton.setLayoutDirection(OtCore.Qt.RightToLeft) # This command reverses the horizontal button
I
Displays an info button

:self.pushButton.setToolTip(itranslate(”MainWindow“, "Quitter la fonction", None)) # Displays an info but?

I

This function gives a color button

iself.pushButton.setStyleSheet("background-color: red") # This function gives a color button
I

:# This function gives a color to the text of the button
iself.pushButton.setStyleSheet("color : #ff0000") # This function gives a color to the text of the button
I

1
combinaison des deux, bouton et texte !

iself.pushButton.setStyleSheet("color : #ff0000; background-color : #0000ff;") # combination of the twoj
| 1
replace the icon in the main window |
MainWindow.setWindowIcon(QtGui.QIcon('C:\Program Files\FreeCADO.13\View-C3P.png"')) \
| 1
connects a lineEdit on execute :
iself.lineEdit. returnPressed.connect(self.execute) # connects a lineEdit on "def execute" after validatiol
self.lineEdit. textChanged. connect(self.execute) # connects a lineEdit on "def execute" with each keyst
| 1
display text in a lineEdit

self.lineEdit.setText(str(val X)) # Displays the value in the lineEdit (convert to string)
I
extract the string contained in a lineEdit

: val X = self.lineEdit.text() # extract the (string) string contained in lineEdit
i val X = float(val X0) # converted the string to an floating

 val_X = int(val_X0) # convert the string to an integer

1
1
1
1
1
1
1
1
1
1
1
! |
This code allows you to change the font and its attributes |
! font = QtGui.QFont() X
I font.setFamily("Times New Roman") !
: font.setPointSize(10) |
| font.setWeight(10) X
: font.setBold(True) # same result with tags "your text" (in quotes) 1
! self.label 6.setFont(font) X
i self.label 6.setObjectName("label 6") !
' self.label 6.setStyleSheet("color : #ff0000") # This function gives a color to the text !
: self.label 6.setText(translate("MainWindow", "Select a view", None)) :

1

En utilisant les caracteres accentués, dans le cas ou vous obtenez
les erreurs suivantes :

plusieurs méthodes sont possibles.

UnicodeDecodeError: 'utf8' codec can't decode bytes in

138 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

position 0-2: invalid data

conversion from a lineEdit
App.activeDocument().CopyRight.Text = str(unicode(self.lineEdit 20.text() , 'IS0-8859-1').encode('UTF-8'
:DESIGNEDfBY = unicode(self.lineEdit 01.text(), 'IS0-8859-1').encode('UTF-8")

1
'def utf8(unio):

: return unicode(unio).encode('UTF8")

UnicodeEncodeError: 'ascii' codec can't encode character
u'\xe9' in position 9: ordinal not in range(128)

conversion

i@ = u"Nom de 1'élément : "
if.write('''a.encode('is0-8859-1"')"'"'"+str(element)+"\n")
I

'def is08859(encoder):

: return unicode(encoder).encode('iso-8859-1")

uniteSs = "mm"+iso8859(unichr(178))
:print unicode(uniteSs, 'is08859')

< précédent: Line drawing function Index suivant: Licence >

139 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Développer une application
pour FreeCAD

140 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Déclaration du fondateur

Je sais que la discussion sur le « droit » de licence pour l'open
source a occupé une partie importante de la bande passante
Internet alors voici la raison pour laquelle, a mon avis, FreeCAD
doit étre sous licence LGPL.

J'ai choisi les licences LGPL (http://fr.wikipedia.org
/wiki/Licence publique g%C3%A9n%C3%A9rale limit
%C3%A9% GNU) et GPL (http://fr.wikipedia.org

/wiki/Licence publique g%C3%A9M%C3%A9rale GNU) pour le
projet, je sais qu’il y a des pros et des anti LGPL et je vous
donnerai quelques raisons de cette décision.

FreeCAD est le mélange d'une bibliotheque et d'une application,
de sorte que le GPL serait un peu fort pour cela. Il permettrait
d'éviter 1'écriture de modules commerciaux pour FreeCAD car
elle empécherait la liaison avec les librairies de base FreeCAD.
Vous pouvez vous demander pourquoi des modules

commerciaux ? Linux aurait-il autant de succes si les
bibliotheques C GNU étaient sous licences GPL, et empéchaient
donc les liaisons avec des applications non GPL ? Et bien que
j'aime la liberté de Linux, je veux aussi étre en mesure d'utiliser
les tres bon pilotes graphique NVIDIA 3D. Je comprends et
j'accepte les raisons pour lesquels NVIDIA ne souhaite pas
donner les codes des pilotes. Nous travaillons TOUS pour des
entreprises, et nous avons besoin d’argent, ou au moins de
nourriture... Pour moi, une coexistence de l'open source et les
logiciels a code source propriétaire n'est pas une mauvaise chose,
quand il obéit a des regles de la licence LGPL. Je voudrais voir
quelqu'un écrire un processus d’'import / export CATIA pour
FreeCAD et de le distribuer gratuitement ou pour de l'argent. Je
n'aime pas forcer a donner plus que ce qu'il ne veut. Ce ne serait
pas bon ni pour lui ni pour FreeCAD.

Néanmoins, cette décision est prise seulement pour le systeme de
base de FreeCAD. Chaque auteur d'un module d'application peut
prendre sa propre décision.

Licences utilisées

141 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Voici les trois licences en vertu des quels FreeCAD est publié :

FreeCAD uses two different licenses, one for the application
itself, and one for the documentation:

Licence publique générale limitée GNU (LGPL2+)
(http://fr.wikipedia.org/wiki/Licence_publique g%C3%A9n
%C3%A9rale_1limit%C3%A9e_GNU)
Pour les bibliotheques de base telles qu'elles sont énoncées
dans le .h et le .cpp dans src/App src/Gui src/Base et la
plupart des modules dans src/Mod ainsi que pour l'exécutable
comme indiqué dans le .h et le .cpp dans src/main. Les icones
et les autres parties graphiques sont également LGPL.

Licence publique générale GNU (GPL2+)
(http://fr.wikipedia.org/wiki/Licence_publique g%C3%A9n
%C3%A9rale_ GNU)
Pour les scripts Python qui construisent les binaires comme
indiqué dans les fichiers .py dans src/Tools.

Open Publication Licence
La documentation sur http://free-cad.sourceforge.net/ ne
saurait pas étre décrite d'une autre facon par l'auteur.

Voir le fichier droit d'auteur FreeCAD pour debian (http://free-
cad.git.sourceforge.net/git/gitweb.cgi?p=free-cad/free-
cad;a=Dblob;f=package/debian/copyright;
h=a97cf019d020edba596f2d0f614c9b09ce546b0f;hb=HEAD) (en
anglais) pour plus de détails sur les licences utilisées dans
FreeCAD.

Effet des licences
Les utilisateurs privés

Les utilisateurs particuliers peuvent utiliser FreeCAD
gratuitement et peuvent en faire tout ce qu'ils veulent...

Les utilisateurs professionnels

142 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Ils peuvent utiliser FreeCAD librement, pour tout type de travail
privé ou professionnel. Ils peuvent personnaliser l'application
comme ils le souhaitent. Ils peuvent écrire des extensions de
source ouverte ou fermée a FreeCAD. Ils sont toujours maitre de
leurs données, ils ne sont pas obligés de mettre a jour FreeCAD,
changer leur utilisation de FreeCAD. Lutilisation de FreeCAD ne
les lie a aucun type de contrat ou obligation.

Développeurs open source

Ils peuvent utiliser FreeCAD comme les bases de modules
d'extension propres a des fins spéciales. Ils peuvent choisir soit la
licence GPL soit la LGPL pour permettre 1'utilisation de leur
travail dans des logiciels propriétaires ou non.

Les développeurs professionnels

Les développeurs professionnels peuvent utiliser FreeCAD
comme les bases de leurs propres modules d'extension a des fins
spéciales et ne sont pas obligés de faire leurs modules open
source. Ils peuvent utiliser tous les modules en LGPL. Ils sont
autorisés a distribuer FreeCAD avec leur logiciel propriétaire. Ils
obtiendront le soutien de(s) l'auteur(s) aussi longtemps que cela
n'est pas a sens unique. Si vous voulez vendre votre module, vous
avez besoin d'une licence Coin3D, sinon vous étes obligés par
cette bibliotheque de le rendre open source.

OpenCasCade License side effects (for
FreeCAD version 0.13 and older)

The following is no more applicable since version 0.14, since both
FreeCAD and OpenCasCade are now fully LGPL.

Up to Version 0.13 FreeCAD is delivered as GPL2+, although the
source itself is under LGPL2+. Thats because of linkage of
Coin3D (GPL2) and PyQt(GPL). Starting with 0.14 we will be
completely GPL free. PyQt will be replaced by PySide, and

143 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Coin3D was re-licensed under BSD. One problem, we still have to
face, license-wise, the OCTPL (Open CASCADE Technology Public
License) (http://www.opencascade.org/getocc/license/). Its a
License mostly LGPL similar, with certain changes. On of the
originators, Roman Lygin, elaborated on the License on his Blog
(http://opencascade.blogspot.de/2008/12/license-to-kill-license-
to-use.html). The home-brew OCTPL license leads to all kind of
side effects for FreeCAD, which where widely discussed on
different forums and mailing lists, e.g. on OpenCasCade forum
itself (http://www.opencascade.org/org/forum/thread 15859
/?forum=3). I will link here some articles for the biggest
problems.

GPL2/GPL3/OCTLP incompatibility

We first discovered the problem by a discussion on the FSF
(http://www.fsf.org/) high priority project discussion list
(https://groups.google.com/forum/#!topic/polignu/XRergtwsma80).
It was about a library we look at, which was licensed with GPL3.
Since we linked back then with Coin3D, with GPL2 only, we was
not able to adopt that lib. Also the OCTPL is considered GPL
incompatible (http://www.opencascade.org/occt/faq/). This Libre
Graphics World article "Libre DWG drama: the end or the new
beginning?" (http://libregraphicsworld.org/blog/entry/libredwg-
drama-the-end-or-the-new-beginning) shows up the drama of
LibreDWG project not acceptably in FreeCAD or LibreCAD.

Debian

The incompatibility of the OCTPL was discussed on the debian
legal list (http://lists.debian.org/debian-legal/2009
/10/msg00000.html) and lead to a bug report on the FreeCAD
package (http://bugs.debian.org/cgi-bin
/bugreport.cgi?’bug=617613) which prevent (ignor-tag) the
transition from debian-testing to the main distribution. But its
also mentioned thats a FreeCAD, which is free of GPL code and
libs, would be acceptably. With a re-licensed Coin3D V4 and a
substituted PyQt we will hopefully reach GPL free with the 0.14
release.

144 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Fedora/RedHat non-free

In the Fedora project OpenCasCade is listed "non-free". This
means basically it won't make it into Fedora or RedHat. This
means also FreeCAD won't make it into Fedora/RedHat until OCC
is changing its license. Here the links to the license evaluation:

m Discussion on the Fedora-legal-list
(http://lists.fedoraproject.org/pipermail/legal/2011-September
/001713.html)

m License review entry in the RedHat bug tracker
(https://bugzilla.redhat.com/show bug.cgi?id=458974#c10)

The main problem they have AFIK is that the OCC license
demand non discriminatory support fees if you want to do paid
support. It has nothing to do with "free" or OpenSource, its all
about RedHat's business model!

< précédent: Dialog creation Index suivant: Tracker >

145 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

L'adresse de notre bug tracker est la suivante :
http://www.freecadweb.org/tracker

There you can report bugs, submit feature requests, patches, or
request to merge your branch if you developed something using
git. The tracker is divided into modules, so please be specific and
file your request in the appropriate subsection. In cas of doubt,
leave it in the "FreeCAD" section.

Signaler les bugs

Si vous pensez que vous pourriez avoir trouvé un bogue
(dysfonctionnement ou erreur), vous étes invité de le signaler.

Mais, avant de rapporter un bug, s'il vous plait vérifiez les
éléments suivants :

m Assurez-vous que votre bug est vraiment un bug, qu'il devrait
faire quelque chose, mais il ne fonctionne pas.

m Si vous n'étes pas slir, n'hésitez pas a expliquer votre
probleme sur le forum (http://forum.freecadweb.org/) et
demandez ce qu'il faut faire.

m Avant de soumettre quoi que ce soit, lisez les questions
fréequemment posées (en), effectuez une recherche sur le
forum (http://forum.freecadweb.org/), et assurez-vous que le
méme bug n'a pas déja été signalé auparavant, en faisant une
recherche sur bug tracker (http://www.freecadweb.org
/tracker/main page.php) de FreeCAD.

m Décrivez aussi clairement que possible le probleme, et
comment il peut étre reproduit. Si nous ne pouvons pas
vérifier le bug, nous ne pourrons pas étre en mesure de le
reparer.

m Inscrivez les informations suivantes : Votre systeme
d'exploitation, sa version, s'il est de 32 ou 64 bits, et, la
version de FreeCAD vous utilisez.

m S'il vous plait déposer un rapport distinct pour chaque bug.

m Sivous étes sur un systeme Linux, et que votre bug provoque
un plantage dans FreeCAD, vous pouvez essayer de tracer le
débogage :

146 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

m a partir d'un terminal exécuter gdb FreeCAD (en
supposant que le paquet gdb soit installé), puis, a
l'intérieur de gdb faire run.

m ensuite exécuter FreeCAD.

m Apres que l'accident se soit reproduit, tapez bt , pour
obtenir le backtrace complet.

m Inclure le backtrace dans votre rapport de bogue.

Demande de fonctionnalites

Si vous désirez une fonctionnalité particuliere, qui n'est pas
encore implémentée dans FreeCAD, ce n'est pas un bug, mais
une demande de fonctionnalité.

Vous pouvez également soumettre une proposition sur mantis
bug tracker (http://www.mantisbt.org/) JigmE méme,
(envoyez-la comme demande de fonctionnalité au lieu d'un
bug), mais gardez bien a l'esprit, qu'il n'y a aucune garantie que
votre souhait soit exaucé.

Soumettre un correctif (patch)

Dans le cas, ol vous avez programmeé une correction d'un bug
(patch), une extension ou autre chose qui peut étre d'utilité
publique dans FreeCAD, créer un patch a l'aide de 1'outil
Subversion diff tool et de le soumettre sur mantis bug tracker
(http://www.mantisbt.org/) Jigus et envoyez-le comme
patch.

Requesting merge

Si vous avez créé une branche git contenant les modifications que
vous aimeriez voir fusionné dans le code FreeCAD, vous pouvez y
demander que votre branche soit examinée et fusionnée si les
développeurs FreeCAD sont OK avec elle. Vous devez d'abord
publier votre branche dans un dépoét git publique (github,
bitbucket, sourceforge ...) et donner ensuite 'URL de votre

147 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

branche dans votre demande de fusion.

< précédent: Licence Index suivant: CompileOnWindows >

148 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Cet article explique pas a pas comment compiler FreeCAD dans
Windows.

See also Compile on Windows with Visual Studio 2013
Prérequis
Required programs

m Git (http://git-scm.com/) There are a number of alternatives
such as GitCola, Tortoise Git, and others.

m CMake (http://www.cmake.org/cmake/resources
/software.html) version 2.x.x or Cmake 3.x.x

m Python >2.5 (This is only required if NOT using the Libpack.
The Libpack comes with a minimal Python(2.7.x) suitable for
compiling and running FreeCAD)

Source Code

Using Git (Preferred)

To create a local tracking branch and download the source code
you need to open a terminal(command prompt) and cd to the
directory you want the source, then type:

...

Compiler

On Windows, the default compiler is M$ Visual Studio, be it the
Express or Full 2008, 2012, or 2013 versions. You will also need
to install the Windows Platform SDK to get several required
libraries (e.g. Windows.h), though they may not be required with
M$ compilers (either full or express).

Note

Though it may be possible to use Cygwin or MinGW gcc it's not
tested or ported so far.

149 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Third Party Libraries

You will need all of the Third Party Libraries to successfully
compile FreeCAD. If you use the M$ compilers it is recommended
to install a FreeCAD LibPack (http://sourceforge.net/projects/free-
cad/files/FreeCAD%?20LibPack/), which provides all of the
required libraries to build FreeCAD in Windows. You will need
the Libpack for your architecture and compiler. FreeCAD
currently supplies Libpack Versionl1 for x32 and x64, for VS9
2008, VS11 2012, and VS12 2013.

Optional programs

m NSIS (http://sourceforge.net/projects/nsis/) Windows installer
(note: formerly, WiX (http://wixtoolset.org/) installer was used
- now under transition to NSIS) - if you want to make msi
installer

System Path Configuration

Inside your system path be sure to set the correct paths to the
following programs:

m git (not tortoiseGit, but git.exe) This is necessary for Cmake
to properly update the "About FreeCAD" information in the
version.h file which allows FreeCAD to report the proper
version in About FreeCAD from the help menu.

m Optionally you can include the Libpack in your system path.
This is useful if you plan to build multiple
configurations/versions of FreeCAD, you will need to copy
less files as explained later in the build process.

To add to your system path:

m Start menu -> Right click on Computer -> Properties ->
Advanced system settings

m Advanced tab -> Environment Variables...

= Add the PATH/TO/GIT to the PATH

150 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

m It should be separated from the others with a semicolon ;"

Configuration with CMake

The switch to CMake

Warning

Since FreeCAD version 0.9 we have stopped providing .vcproj
files.

Currently, FreeCAD uses the CMake build system to generate
build and make files that can be used between different operating
systems and compilers. If you want build former versions of
FreeCAD (0.8 and older) see Building older versions later in this
article.

We switched because it became more and more painful to
maintain project files for 30+ build targets and x compilers.
CMake gives us the possibility to support alternative IDEs, like
Code::Blocks, Qt Creator and Eclipse CDT. The main compiler is
still M$ VC9 Express, though. But we plan for the future a build
process on Windows without proprietary compiler software.

CMake

The first step to build FreeCAD with CMake is to configure the
environment. There are two ways to do it:

m Using the LibPack
m Installing all the needed libraries and let CMake find them

The following process will assume you are using the LipPack. The
second option may be discussed in Options for the Build Process.

Configure CMake using GUI

m Open the CMake GUI

151 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Specify the source folder

Specify the build folder

Click Configure

Specify the generator according to the IDE that you'll use.

This will begin configuration and should fail because the location
of FREECAD_LIBPACK DIR is unset.

s Expand the FREECAD category and set
FREECAD LIBPACK DIR to the correct location

s Check FREECAD USE_EXTERNAL PIVY

m Optionally Check FREECAD USE_FREETYPE this is
required to use the Draft WB's Shape String functionality

m Click Configure again

m There should be no errors

m Click Generate

m Close CMake

= Copy libpack\bin folder into the new build folder CMake
created

Options for the Build Process

The CMake build system gives us a lot more flexibility over the
build process. That means we can switch on and off some
features or modules. It's in a way like the Linux kernel build. You
have a lot of switches to determine the build process.

Here is the description of some of these switches. They will most
likely change a lot in the future because we want to increase the
build flexibility a lot more.

152 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Link table
Variable name Description Default
Switch the On Win3?2
usage of the on
FREECAD LIBPACK USE FreeCAD ’ .
— — : otherwise
LibPack on or
off
off
FreeCAD

Directory where

the LibPack is SOURCE

dir

FREECAD LIBPACK DIR

Build FreeCAD
FREECAD BUILD GUI with all Gui ON
related modules

Build the CAM
FREECAD BUILD CAM module, OFF
experimental!

Create the
project files for
the Windows
installer.

Create the
project files for
source code
documentation.

FREECAD BUILD INSTALLER OFF

FREECAD BUILD DOXYGEN DOCU OFF

Switch on stuff
needed only
when you do a
Release build.

FREECAD MAINTAINERS BUILD OFF

If you are building with Qt Creator, jump to Building with Qt
Creator, otherwise proceed to Building with Visual Studio 9 2008.

Building FreeCAD

Depending on your current setup, the process for building
FreeCAD will be slightly different. This is due to the differences

153 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

in available software and software versions for each operating
system.

The following procedure will work for compiling on Windows
Vista/7/8, for XP an alternate VS tool set is required for VS 2012
and 2013, which has not been tested successfully with the
current Libpacks. To target XP(both x32 and x64) it is
recommended to use VS2008 and Libpack

FreeCADLibs 11.0 x86 V(C9.7z

Building with Visual Studio 12 2013 [afficher]
Building with Visual Studio 9 2008 [afficher]
Building with Qt Creator [afficher]
Command line build [afficher]

Building older versions

Using LibPack

To make it easier to get FreeCAD compiled, we provide a
collection of all needed libraries. It's called the LibPack. You can
find it on the download page (http://sourceforge.net/project
/showfiles.php?group id=49159) on sourceforge.

You need to set the following environment variables:
FREECADLIB = "D:\Wherever\LIBPACK"
QTDIR = "%FREECADLIB%"

Add "%FREECADLIB%\bin" and "%FREECADLIB%\dIl" to the
system PATH variable. Keep in mind that you have to replace
"%FREECADLIB%" with the path name, since Windows does not

154 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

recursively replace environment variables.

Directory setup in Visual Studio

http://www.freecadweb.org/wiki/index.php?title=...

Some search path of Visual Studio need to be set. To change

them, use the menu Tools—Options—Directory

Includes

Add the following search path to the include path search list:

Libs

Add the following search path to the lib path search list:

%FREECADLIB%\include
%FREECADLIB%\include\Python
%FREECADLIB%\include\boost

% FREECADLIB%\include\xercesc
%FREECADLIB%\include\OpenCascade
%FREECADLIB%\include\OpenCV
%FREECADLIB%\include\Coin
%FREECADLIB%\include\SoQt
%FREECADLIB%\include\QT
%FREECADLIB%\include\QT\Qt3Support
%FREECADLIB%\include\QT\QtCore
%FREECADLIB%\include\QT\QtGui
%FREECADLIB%\include\QT\QtNetwork
%FREECADLIB%\include\QT\QtOpenGL
%FREECADLIB%\include\QT\QtSvg
%FREECADLIB%\include\QT\QtUiTools
%FREECADLIB%\include\QT\QtXml
%FREECADLIB%\include\Gts
%FREECADLIB%\include\zlib

%FREECADLIB%\lib

Executables

155 sur 246

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Add the following search path to the executable path search list:

» %FREECADLIB%\bin

m TortoiseSVN binary installation directory, usually
"C:\Programm Files\TortoiseSVN\bin", this is needed for a
distribution build when SubWVRev.exe is used to extract the
version number from Subversion.

Python needed

During the compilation some Python scripts get executed. So the
Python interpreter has to function on the OS. Use a command box
to check it. If the Python library is not properly installed you will
get an error message like Cannot find python.exe. If you use the
LibPack you can also use the python.exe in the bin directory.

Special for VC8

When building the project with VC8, you have to change the link
information for the WildMagic library, since you need a different
version for VC6 and VCS8. Both versions are supplied in
LIBPACKY/dII. In the project properties for AppMesh change the
library name for the wm.dlIl to the VC8 version. Take care to
change it in Debug and Release configuration.

Compile

After you conform to all prerequisites the compilation is -
hopefully - only a mouse click in VC

After Compiling

To get FreeCAD up and running from the compiler environment
you need to copy a few files from the LibPack to the bin folder
where FreeCAD.exe is installed after a successful build:

m python.exe and python d.exe from LIBPACK/bin
m python25.dll and python25 d.dll from LIBPACK/bin
m python25.zip from LIBPACK/bin

156 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

m make a copy of Python25.zip and rename it to Python25 d.zip
m QtCore4.dll from LIBPACK/bin

m QtGui4.dll from LIBPACK/bin

m boost signals-vc80-mt-1 34 1.dll from LIBPACK/bin

boost program options-vc80-mt-1 34 1.dll from LIBPACK/bin
xerces-c 2 8.dll from LIBPACK/bin

zlib1.dll from LIBPACK/bin

coin2.dll from LIBPACK/bin

soqtl.dll from LIBPACK/bin

QtOpenGL4.dll from LIBPACK/bin

m QtNetwork4.dll from LIBPACK/bin

m QtSvg4.dil from LIBPACK/bin

m QtXml4.dll from LIBPACK/bin

When using a LibPack with a Python version older than 2.5 you
have to copy two further files:

m 2lib.pyd and zlib_d.pyd from LIBPACK/bin/lib. This is needed
by python to open the zipped python library.

m sre.pyd and sre d.pyd from LIBPACK/bin/lib. This is needed
by python for the built in help system.

If you don't get it running due to a Python error it is very likely
that one of the zlib*.pyd files is missing.

Additional stuff

If you whant to build the source code documentation you need
DoxyGen (http://www.stack.nl/~dimitri/doxygen/).

To create an intstaller package you need WIX
(http://wix.sourceforge.net/).

During the compilation some Python scripts get executed. So the
Python interpreter has to work properly.

For more details have also a look to README.Linux in your
sources.

First of all you should build the Qt plugin that provides all custom

157 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

widgets of FreeCAD we need for the Qt Designer. The sources are
located under

So far we don't provide a makefile -- but calling

T e oo oeeeeee oo eee e eeee e
creates it. Once that's done, calling make will create the library
JfUbkreeco widgets.sor/. i

To make this library known to your Qt Designer you have to copy
the file to

References
Template:Reflist
< précédent: Tracker Index suivant: CompileOnUnix >

158 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

On recent linux distributions, FreeCAD is generally easy to build,
since all dependencies are usually provided by the package
manager. It basically involves 3 steps:

1. Getting the FreeCAD source code
2. Getting the dependencies (packages FreeCAD depends upon)
3. Compiling with "cmake . && make"

Below, you'll find detailed explanations of the whole process and
particularities you might encounter. If you find anything wrong or
out-of-date in the text below (Linux distributions change often),
or if you use a distribution which is not listed, please help us
correcting it.

Getting the source

Before you can compile FreeCAD, you need the source code.
There are 3 ways to get it:

Git

The quickest and best way to get the code is to clone the
read-only git repository (you need the git (http://git-scm.com/)
package installed):

This will place a copy of the latest version of the FreeCAD source
code in a new directory called "free-cad-code". The first time you
try connecting to the free-cad.git.sourceforge.net host, you will
receive a message asking to authenticate the sourceforge SSH
key, which is normally safe to accept (you can check their SSH
keys on the sourceforge website if you are not sure)

Github

There is an always up to date FreeCAD repository on Github:
github.com/FreeCAD/FreeCAD_sf master (https://github.com
/FreeCAD/FreeCAD_ sf master)

159 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Source package

Alternatively you can download a source package, but they could
be already quite old so it's always better to get the latest sources
via git or github.

m Official FreeCAD source packages (distribution-independent):
https://sourceforge.net/projects/free-cad/files
/FreeCAD%?20Source/

Getting the dependencies

To compile FreeCAD under Linux you have to install all libraries
mentioned in Third Party Libraries first. Please note that the
names and availability of the libraries will depend on your
distribution. Note that if you don't use the most recent version of
your distribution, some of the packages below might be missing
from your repositories. In that case, look in the Older and
non-conventional distributions section below.

Skip to Compile FreeCAD

Debian and Ubuntu [afficher]
Fedora [afficher]
Gentoo [afficher]
OpenSUSE [afficher]
Arch Linux [afficher]

Older and non-conventional distributions [afficher]

Below is additional help for a couple of libraries that might not be
present in your distribution repositories

Eigen 3

160 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

La bibliotheque Eigen3 est maintenant requise par le module
Sketcher. Sous Ubuntu, cette bibliothéque n'est disponible dans
les dépots qu'a partir d'Ubuntu 11.10. Pour les versions
antérieures d'Ubuntu, vous pouvez soit la télécharger ici
(http://packages.ubuntu.com/oneiric/libeigen3-dev) et l'installer
manuellement, ou ajouter le dépot FreeCAD Daily Builds PPA
(https://launchpad.net/~freecad-maintainers/+archive/freecad-
daily) a vos sources de logiciels avant de l'installer par I'un des
moyens listés ci-dessous.

OpenCASCADE community edition (OCE)

Un fork tiré d'OpenCasCade, OpenCASCADE Community edition
(http://github.com/tpaviot/oce) est beaucoup plus facile a
compiler. FreeCAD peut utiliser 1'une ou l'autre des versions
installées sur votre systeme, soit la version « officielle » ou la
community edition. Le site Web du projet OCE contient des
instructions de compilation détaillées.

OpenCASCADE official version

Note: You are advised to use the OpenCasCade community
edition above, which is easier to build, but this one works too.
Not all Linux distributions have an official OpenCASCADE
package in their repositories. You have to check for yourself if
one is available for your distribution. At least from Debian Lenny
and Ubuntu Intrepid an official .deb package is provided. For
older Debian or Ubuntu releases you may get unofficial packages
from here (http://lyre.mit.edu/~powell/opencascade). To build
your own private .deb packages follow these steps:

wget http://lyre.mit.edu/~powell/opencascade/opencascade 6.2.0.0rig.tar.gz
wget http://lyre.mit.edu/~powell/opencascade/opencascade 6.2.0-7.dsc

wget http://lyre.mit.edu/~powell/opencascade/opencascade 6.2.0-7.diff.gz

I

I
:dpkg-source -X opencascade 6.2.0-7.dsc

I

Install OCC build-deps

:sudo apt-get install build-essential devscripts debhelper autoconf automake libtool bison libx11l-dev tcl
I

#Build Opencascade packages. This takes hours and requires

:# at least 8 GB of free disk space

icd opencascade-6.2.0 ; debuild

I

I
:# Install the resulting library debs

161 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

isudo dpkg -i libopencascade6.2-0_6.2.0-7_1i386.deb |
:libopencascade6.2-dev_6.2.0-7_1386.deb \
1

En outre, vous pouvez télécharger et compiler la derniere version
disponible de opencascade.org (http://www.opencascade.org):

Installez le paquet normalement, mais sachez que l'installateur
est un programme java qui nécessite 1'édition officielle java
runtime de Sun (nom du paquet : sun-java6-jre), pas le paquet
java open-source (gij) distribué avec Ubuntu. Installez-le au
besoin :

isudo apt-get remove gij
:sudo apt-get install sun-java6-jre

Prenez garde, si vous utilisez gij java a d'autres applications
telles qu'une extension de navigateur, elles ne fonctionneront
plus. Si l'installateur ne fonctionne pas, essayez :

Une fois le paquet installé, allez dans le répertoire "ros" a
l'intérieur du répertoire opencascade, et faites

:./configure --with-tcl=/usr/lib/tc18.4 --with-tk=/usr/1ib/tk8.4 !

Maintenant vous pouvez compiler. Retournez au dossier ros et

faites :

[T T T T T T T T T T T T T T T T EE |
:make E
Cela prendra beaucoup de temps, peut-étre plusieurs heures.
Quand c'est terminé, installez en faisant simplement

[T T T T T T T T T T T T T T T T EE |
Esudo make install E

Les fichiers de bibliotheque seront copiés dans /usr/local/lib ce
qui est normal, puisqu'ils seront trouvés automatiquement par
n'importe quel programme. En outre, vous pouvez aussi faire

162 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Ce qui fera la méme chose que make install, mais créera une
entrée dans votre systeme de gestion de paquets afin de le
désinstaller plus facilement éventuellement. Maintenant nettoyez
les considérable fichiers de compilation temporaires en faisant

...

Erreur possible N2 1 : Si vous utilisez OCC version 6.2, il est fort
possible que le compilateur stoppera tout juste apres le début de
I'opération "make". Si cela survient, éditez le script "configure",
retracez la déclaration CXXFLAGS="$CXXFLAGS ", et
remplacez-la par CXXFLAGS="$CXXFLAGS -ffriend-injection
-fpermissive". Puis recommencez 1'étape configure.

Erreur possible N2 2 : Il est possible que plusieurs modules
(WOKSH, WOKLibs, TKWOKTCcl, TKViewerTest et TKDraw) se
complaignent qu'ils ne trouvent pas les entétes tcl/tk. Dans ce
cas, puisque l'option n'est pas offerte par le script configure, vous
devrez éditer nauellement le makefile de chacun de ces modules :
Allez dans adm/make et dans chacun des dossiers des modules
fautifs. Editez le Makefile, et retracez les lignes

CSF TclLibs INCLUDES = -I/usr/include et

CSF TclTkLibs INCLUDES = -I/usr/include et ajoutez /tcl8.4 et
/tk8.4 afin qu'elles se lisent comme suit : CSF TclLibs INCLUDES
= -I/usr/include/tcl8.4 et CSF TclTkLibs INCLUDES = -I/usr
/include/tk8.4

SoQt

La bibliotheque SoQt doit étre compilée par rapport a Qt4, ce qui
est le cas de la plupart des distributions récentes. Mais lors de
1'écriture de cet article, il n'y avait des paquets SoQt4 disponibles
que pour Debian, mais pas pour toutes les versions d'Ubuntu.
Pour compiler les paquets, suivez les étapes suivantes :

I

:wget http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt 1.4.1.0orig.tar.gz
wget http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt 1.4.1-6.dsc
:wget http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt 1.4.1-6.diff.gz
I

163 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

dpkg-source -x soqt_1.4.1-6.dsc X
lsudo apt-get install doxygen devscripts fakeroot debhelper libqt3-mt-dev qt3-dev-tools libqgt4-opengl- devI
icd soqt-1.4.1 |
debuild X
:sudo dpkg -i libsoqt4-20 1.4.1-6 i386.deb libsoqt4-dev 1.4.1-6 i386.deb libsoqt-dev-common 1.4.1-6 i386.¢

Si votre systeme est en 64 bits, vous devrez probablement
changer i386 par amdo64.

Pivy

Pivy n'est pas nécessaire pour compiler FreeCAD ou l'exécuter,
mais il est requis par le module 2D Drafting qui ne fonctionnera
pas autrement. Si vous ne comptez pas utiliser ce module, vous
n'avez pas besoin de pivy. Au moment d'écrire ces lignes, Pivy est
tres jeune et ne se trouve possiblement pas encore dans les
dépots de votre distribution. Si vous ne trouvez pas Pivy dans les
dépobts de paquets de votre distribution, vous pouvez prendre des
paquets debian/ubuntu sur la page de téléchargement de
FreeCAD :

http://sourceforge.net/projects/free-cad/files/FreeCAD%20Linux/
or compile pivy yourself:

Pivy compilation instructions

Compiler FreeCAD

Utiliser cMake

cMake est un nouveau systeme de compilation dont 1'avantage
est d'étre commun a plusieurs systémes d'exploitation (Linux,
Windows, MacOSX, etc). FreeCAD utilise désormais cMake
comme systeme de compilation principal. La compilation avec
cMake est généralement tres simple et se déroule en deux
étapes. A la premiére étape, cMake vérifie que tous les
programmes et bibliotheques nécessaires sont présents sur votre
systeme, et configure tout ce qui est nécessaire pour la
compilation subséquente. Quelques alternatives vous sont
détaillées ci-dessous, mais FreeCAD est livré avec des options par
défaut sensées. La seconde étape est la compilation proprement

164 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

dite, qui produit 1'exécutable FreeCAD.

Puisque FreeCAD est une application lourde, la compilation peut
prendre un certain temps (environ 10 minutes sur un PC rapide,
30 minutes sur un PC lent).

In-source building

FreeCAD can be built in-source, which means that all the files
resulting from the compilation stay in the same folder as the
source code. This is fine if you are just looking at FreeCAD, and
want to be able to remove it easily by just deleting that folder.
But in case you are planning to compile it often, you are advised
to make an out-of-source build, which offers many more
advantages. The following commands will compile freecad:

...

If you want to use your system's copy of Pivy, which you most
commonly will, then set the compiler flag to use the correct pivy
(via FREECAD USE EXTERNAL PIVY=1). Also, set the build type
to Debug if you want a debug build or Release if not. A Release
build will run much faster than a Debug build. Sketcher becomes
very slow with complex sketches if your FreeCAD is a Debug
build. (NOTE: the "." and space after the cmake flags are
CRITICAL!):

For a Debug build

:$ make

1

'$ cmake -DFREECAD_USE_EXTERNAL_PIVY=1 -DCMAKE_BUILD_TYPE=Release .
1$ make

1

Your FreeCAD executable will then reside in the "bin" folder, and
you can launch it with:

165 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Compilation hors-source

Si vous comptez suivre 1'évolution rapide de FreeCAD, il est
beaucoup plus pratique de le compiler dans un dossier séparé de
la source. Chaque fois que vous mettez a jour le code source,
cMake distinguera intelligemment quels fichiers ont changé, et
ne compilera que ce qui est requis. Les compilation hors-source
sont particulierement pratiques avec le systeme Git, puisque vous
pouvez facilement essayer d'autres branches sans embrouiller le
systeme de compilation. Pour compiler hors-source, créez un
dossier de compilation distinct du dossier source freecad, et
depuis le dossier de compilation, pointez cMake vers le dossier
source :

mkdir freecad-build

icd freecad-build

cmake ../freecad (or whatever the path is to your FreeCAD source folder)
make

I

Votre exécutable résidera dans le dossier "bin".
Options de configuration

Il existe un certain nombre de modules expérimentaux ou
inachevés que vous pourriez vouloir compiler afin de travailler
sur ceux-ci. Pour ce faire, vous devez régler les options
appropriées lors de 1'étape de configuration. Faites-le soit en
ligne de commande, en passant les options -D <var>:<type>=
<value> a cMake ou en utilisant une des interfaces graphiques
disponibles pour cMake (par ex. pour Debian, les paquets cmake-
qt-gui ou cmake-curses-gui).

A titre d'exemple, pour configurer en ligne de commande la
compilation du module Assembly, faites :

Les options possibles sont listées dans le fichier CmakeLists.txt

166 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...
situé a la racine du dossier source FreeCAD.

Greffon Qt designer

Si vous voulez faire du développement Qt pour FreeCAD, vous
aurez besoin du greffon Qt designer qui fournit tous les widgets
personnalisés de FreeCAD. Allez dans

créera la bibliotheque libFreeCAD widgets.so. Pour faire en sorte
que cette bibliotheque soit reconnue par Qt Designer, vous devez
copier le fichier vers $QTDIR/plugin/designer

Doxygen
Si vous vous sentez assez audacieux pour vous plonger dans le

code, vous pourriez tirer avantage a construire et consulter la
documentation source de FreeCAD générée par Doxygen.

Construire un paquet Debian

Si vous envisagez de construire un paquet Debian voici les
sources que vous devez installer en premier :

I
,dh -make :
. 1
:devscrlpts |
1

I
#optional, used for checking if packages are standard-compliant |
:lintian \
1

Pour construire un paquet ouvrez une console, puis il suffit d'aller

167 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

dans le répertoire FreeCAD et ’appeler

...

Once the package is built, you can use lintian to check if the
package contains errors

I
#replace by the name of the package you just created
:lintian your-fresh-new-freecad-package.deb

Dépannage
Note sur les systemes 64 bits

Pour la compilation de FreeCAD pour 64 bits, il y a un probleme
connu avec le paquet OpenCASCADE 64 bits. Afin que FreeCAD
s'exécute correctement, vous pourriez devoir exécuter le script

.Jconfigure avec le réglage additionnel define OCC64 :

...

Sous les systemes basés sur Debian, cette solution n'est pas
requise avec l'utilisation du paquet précompilé OpenCASCADE,
puisque celui-ci est déja compilé avec ce réglage. Maintenant il
ne reste plus qu'a compiler FreeCAD tel que décrit ci-dessus.

Fedora 13

To build & install FreeCAD on Fedora 13, a few tips and tricks
are needed:

m Install a bunch of required packages, most are available from
the Fedora 13 repositories

m Download and build xerces

m Download and build OpenCascade. Need to point it to xmu:

m Download and build Pivy. You have to remove 2 references to

168 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

non existent "SoQtSpaceball.h" from pivy/interfaces/soqt.i
Commenting out those two lines allow the build & install to
work.

m Configure Freecad. You will need to point it to a few things:

...

= make - hits a problem where the build is breaking because
the ldflags for soqt are set to "-LNONE" which made libtool
barf. My hackish workaround was to modify /usr/lib/Coin2
/conf/soqgt-default.cfg so that the ldflags are "" instead of
'-LNONE". After this -> success !

I
e e e e e |
1

n make install

..

Automatic build scripts

Here is all what you need for a complete build of FreeCAD. It's a
one-script-approach and works on a fresh installed distro. The
commands will ask for root password (for installation of
packages) and sometime to acknowledge a fingerprint for an
external repository server or https-subversion repository. These
scripts should run on 32 and 64 bit versions. They are written for
different versions, but are also likely to run on a later version
with or without major changes.

If you have such a script for your preferred distro, please send it!
We will incorporate it into this article.

Ubuntu 13.x [afficher]
Ubuntu 14.x [afficher]
OpenSUSE 12.2 [afficher]
Debian Squeeze [afficher]
Fedora 21 [afficher]

169 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Updating the source code

FreeCAD development happens fast, everyday or so there are bug
fixes or new features. The cmake systems allows you to
intelligently update the source code, and only recompile what has
changed, making subsequent compilations very fast. Updating
the source code with git or subversion is very easy:

#Replace with the location where you cloned the source code the first time
icd freecad

:#{f you are using git

igit pull

I

Move into the appropriate build directory and run cmake again
(as cmake updates the version number data for the Help menu,
..about FreeCAD), however you do not need to add the path to
source code after "cmake", just a space and a dot:

#Replace with the location of the build directory
cd ../freecad-build

icmake .

|make

< précédent: CompileOnWindows Index suivant: CompileOnMac S

170 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

This page explains how to compile the latest FreeCAD source
code on Mac OS X.

Prerequisites

First of all, you will need to install the following software.

Xcode Development Tools

Unless you want to use the Xcode IDE for FreeCAD development,
you will only need to install the Command Line Tools. To do this
on 10.9 and later, open Terminal, run the following command, and
then click Install in the dialog that comes up.

For other versions of OS X, you can get the package from the
Apple developer downloads page (https://developer.apple.com
/downloads/index.action?g=xcode) (sign in with the same Apple
ID you use for other Apple services). Specifically, you will need to
download Development Tools 3.2 for OS X 10.6, and Command
Line Tools 4.8 for OS X 10.8.

Package Manager

You will want to use a package manager to install prerequisite
software, this page gives instructions for two of the common
package managers in use for OS X: Homebrew (http://brew.sh/)
and MacPorts (https://www.macports.org/). It's easiest to pick one
package manager for your system, and not have multiple package
managers installed concurrently.

Homebrew

To install Homebrew, enter the following in Terminal:

171 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

MacPorts

To install MacPorts, follow the instructions from their website
(https://www.macports.org/install.php)

CMake

FreeCAD uses CMake (http://www.cmake.org/) to build the
source. Homebrew and MacPorts can install the command line
version of CMake, or if you prefer using a GUI application, install
the latest version from http://www.cmake.org/download.

For the command line version of CMake, from a terminal use
either Homebrew:

Installing the Dependencies

All of the needed libraries can be installed using either
Homebrew or MacPorts.

Homebrew Dependencies

I
brew tap homebrew/science :
brew tap sanelson/freecad :
brew install boost eigen freetype oce python gt pyside pyside-tools xerces-c |
brew install --without-framework --without-soqt sanelson/freecad/coin i
. . 1
brew install --HEAD pivy \
! 1

172 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Getting the source

In this guide, the source and build folders are created in /Users
/username/FreeCAD, but you can of course use whatever folder
you want.

1
:mkdir ~/FreeCAD
:cd ~/FreeCAD

...

Alternatively, you can use the github mirror: https://github.com
/FreeCAD/FreeCAD_sf master.git

Building FreeCAD

First, create a new folder for the build:

...

Now you will need to run CMake to generate the build files.
Several options will need to be given to CMake, which can be
accomplished either with the CMake GUI application, or via the
command line.

CMake Options

These instructions are valid for FreeCAD from 25 March 2015,
previously several options needed to be manually specified, see
the history for this page.

173 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

Name

BUILD ROBOT

CMAKE BUILD TYPE

FREECAD USE EXTERNAL PIVY

FREETYPE INCLUDE DIR freetype2

CMake GUI

Value

0
(unchecked)

Release
1 (checked)

Jusr/local
/include
/freetype2
for
Homebrew,
/opt/local
/include
/freetype2
for MacPorts

http://www.freecadweb.org/wiki/index.php?title=...

Notes

As of
12/19/2014,
the robot
module fails
to build
using newer
versions of
clang (OS X
10.9 and
later)

Homebrew
only

Only CMake
version
older than
3.1.0

Open the CMake app, and fill in the source and build folder fields.
In this case, it would be /Users/username/FreeCAD
/FreeCAD-git for the source, and /Users/username/FreeCAD

/build for the build folder.

Next, click the Configure button to populate the list of
configuration options. This will display a dialog asking you to
specify what generator to use. Leave it at the default Unix
Makefiles. Configuring will fail the first time because there are
some options that need to be changed. Note: You will need to

174 sur 246

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

check the Advanced checkbox to get all of the options.

Set options from the table above, then click Configure again and
then Generate.

CMake command line

Open a terminal, cd in to the build directory that was created
above. Run cmake with options from the table above, following
the formula -D(Name)="(Value)", and the path to your FreeCAD
source directory as the final argument.

I
1$cd ~/FreeCAD/build
:$cmake -DBUILD ROBOT="0" ...options continue... -DPYTHON LIBRARY="/some/path/" ../FreeCAD-git

1

:cd ~/FreeCAD/build
make —j3

1

The -j option specifies how many make processes to run at once.
One plus the number of CPU cores is usually a good number to
use. However, if compiling fails for some reason, it is useful to
rerun make without the -j option, so that you can see exactly
where the error occurred.

If make finishes without any errors, you can now launch
FreeCAD, either from Terminal with ./bin/FreeCAD, or by double
clicking the executable in Finder.

Updating

FreeCAD development happens fast; everyday or so there are bug
fixes or new features. To get these changes, run:

I
cd ~/FreeCAD/FreeCAD-git
:git pull

175 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

And then repeat the compile step above.

Troubleshooting

Fortran

"No CMAKE Fortran COMPILER could be found." during
configuration - Older versions of FreeCAD will need a fortran
compiler installed. With Homebrew, do "brew install gcc" and try
configuring again, for Macports, do "sudo port install gcc49" and
give cmake the path to Fortran ie

-DCMAKE Fortran COMPILER=/opt/local/bin/gfortran-mp-4.9 .
Or, preferably use a more current version of FreeCAD source!

OpenGL

See OpenGL on MacOS

< précédent: CompileOnUnix suivant: Third Party Libraries >
Index

176 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

Vue d'ensemble

http://www.freecadweb.org/wiki/index.php?title=...

Ce sont des bibliotheques, qui ne sont pas modifiées dans le
projet FreeCAD. elles sont inchangées, et, essentiellements
utilisées comme bibliotheques de liens dynamiques (*.So

(http://fr.wikipedia.org

/wiki/Bibliotheque_logicielle#Unix.2C_GNU.2FLinux et _BSD
ou *.D1l (http://fr.wikipedia.org

/wiki/Dynamic_Link Library)). S'il y a un changement
nécessaire, ou une classe wrapper est nécessaire, le code du
package, ou le code de la bibliotheque ont changés et doivent
étre déplacés vers le package de base de FreeCAD. Les
bibliotheques utilisées sont les suivantes :

Pensez a utiliser LibPack au lieu de télécharger et d'installer

toutes sorte de trucs.

Liens
Link table
Nom de la Version . . .
. . . Lien pour l'obtenir
Lib necessaire

Python >= 2.5.X http://www.python.org/
OpenCasCade >= 5.2 http://www.opencascade.org
Qt >=4.1x http://www.qtsoftware.com
Coin3D >=2.X http://www.coin3d.org
ODE >=0.10.x http://www.ode.org
SoQt >=1.2 http://www.coin3d.org
Xerces-C++ ; g 2.7.x < http://xml.apache.org/xerces-c/
GTS >=0.7.X http://gts.sourceforge.net/
Zlib >=1.x.X http://www.zlib.net/
Boost >=1.33.x http://www.boost.org/

. _ http://eigen.tuxfamily.org
Eigen3 >=3.0.1 /index.php?title=Main Page

177 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Details
Python

Version: 2.5 ou plus
License: Python 2.5 licence

Vous pouvez utiliser le source ou binaire a partir de Python
(http://www.python.org/) ou utiliser alternativement ActiveState
Python a partir de activestate (http://www.activestate.com/) s'il
est difficile d'obtenir des libs de débogage a partir d'ActiveState.

Description

Python, est le langage de script principal, et, est utilisé dans
toute l'application. Par exemple :

m Mettre en ceuvre des scripts de test pour tester :
m des pertes de mémoire.
m d'assurer de nouvelles fonctionnalités apres
modifications.
m poster, construire des controles.
m des tests de controdles de tests.
m Macros et enregistrements de macros.
m Mettre en ceuvre une logique d'application, pour les paquets
(packages) standards.
m La mise en oeuvre des boites a outils completes.
m Le chargement dynamique des paquets (packages).
m Les regles d'application pour la conception (connaissances
techniques).
m Créer par exemple des groupes de travail et PDM sur
Internet.
m Et ainsi de suite ...

Le chargement de packages dynamiques pour Python est utilisé,
en particulier, au moment de 1'exécution, pour le chargement de
fonctionnalités supplémentaires, et, établit le nécessaires pour
les taches réelles. Pour voir Python de plus pres : Pourquoi
Python direz vous ? vous pouvez le demander ici

178 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

(http://www.python.org/). Il y a plusieurs raisons : Jusqu'a
présent, dans ma vie professionnelle, j'ai utilisé les langages de
script différents :

m Perl

m Tcl/Tk
= VB

m Java

Python est plus orienté OO (object-oriented), le code n'est pas
plus mauvais que Perl et Tcl, pareil pour Perl et VB. Java n'est pas
un langage destiné au script, et, difficile (voire impossible) a
intégrer. Python, est bien documenté, facile a intégrer, et, facile a
étendre. Il est également bien fait ses preuves, et, est fort prisé
dans la communauté open source.

Credits

Grace a Guido van Rossum (http://fr.wikipedia.org
/wiki/Guido van Rossum) et beaucoup de gens, ont fait que
Python ait un tel succes !

OpenCasCade

Version: 5.2 ou plus
License : OCTPL

OCC (http://www.opencascade.org/) est un noyau complet
CAD. A l'origine, il a été développé en France par Matra
Datavision, pour la Strim (Styler) et Euclide applications
quantiques, et, plus tard fait pour I'Open Source. C'est une
bibliotheque vraiment énorme, et, faire en premier lieu une
application de CAO libre est possible, en fournissant certains
paquets, qui seraient difficiles, ou impossibles a mettre en ceuvre
dans un projet Open Source :

m Un noyau géométrique complet conforme a STEP.
» Un modele topologique de données et toutes les fonctions
nécessaires pour travailler sur les (coupes, fusion, extrusion,

179 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

etc ...)

m Import-standard/exportation des processeurs comme STEP
(http://fr.wikipedia.org/wiki/STEP-NC), IGES
(http://fr.wikipedia.org
/wiki/Initial Graphics Exchange Specification), VRML
(http://fr.wikipedia.org
/wiki/Virtual Reality Markup Language).

m Visionneuse 2D et 3D avec le soutien de la sélection.

m Une structure de document, et, données de projet, avec le
soutien de, sauvegarde et restauration, de liaison externe des
documents, de recalcul de l'historique du dessin
(modélisation paramétrique) et d'un centre de chargement de
nouveaux types de données, comme un module d'extension
dynamique.

Pour en savoir plus sur OpenCascade jeter un coup oeil a la page
OpenCascade ou sur OpenCascade (http://www.opencascade.org).

Qt
Version: 4.1.x or higher

Licence : GPL v2.0/v3.0 ou commerciale (a partir de la version
4.5 aussi sur v2.1 LPGL)

Je ne pense pas que j'ai besoin de dire beaucoup de choses sur
Qt. C'est un des outils les plus souvent utilisés, dans l'interface
graphique des projets Open Source. Pour moi, le point le plus
important d'utiliser Qt est le Qt Designer et la possibilité de
charger les boites de dialogue entieres comme, une ressource
(XML), et, d'intégrer des widgets spécialisés.

Dans une application CAX, l'interaction avec l'utilisateur, et, les
boites de dialogue, sont de loin la plus grande partie du code, et,
un bon concepteur de boites de dialogues, est tres important
pour ajouter facilement de nouvelles fonctionnalités a FreeCAD.

Vous trouverez de plus amples informations, et une tres bonne
documentation en ligne sur Qt (http://www.qtsoftware.com)

180 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Coin3D

Version: 2.0 ou plus
License: GPL v2.0 ou Commercial

Coin (http://www.coin3d.org/) est une bibliotheque graphique 3D
de haut niveau, avec une interface de programmation C++. Coin
utilise une structure de données scenegraph, pour rendre des
graphiques en temps réel, il est adapté a toutes sortes
d'applications de visualisation scientifique, et, d'ingénierie.

Coin est portable sur un large éventail de plates-formes : tous les
systemes UNIX (http://fr.wikipedia.org/wiki/Unix) / Linux
(http://fr.wikipedia.org/wiki/Linux) / BSD (http://fr.wikipedia.org
/wiki/Berkeley Software Distribution), tous les systemes
d'exploitation Microsoft Windows, et Mac OS X.

Coin est construit sur le standard industriel OpenGL
(http://fr.wikipedia.org/wiki/OpenGL) avec les bibliotheques de
rendu immeédiat, et, ajoute les abstractions de primitives de haut
niveau, fournit une interactivité 3D, augmente considérablement
la commodité et la productivité du programmeur, contient de
nombreuses fonctions d'optimisations complexes, pour obtenir un
rendu rapide, et, de plus est transparent pour le programmeur
d'applications.

Coin est basé sur I'API SGI Open Inventor. Pour ceux qui ne
sont pas familier avec lui, dans la communauté scientifique et
d'ingénierie, Open Inventor est depuis longtemps, devenu de
facto, la bibliotheque graphique standard pour la visualisation 3D
et pour les logiciels de simulation visuelle. Sur une période de
plus de 10 ans, il a prouvé, qu'il en vaut la peine, sa maturité
contribue a son succes, en tant que fondation majeure dans des
milliers d'applications d'ingénierie de grande envergure a travers
le monde.

Nous allons utiliser Openlnventor en tant que visualiseur 3D dans
FreeCAD parce que les visualiseurs OpenCascade (AIS et
Graphics3D) ont leurs limites, a cause de grands flux de données,

181 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

et, quand il y a des rendus d'ingénierie a grande échelle. D'autres
choses, comme les textures ou le rendu volumétrique ne sont pas
bien pris en charge, et ainsi de suite

Depuis la version 2.0 Coin utilise un modele de licence différente.
Ce n'est plus LGPL (http://fr.wikipedia.org
/wiki/Licence publique générale limitée GNU). Pour 1'Open
source, ils utilisent le GPL (http://fr.wikipedia.org
/wiki/Licence publique générale GNU), et, une licence
commerciale pour le source fermé. Cela signifie que si vous
voulez vendre votre ouvrage basé sur FreeCAD (modules
d'extension), vous devez acheter une licence Coin !

SoQt

Version: 1.2.0 ou plus
License: GPL v2.0 ou commercial

SoQt est l'inventeur de la liaison avec la boite a outils Qt Gui.
Malheureusement, il n'est plus LGPL, et, nous devons donc le
supprimer du code de FreeCAD, et, le lier comme une
bibliotheque. Il a le méme type de licence que Coin. Et vous
devez le compiler avec votre version de Qt.

Xerces-C++

Version: 2.7.0 ou plus
License: Apache Software License Version 2.0

Xerces-C++ (http://xerces.apache.org/xerces-c/) est un analyseur
de validation XML, écrit dans un sous-ensemble portable de C++.
Avec Xerces-C++, il est facile de donner a votre application la
capacité de lire et écrire des données au format XML
(http://fr.wikipedia.org/wiki/Extensible Markup Language). Une
bibliotheque partagée est prévue pour l'analyse, la génération, la
manipulation et la validation des documents XML
(http://fr.wikipedia.org/wiki/Extensible Markup Language).

182 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Xerces-C++, est fidele a la recommandation XML 1.0 et de
nombreuses normes connexes (voir Caractéristiques ci-dessous).

L'analyseur fournit, de hautes performances, la modularité et
1'évolutivité. Code source, les échantillons et documentation de
I'API (http://fr.wikipedia.org/wiki/Interface de programmation)
sont fournis avec l'analyseur. Pour la portabilité, nous avons pris
soin de faire une utilisation minimale de modeles, pas de RTTI
(http://fr.wikipedia.org/wiki/Run-time type information), et
'utilisation minimale de #ifdef.

L'analyseur est utilisé, pour sauvegarder, et, restaurer les
parametres dans FreeCAD.

Zlib
Version: 1.x.x

License: zlib Licence

zlib est concgu pour comprimer des données de toute sorte, il est
libre, et l1également utilisé, il n'est pas couvert par des brevets, il
compresse sans perte de données, et pour une utilisation sur
pratiquement n'importe quel matériel informatique et systeme
d'exploitation. Le format des données zlib est lui-méme portable
sur toutes les plateformes. Contrairement a la méthode de
compression LZW (http://fr.wikipedia.org/wiki/Lempel-
Ziv-Welch) utilisée sous Unix compress(1) et dans le format
d'image GIF (http://fr.wikipedia.org

/wiki/Graphics Interchange Format), la méthode de compression
utilisée actuellement dans zlib, ne "gonfle" jamais les données.
(LZW peut doubler ou dans les cas extrémes, tripler la taille du
fichier). L'empreinte mémoire de la librairie zlib, est également
indépendante des données entrées et peut étre, si nécessaire,
réduite a un certain taux de compression.

Boost

Version: 1.33.x

183 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

License: Boost Software License - Version 1.0

Les bibliotheques Boost C++ sont une collection évaluées par
des pairs, les bibliotheques, sont open source, et, étendent les
fonctionnalités de C++. Les bibliotheques sont sous licence
Boost Software License, Boost est concu, pour étre utilisé avec
des projets open source et fermés. Beaucoup de programmeurs
Boost sont sur le C++ standard committee, et plusieurs
bibliotheques Boost ont été acceptées, pour leurs incorporations
dans le Technical Report 1 of C++0x.

Les bibliotheques Boost sont en C++, et, destinées a un large
éventail de programmeurs et un vaste domaine d'applications.
Les bibliotheques sont congues a des fins générales, comme pour
SmartPtr, a des applications comme OS et FileSystem, et a des
bibliotheques principalement destinées aux développeurs de
bibliotheques et d'autres utilisateurs avancés en C++, comme la
bibliotheque MPL (http://fr.wikipedia.org
/wiki/Mozilla Public License).

Afin d'assurer l'efficacité et la flexibilité, Boost fait un usage
intensif de modeles (templates). Boost a été une source de
travail, et, de recherches approfondies dans la programmation
générique, et, méta-données en C++.

Allez voir sur : boost (http://www.boost.org/) pour plus de détails.

LibPack

LibPack est un package pratique, avec toutes les bibliotheques
décrites ci-dessus, en un seul paquet. Il est actuellement
disponible pour la plate-forme Windows, sur la page de
téléchargement ! Si vous travaillez sous Linux, vous n'avez pas
besoin d'un LibPack, a la place, utilisez les dépots (package
repositories) de votre distribution Linux.

FreeCADLibs7.x Changelog

m Utilisation de QT 4.5.x et Coin 3.1.x
m Eigen ajout de template lib pour Robot

184 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

s SMESH expérimental

< précédent: CompileOnMac Index suivant: Third Party Tools >

185 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Page d'outils

Pour chaque développement de logiciels sérieux, vous avez
besoin d'outils sérieux. Voici une liste d'outils, que nous utilisons
pour développer FreeCAD :

Outils indépendants de la plate-forme
Qt-Toolkit

Qt-toolkit est un outil de conception d'interfaces utilisateur,
indépendamment de la plate forme utilisée. Elle est contenue
dans le LibPack de FreeCAD, mais peut aussi étre téléchargé a
I'adresse Qt project (http://qt-project.org/downloads).

InkScape

Excellent programme de dessin vectoriel. Adhére a la norme SVG
(http://fr.wikipedia.org/wiki/Scalable Vector Graphics), et, est
utilisé pour dessiner les icones et les images. Pour le télécharger,
allez sur inkscape (http://inkscape.org/?lang=fr&css=css
/base.css).

Doxygen

Un treés bon outil, stable, il génere de la documentation a partir
de fichiers sources .h et .cpp .

Gimp

Pas grand chose a dire sur le célebre Gnu Image Manipulation
Program. Outre, qu'il peut gérer les fichiers .Xpm, qui est un
moyen tres pratique pour créer les icones dans le programme
Qt-Toolkit. Le format .XPM est fondamentalement C-Code, qui
peut étre compilé, dans un programme comme Qt-Toolkit.

Téléchargez la derniere version de GIMP ici
(http://www.gimp.org/)

186 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Outils pour Windows

Visual Studio 8 Express

Bien que VC8 pour le développement en C++, n'est pas vraiment
un pas en avant depuis VisualStudio 6 (plutdét un grand pas en
arriere), soit un systeme de développement libre sur Windows.
Pour les applications natives Win32, vous devez télécharger le
PlatformSDK de M$ (http://www.microsoft.com/en-us
/download/details.aspx?id=6510), 1'édition Express est difficile
a trouver.

Mais vous pouvez essayer ce lien Visual Studio Express
(http://msdn.microsoft.com/vstudio/express/visualc/default.aspx).

CamStudio

CamStudio est un outil Open Source pour créer des
enregistrements vidéos d'écran (Webcasts). C'est un tres bon
outil, pour créer des tutoriels vidéos (avec ou sans son), en
enregistrant toutes vos opérations et mouvements de souris, qui
se passent sur votre écran . Une vidéo est bien moins ennuyeuse,
que l'écriture d'une documentation.

Vous pouvez aller voir le site de camstudio (http://camstudio.org/)
pour plus de détails.

Tortoise SVN

Il s'agit d'un tres bon outil. Il rend 1'utilisation de Subversion
(notre systeme de contréle de versions sur sf.net) en un réel
plaisir. Vous pouvez penser a l'intégration de 1'explorateur, de
gérer facilement des révisions, de consulter les difféerences, de
résoudre les conflits, assurer les branches, et ainsi de suite La
boite de dialogue en elle-méme est une ceuvre d'art. Elle vous
donne un apercu sur vos fichiers modifiés et vous permet de les
valider ou non. Il est alors facile de rassembler les modifications

187 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

apportées aux unités logiques et de leurs donner un message
clair de validation.

Vous trouverez sur tortoisesvn.tigris.org
(http://tortoisesvn.tigris.org/).

StarUML

StarUML est un programme Open Source. Il a beaucoup de
caractéristiques des grands, y compris l'engeniering inverse du
code source C++

Téléchargez le ici : staruml.sourceforge.net
(http://staruml.sourceforge.net/en/)

Outils pour Linux

A venir.

< précédent: Third Party Libraries Index
suivant: Start up and Configuration >

188 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Cette page montre, les différentes facons de lancer FreeCAD, et,
ses configurations les plus importantes.

Démarrer FreeCAD en ligne de
commande

FreeCAD peut étre lancé normalement, en double-cliquant sur
son icone qui est sur le bureau, ou, en le sélectionnant dans le
menu de démarrage, mais, il peut également étre lancé
directement a partir de la ligne de commande. Cela vous permet
de changer les options de démarrage par défaut SOEM.

Les options disponibles en ligne de commande

Les options en ligne de commande sont 1'objet de fréquents
changements, il est donc sage de vérifier les options de votre
version courante en tapant :

:Usage:

FreeCAD [options] Filel File2
:Allowed options:

I

1

1

1

1

1

1

1

. . 1
Generic options: |
1

1

1

1

1

1

1

!

1 -v [--version] print version string
-h [--help 1] print help message

I

I

i -¢ [--console] start in console mode

! --response-file arg can be specified with '@name', too

figuration:

'
—~ 3

! 1
! 1
| [--write-log] arg write a log file to default location(Run FreeCAD --h to see default location)
\ --log-file arg Unlike to --write-log this allows to log to an arbitrary file X
i -u [--user-cfg] arg User config file to load/save user settings !
1 -s [--system-cfg] arg System config file to load/save system settings h
i -t [--run-test] arg test level X
i -M [--module-path] arg additional module paths !
! P [--python-path] arg additional python paths h

1

189 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

"Response"” fichiers de configurations

Vous pouvez lire certaines options de FreeCAD a partir d'un
fichier de configuration. Ce fichier doit étre dans le répertoire
/bin et doit étre nommé FreeCAD.cfg. Notez, que les options
spécifiées en ligne de commande, remplacent le fichier de
configuration !

Certains systéemes d'exploitation ont une limite assez courte de la
longueur de la chaine, en ligne de commande. La fagon courante
de contourner ces limitations, est I'utilisation des fichiers de
Response. Un fichier de Response n'est qu'un fichier de
configuration, qui utilise la méme syntaxe qu'a la ligne de
commande. Si la ligne de commande spécifie un nom de fichier
de Response a utiliser, il est chargé analysé, et s'ajoute a la ligne
de commande :

:FreeCAD --response-file=ResponseFile.txt

...

Options cachées

I1 y a des options qui sont invisibles a 1'utilisateur. Ces options
sont par exemple, les parametres X-Window analysés par le
systeme Windows:

» -display display, définit 1'affichage X (valeur par défaut est
$DISPLAY).

s -geometry geometry, la géométrie fixe de la premiere
fenétre client qui est affichée.

= -fn or -font font, définit la police de 1'application. La police
doit étre spécifié en utilisant la X logical font description.

= -bg or -background color, définit la couleur de fond par
défaut et une palette d'applications (tons clairs et foncés sont

190 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

calculés).

m -fg or -foreground color, définit la couleur de premier plan
par défaut.

= -btn or -button color, définit la couleur des boutons par
défaut.

= -name name, définit le nom de 1'application.

m -title title, définit le titre de 1'application.

m -visual TrueColor, force 1'application a utiliser un visuel
TrueColor sur un affichage 8-bits.

= -ncols count, limite le nombre de couleurs allouées dans le
cube de couleur sur un écran 8-bits, si l'application utilise la
spécification de couleur QApplication::ManyColor. Si le
nombre est 216, puis un cube 6x6x6 couleurs est utilisé (soit
6 niveaux de rouge, 6 de vert, et 6 de bleu); pour d'autres
valeurs, un cube a peu pres proportionnel a un cube 2x3x1
couleurs est utilisé.

m -cmap, provoque l'installation d'une carte de couleurs
privées a l'application, sur un affichage 8-bits.

Demarrer FreeCAD sans interface
utilisateur

Normalement, FreeCAD démarre en mode graphique (GUI), mais
vous pouvez aussi le forcer a démarrer en mode console en
tapant :

...

En ligne de commande. En mode console, aucune interface
utilisateur, ne sera affichée, et l'invite vous sera présenté avec un
interpréteur Python.

A partir de ce prompt Python, vous avez les mémes
fonctionnalités que l'interpréteur Python qui fonctionne au sein
de l'interface graphique de FreeCAD, et, un acces normal a tous
les modules et plugins de FreeCAD, a l'exception du module
FreeCADGui. Notez que les modules qui dépendent de
FreeCADGui peuvent également étre inaccessibles.

191 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Exécuter FreeCAD comme un module
Python

FreeCAD peut également étre utilisé et exécuté en tant que
module Python a l'intérieur d'autres applications, qui utilisent
Python, ou, a partir d'un shell Python externe. Pour cela,
I'application hote Python doit savoir ou résident vos libs
FreeCAD. La meilleure facon de l'obtenir, c'est d'annexer
temporairement le chemin des libs de FreeCAD a la variable
sys.path. Le code suivant tapé a partir de n'importe quel shell
Python va importer FreeCAD, et vous permettre de l'exécuter de
la méme maniere que dans le mode console :

1 Sys
:sys.patg.apgigd(”path/to/FreeCAD/lib“) # change this by your own FreeCAD lib path
! ree

Une fois que FreeCAD est chargé, c'est a vous de le faire
interagir avec votre application hote de toutes les manieres que
vous pouvez imaginer !

Ensemble de configuration

A chaque démarrage, FreeCAD examine ses environs, ainsi que
les parametres en ligne de commande. Il construit un ensemble
de configurations qui détiennent le coeur des informations
d'exécution. Ces informations sont ensuite utilisées pour
déterminer I’emplacement, ou enregistrer les données des
utilisateurs ou des fichiers journaux. Il est également tres
important apres analyse post-mortem. Par conséquent, il est
enregistré dans le fichier journal (log file).

Informations correspondantes a l'utilisateur

L'appel se fait de la maniere suivants :

192 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

User config entries

Config nom var | Synopsis Exemple M$ Exeml.)le
(Linu
Chemin ou
FreeCAD C:\Documents and
met les Settings\username /home/use
UserAppData données A l'g) - AL
utilisateur \Application /.FreeC
de Data\FreeCAD
1'application.
Chemin ou
FreeCAD C:\Documents and
met les Settings\username /home/use
UserParameter [fichier \Application /.FreeCAIL
utilisateur |Data\FreeCAD /user.cfg
de \user.cfg
1'application.
_ . C:\Documents and
Fichier ou :
sont les Settll}gs\gsername /home/use
SystemParameter , \Application /.FreeCAL
données de
t . Data\FreeCAD /system.ct
application.
\system.cfg
E;ﬁgg%e C:\Documents and
UserHomePath rens Settings\username\My |/home/use
1'utilisateur D
ocuments
courant.
Arguments en ligne de commande
User config entries
Config nom var Synopsis Exemple
1si
LoggingFile l'enregistrement est |1
activé

193 sur 246

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

LoggingFileName

http://www.freecadweb.org/wiki/index.php?title=...

Nom ou est placé le
fichier journal

C:\Documents and
Settings\username
\Application
Data\FreeCAD
\FreeCAD.log

RunMode

Cela indique
comment la boucle
principale
travaillera. "Script"
signifie que le script
donné est appelé
puis quitté. "Cmd"
est destiné a
I'interpréteur en
ligne de commande.
"Internal" exécute
un script interne.
"Gui" entre dans la
boucle d'évenement
Gui. "Module"
charge un module
Python donné.

IICdeI

FileName

Dépend du
RunMode

ScriptFileName

Dépend du
RunMode

Verbose

Niveau de
commentaire de
FreeCAD

or "strict"

OpenFileCount

Donne le nombre de
dossiers ouverts par
les arguments en
ligne de commande

II12II

AdditionalModulePaths

194 sur 246

Contient les
chemins, des
modules
supplémentaires

"extraModules/"

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

donnés dans la ligne
de commande

Systemes liés

L'appel se fait de la maniere suivants :

Epath = FreeCAD.ConfigGet ("AppHomePath") E
User config entries
Exemple
Config var name | Synopsis Exemple M$ Posix
(Linux)
Chemin ou c:/Progam /user/local
AppHomePath est installé Files/FreeCAD 0.7 |/FreeCAD 0.’
FreeCAD - -
Donne une
liste de

chemins que
les modules
Python
recherchent.
PythonSearchPath |S'effectue
au
démarrage,
et peut
changer en
cours
d'exécution

Certaines bibliotheques, ont besoin d'appeler les variables
d'environnement systeme. Parfois, il y a des problemes avec une
installation de FreeCAD, c'est parce que certaines variables
d'environnements sont absentes ou mal réglées. Par conséquent,
certaines variables importantes se reproduisent dans la
configuration et enregistrées dans le fichier journal (log file).

Variables d’environnement relatifs a Python :

195 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

s PYTHONPATH
m PYTHONHOME
m TCL LIBRARY
s TCLLIBPATH

Variables d’environnement relatifs a OpenCascade :

m CSF MDTVFontDirectory
m CSF MDTVTexturesDirectory
m CSF UnitsDefinition

m CSF UnitsLexicon

m CSF StandardDefaults

m CSF PluginDefaults

s CSF LANGUAGE

m CSF SHMessage

m CSF XCAFDefaults

m CSF GraphicShr

m CSF IGESDefaults

m CSF STEPDefaults

Variables d’environnement relatifs au Systeme :

m PATH

Construire des informations connexes

Le tableau ci-dessous montre les informations générées par la
version disponible. La plupart viennent du dépo6t de Subversion.
Cette astuce est nécessaire pour reconstruire exactement une
version !

User config entries
Config var name Synopsis Exemple

Numéro de
version majeure
de la
BuildVersionMajor |construction. 0
Définie dans
src/Build

196 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

/Version.h.in

http://www.freecadweb.org/wiki/index.php?title=...

BuildVersionMinor

Numeéro de
version mineure
de la
construction.
Définie dans
src/Build
/Version.h.in

BuildRevision

Nombre SVN
révision du
référentiel du src
dans la
construction.
Généré par SVN

356

BuildRevisionRange

Gamme de
changements
différentes

123-356

BuildRepositoryURL

Repository URL

https://free-
cad.svn.sourceforge.net
/svnroot/free-
cad/trunk/src

BuildRevisionDate

Date de la
révision
susmentionnée
ci-dessus

2007/02/03 22:21:18

BuildScrClean

Indicates if the
source was
changed ager
checkout

Src modified

BuildScrMixed

Image de marque liée

Src not mixed

Ces entrées de configuration sont liées au mécanisme de l'image
de marque de FreeCAD. Voir Branding pour plus de

197 sur 246

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

renseignements.

Config nom var

User config entries
Synopsis

http://www.freecadweb.org/wiki/index.php?title=...

Exemple

ExeName

Nom du fichier
exécutable de
compilation. Ce nom
peut étre différent de
FreeCAD si un
main.cpp différent est
utilisé.

FreeCAD.exe

ExeVersion

La version présente au
moment de la
compilation

V0.7

Applcon

L'icone qui est utilisé
pour l'exécutable,
affichée dans
application
MainWindow

"FCIcon"

ConsoleBanner

Banniere qui est invité
en mode console

SplashPicture

Nom de l'icone utilisée
pour l'écran de
démarrage

"FreeCADSplasher"

SplashAlignment

Alignement du texte
dans la boite de
dialogue Splash

Left"

SplashTextColor

Couleur du texte
splasher

"#000000"

StartWorkbench

Nom du Workbech qui
commence
automatiquement
apres le démarrage

"Part design"

HiddenDockWindow

198 sur 246

Liste des dockwindows
(séparés par un point-
virgule) qui seront

"Property editor"

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

désactivés

< précédent: Third Party Tools suivant: FreeCAD Build Tool >
Index

199 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

L'outil de construction de FreeCAD ou fcbt est un script
python situé a :

Il peut étre utilisé, pour simplifier certaines taches fréquemment
utilisées dans la construction (compilation), la distribution, et,
l'extension de FreeCAD.

Utilisation

Quand Python (http://fr.wikipedia.org/wiki/Python (langage)) est
correctement installé, fcbt peut étre invoqué par la commande :

I1 affiche un menu, ou vous pouvez sélectionner la tache, que
vous souhaitez utiliser pour :

I
\FreeCAD Build Tool
1 Usage:

fcbt <command name> [command parameter]
possible commands are:

DistSrc (DS) Build a source Distr. of the current source tree
- DistBin (DB) Build a binary Distr. of the current source tree
- DistSetup (DI) Build a Setup Distr. of the current source tree
- DistSetup (DUI) Build a User Setup Distr. of the current source tree
- DistAll (DA) Run all three above modules
- NextBuildNumber (NBN) Increase the Build Number of this Version
- CreateModule (CM) Insert a new FreeCAD Module in the module directory

For help on the modules type:
fcbt <command name> ?

A l'invite de commande, entrez la commande abrégée que vous
voulez appeler. Par exemple, tapez «CM» pour la création d'un
module.

DistSrc

La commande "DS" Crée le source de la distribution de l'arbre
source de courant.

DistBin

200 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

La commande "DB" Créer une distribution binaire de 1'arbre
source de courant.

DistSetup

La commande "DI" crée une distribution d'installation de 1'arbre
source de courant.

DistSetup

La commande "DUI" crée une distribution de configuration
utilisateur de l'arbre source de courant.

DistAll

La commande "DA" exécute la séquence "DS", "DB" et "DI".

NextBuildNumber

La commande "NBN" incrémente le numéro de compilation pour
créer une nouvelle version de FreeCAD.

CreateModule

La commande "CM" crée un nouveau module de l'application.

< précédent: Start up and Configuration Index
suivant: Module Creation >

201 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Ajouter de nouveaux modules et boites a outils dans FreeCAD
est tres facile. Nous appelons module, toute extension de
FreeCAD, tandis qu'un plan de travail (workbench) est une
configuration spéciale GUI (http://fr.wikipedia.org
/wiki/Interface_graphique), habituellement, les groupes de
barres d'outils et de menus. Vous créez un nouveau module qui
contient son propre plan de travail (sa barre d'outils et ses
commandes).

Les modules peuvent étre programmés en C++
(http://fr.wikipedia.org/wiki/C%2B%2B) ou en Python
(http://fr.wikipedia.org/wiki/Python (langage)), ou un mélange
des deux, mais les fichiers de module d'initialisation, doivent étre
en Python. La mise en place d'un nouveau module, avec les
fichiers d'initialisation est facile, et, peut étre effectuée, soit
manuellement, soit avec 1I'outil build de FreeCAD.

Utilisation des outils de FreeCAD

La création d'un nouveau module dans FreeCAD est assez
simple. Dans l'arborescence de développement de FreeCAD, il
existe 1'outil FreeCAD Build Tool (fcbt) qui, fait les choses les plus
importantes pour vous.

Il s'agit d'un script Python (http://fr.wikipedia.org

/wiki/Python (langage)) situé a :

...

Lorsque votre interpréteur Python (http://fr.wikipedia.org
/wiki/Python_(langage)) est correctement installé, vous pouvez
exécuter le script en ligne de commande avec :

...

I
| FreeCAD Build Tool
, Usage:
fcbt <command name> [command parameter]

202 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

possible commands are:

DistSrc (DS) Build a source Distr. of the current source tree
- DistBin (DB) Build a binary Distr. of the current source tree
- DistSetup (DI) Build a Setup Distr. of the current source tree
- DistSetup (DUI) Build a User Setup Distr. of the current source tree
- DistAll (DA) Run all three above modules
- BuildDoc (
- NextBuildNumber (NBN) Increase the Build Number of this Version

(

- CreateModule M) Insert a new FreeCAD Module in the module directory

For help on the modules type:

1
1
1
1
1
1
1
|
1
BD) Create the documentation (source docs) !
1
1
1
|
1
fcbt <command name> ? X

|

A l'invite de comande, entrez CM pour commencer la création
d'un module :

Vous étes maintenant invité a spécifier un nom pour votre
nouveau module.
Appelons le TestMod par exemple :

! Please enter a name for your application: ''TestMod'' !

Apres avoir validé, fcbt commence a copier, tous les fichiers
nécessaires pour votre module dans un nouveau dossier, a :

Puis, tous les fichiers sont modifiés avec votre nouveau nom de
module. La seule chose que vous devez faire maintenant, est
d'ajouter les deux nouveaux projets, "appTestMod" et
"appTestModGui", a votre espace de travail (sous Windows) ou
a vos objectifs Makefile (unix). C'est tout !

Mise en place d'un nouveau module
manuellement

Vous avez besoin de deux choses, pour créer un nouveau module :

m Un nouveau dossier dans le dossier Mod de FreeCAD (soit
dans Installationd_Path/FreeCAD/Mod ou dans
UserPath/.FreeCAD/Mod). Vous pouvez le nommer comme

203 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

vous le souhaitez.

m Dans ce dossier, il y a un fichier InitGui.py. Ce fichier sera
automatiquement exécuté au démarrage de FreeCAD (par ex,
mettre un print("Bonjour tout le monde") a l'intérieur)

En outre, vous pouvez également ajouter un fichier Init.py. La
différence est, que le fichier InitGui.py n'est chargé que lorsque
FreeCAD fonctionne en mode graphique (InitGUI), et, le fichier
Init.py est toujours chargé. Mais si nous faisons un plan de
travail (workbench), nous allons le mettre en InitGui.py, parce
les outils, sont utilisés uniquement en mode GUI, bien sir.

Creéation de nouveaux outils

Une des premieres choses que vous voudrez faire, est de définir
un plan de travail dans le fichier InitGui.py.
Voici un petit code que vous pouvez utiliser :

MyWorkbench (Workbench)

"My workbench object"

Icon = """
/* XPM */
static const char *test icon[]={
"16 16 2 1",
"a c #000000",
". ¢ None",

B
B
B

MenuText = "My Workbench"
ToolTip = "This is my extraordinary workbench"

GetClassName(self):
"Gui::PythonWorkbench"

Initialize(self):
myModulel, myModule2
self.appendToolbar("My Tools", ["MyCommandl","MyCommand2"])
self.appendMenu("My Tools", ["MyCommandl","MyCommand2"])
Log ("Loading MyModule... done\n")

Activated(self):
do something here if needed...

3
ﬁ -
*

204 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Msg ("MyWorkbench.Activated()\n")
Deactivated(self):

do something here if needed. ..

Msg ("MyWorkbench.Deactivated()\n")

I
: FreeCADGui.addWorkbench(MyWorkbench)
I

L'atelier (boite a outils) doit disposer de toutes ces définissions
(attributs) :

= Icon L'attribut Icon est une image XPM
(http://fr.wikipedia.org/wiki/X PixMap) (La plupart des
logiciels tel que GIMP (http://www.gimp.org/) permet de
convertir une image en format xpm, qui, est un simple fichier
texte. Vous pouvez ensuite coller le contenu ici).

s MenuText est le nom établi tel qu'il apparaitra dans la liste
établis (boite a outils).

m Tooltip (Info-bulle) s'affiche lorsque vous le survolez avec la
souris.

m Initialize() est exécuté au chargement de FreeCAD, et doit
créer tous les menus, et, barres d'outils que le plan de travail
(workbench) va utiliser. Si vous faites votre module en C++,
vous pouvez aussi définir vos menus et barres d'outils a
l'intérieur du module C++, et pas dans le fichier InitGui.py.
L'important est, qu'il soit créé maintenant, et pas lorsque le
module est activé.

m Activated() est exécuté, lorsque l'utilisateur bascule sur
votre plan de travail (module).

s Deactivated() est exécuté, lorsque 1'utilisateur bascule de
vOtre atelier (module), a un autre atelier (module) ou, quitte
FreeCAD

Creation de commandes FreeCAD en
Python

Habituellement, vous définissez tous vos outils (appelés
commandes dans FreeCAD), dans un autre module, puis importez
ce module, avant de créer les barres d'outils et de menus.

Il s'agit ici d'un code minimum, que vous pouvez utiliser pour
définir une commande :

205 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

FreeCAD, FreeCADGui

MyTool:
"My tool object"

GetResources(self):

{"MenuText": "My Command",

"Accel": "Ctrl+M",

"ToolTip": "My extraordinary command",
"Pixmap" ren

/* XPM */

static const char *test icon[]={

"16 16 2 1",

"a c #000000",

". ¢ None",

B
B
B

IsActive(self):
FreeCAD.ActiveDocument == None:
False

True

Activated(self):
do something here. ..

e
i
*

FreeCADGui.addCommand('MyCommandl',MyTool())

m La méthode GetResources() doit retourner un dictionnaire
avec les attributs visuels de votre outil. Accel, définit une
touche de raccourci, mais, n'est pas obligatoire.

m IsActive() définit si la commande est active, ou grisée dans
les menus, et, barres d'outils.

m La méthode Activated() est exécutée lorsque la commande
est appelée par un bouton de la barre d'outils, ou dans le
menu, ou méme par le script.

Creéation d'une commande FreeCAD en
C++

Bientot documentée.

206 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

< précédent: FreeCAD Build Tool Index suivant: Debugging >

207 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Premiers tests

Avant de passer a la douloureuse phase de débogage, utilisez le
framework de tests, pour vérifier, si les tests standards
fonctionnent correctement. Si ce n'est pas le cas, c'est peut-étre
d{i a une installation défectueuse.

Ligne de commande

Le débogage de FreeCAD est supporté par quelgques mécanismes
internes. La version en ligne de commande de FreeCAD fournit
des options d'aide au débogage :

-V

Avec l'option "v", FreeCAD donne une sortie plus verbeuse
(plus documentée).

Avec l'option "1", FreeCAD écrit des informations
supplémentaires dans un fichier .log.

These are the currently recognized options in FreeCAD 0.15:

Generic options:

-v [--version] Prints version string

-h [--help 1] Prints help message

-c [--console] Starts in console mode
e

--response-file arg Can be specified with '@name', too

Configuration:
__ |
-1 [--write-log] Writes a log file to:
/home/graphos/.FreeCAD/FreeCAD. log
--log-file arg Unlike to --write-log this allows to log to an
arbitrary file

u [

s [--system-cfg] arg Systen config file to load/save system settings
-t [--run-test] arg Test level

M [--module-path] arg Additional module paths

P I

1
1
1
1
1
:
--user-cfg] arg User config file to load/save user settings |
:
:
1
--python-path 1 arg Additional python paths X

1

Generating a Backtrace

208 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

If you are running a version of FreeCAD from the bleeding edge
of the development curve, it may "crash". You can help solve such
problems by providing the developers with a "backtrace". To do
this, you need to be running a "debug build" of the software.
"Debug build" is a parameter that is set at compile time, so you'll
either need to compile FreeCAD yourself, or obtain a
pre-compiled "debug" version.

For Linux

Prerequisites:

m software package gdb installed
m a debug build of FreeCAD
m a FreeCAD model that causes a crash

Steps: Enter the following in your terminal window:

1
'$ cd FreeCAD/bin
:$ gdb FreeCAD

GNUdebugger will output some initializing information. The
(gdb) shows GNUDebugger is running in the terminal, now input:

I
i(gdb) handle SIG33 noprint nostop
:(gdb) run

FreeCAD will now start up. Perform the steps that cause
FreeCAD to crash or freeze, then enter in the terminal window:

...

This will generate a lengthy listing of exactly what the program
was doing when it crashed or froze. Include this with your
problem report.

Python Debugging

Here is an example of using winpdb inside FreeCAD:

209 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

1. Run winpdb and set the password (e.g. test)
2. Create a Python file with this content

I
I rpdb2 i
| rpdb2.start_embedded debugger("test") :
I FreeCAD |
' Part |
! Draft X
i "hello" I
! "hello" \
i Draft :
| points=[FreeCAD.Vector(-3.0,-1.0,0.0),FreeCAD.Vector(-2.0,0.0,0.0)] !
! Draft.makeWire(points, closed=False, face=False, support=None) X
|

1. Start FreeCAD and load the above file into FreeCAD

2. Press F6 to execute it

3. Now FreeCAD will become unresponsive because the Python
debugger is waiting

4. Switch to the Windpdb GUI and click on "Attach". After a few
seconds an item "<Input>" appears where you have to
double-click

5. Now the currently executed script appears in Winpdb.

6. Set a break at the last line and press F5

7. Now press F7 to step into the Python code of Draft.makeWire

< précédent: Module Creation Index suivant: Testing >

210 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

FreeCAD est livré avec un vaste cadre de test. Les tests de bases
sont basés, sur un ensemble de scripts Python, qui sont situées
dans le module test (....FreeCAD.../Mod/Test).

Introduction
This is the list of test apps as of 0.15 Git 4207:

TestAPP.All

Add test function

BaseTests

Add test function

UnitTests

Add test function

Document

Add test function

UnicodeTests

Add test function

MeshTestsApp

Add test function

TestSketcherApp

Add test function

TestPartApp

211 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

Add test function
TestPartDesignApp

Add test function
Workbench

Add test function

Menu

Add test function
Menu.MenuDeleteCases
Add test function

Menu.MenuCreateCases

Add test function

< précédent: Debugging Index

212 sur 246

http://www.freecadweb.org/wiki/index.php?title=...

suivant: Branding >

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Cet article décrit I'image de marque de FreeCAD. Branding,
est le moyen de lancer votre propre application, sur les bases de
FreeCAD.

Cela ne concerne que votre propre exécutable, ou, votre écran de
démarrage (splash screen) ou jusqu'a ce que le programme
complet soit retravaillé (refonte totale).

Grace aux bases tres souples de l'architecture de FreeCAD, il est
tres facile de 1'utiliser, comme fondation pour votre programme
personnalisé, ou pour une utilisation spécifique.

Generalites

La plupart des marques (branding) se font dans MainCmd.cpp,
ou, MainGui.cpp. Ces projets génerent les fichiers exécutables
de FreeCAD.

Pour faire votre propre marque (branding), il suffit de copier
Main (les projets principaux) ou MainGui (les projets
graphiques GUI), et donner a l'exécutable un nom qui vous est
propre, pour notre exemple, FooApp.exe. Les parametres les
plus importants pour un nouveau look, ne peuvent étre fait qu'en
un seul endroit, dans la fonction main().

Voici la section de code qui controle la marque (branding) :

int main(int argc, char ** argv)

{
// Name Version of the Application
App: :Application::Config()["ExeName"] = "FooApp";
App::Application::Config()["ExeVersion"] = "0.7";

// set the banner (loging console)

App: :Application::Config()["CopyrightInfo"] = sBanner;

App: :Application::Config(AppIcon"] = "FooAppIcon";

App: :Application::Config(SplashScreen"] = "FooAppSplasher";
App: :Application::Config(StartWorkbench"] "Part design";

!)
i)
:)
1 App::Application::Config()["
:)
!)

HiddenDockWindow"] = "Property editor";
App: :Application::Config(SplashAlignment"] = "Bottom|Left";
App: :Application::Config()["SplashTextColor" 1 = "#000000"; // black

// Inits the Application
App: :Application::Config()["RunMode"] = "Gui";
App::Application::init(argc,argv);

Gui::BitmapFactory().addXPM("FooAppSplasher", (const char**) splash screen);
Gui::Application::initApplication();

Gui::Application::runApplication();
App: :Application::destruct();

213 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

La premiere entrée, ::Config définit le nom du programme ici,
"FooApp.exe". Ce n'est pas le nom de l'exécutable qui peut étre
modifié en le renommant, ou par les parametres du compilateur,
mais le nom qui est affiché dans la barre des taches sur les
fenétres, ou dans la liste des programmes sur les systemes Unix.

Les lignes suivantes définissent les entrées de configuration de
votre application "FooApp", une description de la configuration,
et de ses entrées, que vous trouverez dans Start up and
Configuration.

Images

Image resources are compiled into FreeCAD using Qt's resource
system (http://qt-project.org/doc/qt-4.8/resources.html).
Therefore you have to write a .qrc file, an XML-based file format
that lists image files on the disk but also any other kind of
resource files. To load the compiled resources inside the
application you have to add a line

...

into the main() function. Alternatively, if you have an image in
XPM format you can directly include it into your main.cpp and
add the following line to register it:

...

Branding XML

In FreeCAD there is also a method supported without writing a
customized main() function. For this method you must write a file
name called branding.xml and put it into the installation
directory of FreeCAD. Here is an example with all supported
tags:

214 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation

<?xml version="1.0" encoding="utf-8"?>
<Branding>

<Application>FooApp</Application>

<WindowTitle>Foo App title bar</WindowTitle>
<BuildVersionMajor>1</BuildVersionMajor>
<BuildVersionMinor>0</BuildVersionMinor>
<BuildRevision>1234</BuildRevision>
<BuildRevisionDate>2014/1/1</BuildRevisionDate>
<CopyrightInfo>(c) My copyright</CopyrightInfo>
<MaintainerUrl1>Foo App URL</MaintainerUrl>
<ProgramLogo>Path to logo (appears bottom right corner)</ProgramLogo>
<WindowIcon>Path to icon file</WindowIcon>
<ProgramIcons>Path to program icons</ProgramIcons>
<SplashScreen>splashscreen.png</SplashScreen>
<SplashAlignment>Bottom|Left</SplashAlignment>
<SplashTextColor>#ffffff</SplashTextColor>
<SplashInfoColor>#c8c8c8</SplashInfoColor>
<StartWorkbench>PartDesignWorkbench</StartWorkbench>

</Branding>

All of the listed tags are optional.

< précédent: Testing Index suivant:

215 sur 246

http://www.freecadweb.org/wiki/index.php?title=...

Localisation >

09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Localisation en général, est le processus de fourniture d'un
logiciel avec une interface utilisateur (GUI) en plusieurs langues.
Dans FreeCAD vous pouvez définir la langue d'interface
utilisateur sous l'application Edition - Préférences —» Général
- Onglet Général -» général - Langue —» Changer la langue.
FreeCAD utilise Qt (http://fr.wikipedia.org/wiki/Qt) pour activer le
support de plusieurs langues. Sur les systemes Unix/Linux,
FreeCAD utilise les parametres régionaux actuels de votre
systeme par défaut.

Aider a la traduction de FreeCAD

Une des choses les plus trés importantes que vous pouvez faire
pour FreeCAD, si vous n'étes pas programmeur, est de porter
votre aide, pour traduire le programme dans votre langue. Pour
ce faire, c'est maintenant tres facile, avec la collaboration de
Crowdin (http://crowdin.net) ..« et 1'utilisation de son systeme
de traduction en ligne.

Comment traduire ?

m Aller a la page du projet de traduction de FreeCAD
(http://crowdin.net/project/freecad) sur crowdin « . cu:;

s Connectez-vous en créant un nouveau profil, ou, en utilisant
un compte tiers, comme votre adresse GMail;

m Cliquez sur la langue a laquelle vous souhaitez travailler ;

s Commencez la traduction en cliquant sur le bouton | Traduire
a coté des fichiers. Par exemple, FreeCAD.ts contient les
chaines de texte pour l'interface principale de FreeCAD .

m Vous pouvez opter pour les traductions existantes, ou vous
pouvez créer une nouvelle langue.

1
. PS : Si vous prenez une part active dans la traduction de FreeCAD, et, que vous voulez étre informé avan
1

I. . . . ~ rl
i1l est donc temps de revoir votre traduction, dans ce cas, s'il vous plait abonnez vous sur : la page dé¢
I

|

Traduire avec Qt Linguist (ancienne méthode)

216 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

The following information doesn't need to be used [afficher]
anymore and will likely become obsolete.

It is being kept here so that programmers may familiarize
themselves with how it works.

Préparer vos propres modules ou
applications pour la traduction

Prérequis

Pour localiser les modules d'applications dont vous avez besoin
pour Qt, vous pouvez les télécharger a partir du site Web de
Trolltech (http://www.trolltech.com/products/qt/downloads), mais
ils sont également contenues dans le LibPack :

gmake
Génere les fichiers du projet

lupdate
ou mises a jour des textes originaux dans votre projet, par
l'analyse du code source.

Qt-Linguist
Le Qt-Linguist est tres facile a utiliser et vous permet de
faire votre traduction avec d'intéressantes fonctionnalités
comme, un livre d'expressions pour les phrases communes.

Configuration d'un projet

Pour commencer la localisation de votre projet, visitez le
GUI-Part du module et tapez a la ligne de commande :

...

Ici, le scan de votre répertoire "projet", contenant les fichiers
textes, un fichier de projet est créé, comme dans l'exemple
suivant :

217 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

B i i i
Automatically generated by gmake (1.06c) Do 2. Nov 14:44:21 2006
HHAH B R R R R R AR

TEMPLATE = app
DEPENDPATH += .\Icons
INCLUDEPATH += .

Input

HEADERS += ViewProvider.h Workbench.h

SOURCES += AppMyModGui.cpp \
Command.cpp \
ViewProvider.cpp \
Workbench. cpp

TRANSLATIONS += MyMod de.ts

Vous devez ajouter ces fichiers manuellement. La section
TRANSLATIONS contient une liste de fichiers traduits pour chaque
langue. Dans les exemples ci dessous, MyMod de.ts est la
traduction allemande (de).

Maintenant, exécutez lupdate pour extraire les chaines dans
votre (GUI). Exécuter lupdate pendant un changement de code,
est sans danger, car il ne supprime jamais de chaine de votre
traduction. Mais ajoute seulement les nouvelles chaines
traduites.

Maintenant, vous devez ajouter les fichiers .ts a votre projet
VisualStudio. Précisez 1'usage suivant pour leurs méthodes de
constructions :

I
python ..\..\..\Tools\gembed.py "$(InputDir)\$(InputName).ts"
| "$(InputDir)\$(InputName).h" "$(InputName)"

PS: Entrez ceci en ligne de commande, (le saut de ligne n'est la
que pour la clarté).

En compilant le fichier .ts de I'exemple ci dessous, 1'entéte du
fichier MyMod_de.h est créé. Le meilleur endroit pour l'inclure
n'est pas dans le App<Modul>Gui.cpp. Dans notre exemple, le
mieux serait, AppMyModGui.cpp .

Puis ajoutez la ligne:

pour publier votre traduction dans l'application.

218 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Mise en place des fichiers Python pour la
traduction

Pour faciliter la localisation des fichiers .py vous pouvez utiliser
I'outil "pylupdate4" qui accepte un ou plusieurs fichiers .py.
Avec l'option -ts, vous pouvez préparer ou mettre a jour un ou
plusieurs fichiers .ts. Par exemple, pour préparer un fichier .ts
pour le francgais, il suffit d'entrer a la ligne de commande :

L'outil pylupdate va scanner vos fichiers fonctions .py pour
translate() ou tr() et créer un fichier YourModule _fr.ts.
Ce fichier peut étre traduit avec QLinguist et un fichier
YourModule_fr.qm produit a partir de QLinguist

ou avec la commande :

Méfiez-vous de 1'outil pylupdate4 car il n'est pas tres bon pour
reconnaitre la fonction translate(), il a besoin d'avoir une forme
tres spécifique (voir les fichiers Draft module comme exemple). A
l'intérieur de votre dossier, vous pouvez alors configurer un
traducteur comme celui-ci, (apres avoir chargé votre
QApplication mais, AVANT la création de n'importe quel widget

qt) :

1
itranslator = QtCore.QTranslator() !
translator.load("YourModule_"+languages[ln]) !
:OtGui.QApplication.installTranslator(translator) X

1

Optionnellement, vous pouvez également créer le fichier XML
Draft.qrc avec ce contenu :

<RCC>

l<qresource prefix="/translations" >
<file>Draft fr.qm</file>
</qresource>

:</RCC>

219 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

et démarrez pyrcc4 Draft.qrc -o, grc Draft.py crée une gros
fichier Python, contenant toutes les ressources. D'ailleurs, cette
approche fonctionne aussi pour mettre les fichiers icones dans un
fichier ressources.

Traduire le wiki

Ce wiki est I'h6te d'un tres grand contenu. Le mis a jour, et,
d'intéressantes informations sont rassemblées dans le manuel .

Ainsi, la premiere étape consiste a vérifier si la traduction
manuelle a déja été démarréé pour votre langue (regardez dans
la barre latérale gauche, sous "manual").

Plugin de traduction

When the Wiki moved away from SourceForge, Yorik installed a
Translation plugin (http://www.mediawiki.org
/wiki/Help:Extension:Translate) which allows to ease translations
between pages. For example, the page title can now be
translated. Other advantages of the Translation plugin are that it
keeps track of translations, notifies if the original page has been
updated, and maintains translations in sync with the original
English page.

The tool is documented in Extension:Translate
(http://www.mediawiki.org/wiki/Help:Extension:Translate), and is
part of a Language Extension Bundle (http://www.mediawiki.org
/wiki/MediaWiki Language Extension Bundle).

To quickly get started on preparing a page for translation and
activating the plugin, please read the Page translation example
(http://www.mediawiki.org/wiki/Help:Extension:Translate
/Page translation example).

To see an example of how the Translation tool works once the
translation plugin is activated on a page, you can visit the Main
Page. You will see a new language menu bar at the bottom. It is
automatically generated. Click for instance on the German link, it

220 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

will get you to Main Page/de. Right under the title, you can read
"This page is a translated version of a page Main Page and the
translation is xx% complete." (xx being the actual percentage of
translation). Click on the "translated version" link to start
translation, or to update or correct the existing translation.

You will notice that you cannot directly edit a page anymore once
it's been marked as a translation. You have to go through the
translation utility.

When adding new content, the English page should be created
first, then translated into another language. If someone wants to
change/add content in a page, he should do the English one first.

It is recommended to have basic knowledge of wiki style
formatting and general guidelines of the FreeCAD wiki, because
you will have to deal with some tags while translating. You can
find this information on WikiPages.

The sidebar (navigation menu on the left) is also translatable.
Please follow dedicated instructions on Localisation Sidebar

page.

REMARK: The first time you switch a page to the new
translation system, it looses all its old 'manual’
translations. To recover the translation, you need to open
an earlier version from the history, and copy/paste
manually the paragraphs to the new translation system.

Remark: to be able to translate in the wiki, you must of course
gain wiki edit permission.

If you are unsure how to proceed, don't hesitate to ask for help in
the forum (http://forum.freecadweb.org).

Old translation instructions

These instructions are for historical background only, [afficher]
while the pages are being passed to the new translation plugin.

221 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

< précédent: Branding Index suivant: Extra python modules >

222 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Cette page contient plusieurs modules python supplémentaires
ou d'autres bouts de code qui peuvent étre téléchargés
gratuitement sur Internet, et ajouter des fonctionnalités a votre
installation de FreeCAD.

PySide (précédemment PyQt4)

m page officielle (PySide): http://qt-project.org/wiki/PySide

m]Jicence: LGPL

m option, plusieurs modules sont nécessaires et d'autres
modules peuvent étre ajoutés : Draft, Arch, Ship, Plot,
OpenSCAD, Spreadsheet

PySide (auparavant PyQt) est requise par tous les modules de
FreeCAD et pour accéder a l'interface Qt de FreeCAD. Il est déja
livré dans dans les versions FreeCAD, et est généralement
installé automatiquement par FreeCAD sur Linux, l'installation
peut se faire a partir des dépots officiels. Si ces modules (Draft,
Arch, etc) sont activés apres l'installation de FreeCAD, cela
signifie que PySide (auparavant PyQt) est déja installé, et vous
n'avez pas besoin de faire quoi que ce soit de plus.

Remarque : PyQt4 va devenir progressivement obsolete dans
FreeCAD, apres la version 0.13, la préférence ira sur PySide
(http://gt-project.org/wiki/PySide), qui fait exactement le méme
travail, mais dispose d'une licence (LGPL) plus compatible avec
FreeCAD.

Installation

Linux

La facon la plus simple d'installer PySide est de l'installer par le
biais du gestionnaire de paquets de votre distribution. Sur les
systemes Debian / Ubuntu, le nom du package est généralement
python-PySide, tandis que sur les systemes basés sur RPM il est
nommé Pyside. Les dépendances nécessaires (Qt et SIP) seront
pris en charge automatiquement.

223 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Windows

Le programme peut étre téléchargé a partir PySide Downloads
(http://qgt-project.org
/wiki/Category:LanguageBindings::PySide::Downloads). Vous
aurez besoin d'installer les bibliotheques Qt et SIP avant
d'installer PySide (a documenter).

MacOSX
PyQt pour Mac doit étre installé via homebrew ou port. Pour plus
d'informations voir

CompileOnMac/fr#Dépendances de l'installation
Dépendances_de l'installation.

Utilisation

Une fois installé, vous pouvez vérifier le bon fonctionne de
l'installation, en tapant dans la console Python de FreeCAD :

PySide QtCore, QtGui
FreeCADWindow = FreeCADGui.getMainWindow()

Maintenant, vous pouvez commencer l'exploration de l'interface
avec la commande dir(). Vous pouvez ajouter de nouveaux
éléments, comme un widget personnalisé, avec des commandes
comme :

Travailler avec QFileDialog et OpenFileName :

224 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

:path = FreeCAD.ConfigGet ("AppHomePath") E
#path = FreeCAD.ConfigGet("UserAppData") h
:OpenName, Filter = PySide.QtGui.QFileDialog.getOpenFileName(None, "Read a txt file", path, "*.txt") X

1

1
:path = FreeCAD.ConfigGet ("AppHomePath") !
#path = FreeCAD.ConfigGet("UserAppData") h
:SaveName, Filter = PySide.QtGui.QFileDialog.getSaveFileName(None, "Save a file txt", path, "*.txt") X

1

Exemple de transition de PyQt4 vers PySide

PS: ces exemples d'erreurs ont été trouvées dans la transition de
PyQt4 a PySide et ces corrections ont été faites, d'autres
solutions sont certainement disponibles avec les exemples

ci-dessus

[T T T T T T T T T T T T T T T T EE |
I 1
I 1
I PyQt4 # PyQt4 I
: PyQt4 QtGui ,QtCore # PyQt4 X
! PyQt4.QtGui QComboBox # PyQt4 !
| PyQt4.QtGui QMessageBox # PyQt4 !
' PyQt4.QtGui QTableWidget, QApplication # PyQt4 X
! PyQt4.QtGui * # PyQt4 !
I PyQt4.QtCore * # PyQt4 !
: Exception: \
! PySide # PySide !
| PySide QtGui ,QtCore # PySide !
: PySide.QtGui QComboBox # PySide X
! PySide.QtGui QMessageBox # PySide 1
\ PySide.QtGui QTableWidget, QApplication # PySide |
: PySide.QtGui * # PySide X
! PySide.QtCore * # PySide !

Pour accéder a l'interface FreeCAD, tapez: Vous pouvez ajouter
de nouveaux éléments, comme un widget personnalisé, avec des
commandes comme :

I 1
:myNewFreeCADWidget = QtGui.QDockWidget () # create a new dockwidget !
myNewF reeCADWidget.ui = Ui MainWindow() # myWidget Ui() # load the Ui script |
myNewF reeCADWidget.ui.setupUi(myNewFreeCADWidget) # setup the ui X

| app = QtGui.qgApp # PyQt4 # the active qt window, = the freecad window si
' FCmw = app.activeWindow() # PyQt4 # the active qt window, = the freecad window s
! FCmw.addDockWidget (QtCore.Qt.RightDockWidgetArea, myNewFreeCADWidget) # add the widget to the main wiq
I Exception: i
' FCmw = FreeCADGui.getMainWindow() # PySide # the active qt window, = the freecad window
I

I

FCmw.addDockWidget (QtCore.Qt.RightDockWidgetArea, myNewFreeCADWidget) # add the widget to the main wiq

Travailler avec Unicode :

225 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

text = unicode(text, 'IS0-8859-1').encode('UTF-8') # PyQt4
Exception:
text = text.encode('utf-8") # PySide

\OpenName =

\ OpenName = QFileDialog.getOpenFileName(None,QString.fromLocal8Bit("Lire un fichier FCInfo ou txt"),p;q
. Exception: |
! OpenName, Filter = PySide.QtGui.QFileDialog.getOpenFileName(None, "Lire un fichier FCInfo ou txt", pd

1

SaveName = ""

Exception:

! 1
! 1
! 1
! : 1
: SaveName = QFileDialog.getSaveFileName(None,QString.fromLocal8Bit("Sauver un fichier FCInfo“),path,"1
! 1
I

! SaveName, Filter = PySide.QtGui.QFileDialog.getSaveFileName(None, "Sauver un fichier FCInfo", path, :
1

o e |

errorDialog(msg): |
diag = QtGui.QMessageBox(QtGui.QMessageBox.Critical,u"Error Message",msg) \
. 1

1

diag.setWindowFlags (PyQt4.QtCore.Qt.WindowStaysOnTopHint) # PyQt4 # this function sets the windoq

Exception: h
diag.setWindowFlags(PySide.QtCore.Qt.WindowStaysOnTopHint)# PySide # this function sets the windq
diag.setWindowModality (QtCore.Qt.ApplicationModal) # function has been disabled to promote "M}

diag.exec () |

remplacer par :

(il ittt il ittt i
:self.doubleSpinBox.setValue(l0.0) # PySide :
Travailler avec setToolTip

[T T T T T T T T T T T T T T T T EE |
Eself.doubleSpinBox.setToolTip(_translate(”MainWindow“, "Coordinate placement Axis Y", None)) # PyQt4 !

remplacer par :

226 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

...

Documentation

Plus de tutoriels sur PyQt4 (y compris sur la facon de construire
des interfaces avec Qt Designer pour utiliser avec python) :

s API PyQt4 (http://www.riverbankcomputing.co.uk/static
/Docs/PyQt4/html/classes.html) - La référence officielle sur
I'API de PyQt4

m Introduction PyQt4 (http://www.rkblog.rk.edu.pl
/w/p/introduction-pyqt4/)- une simple introduction.

m un tutoriel (http://www.zetcode.com/tutorials/pyqt4/) -
vraiment complet.

Pivy

m homepage: https://bitbucket.org/Coin3D/coin/wiki/Home
m license: BSD
m option, utilisé par tous les modules de FreeCAD: Draft, Arch

Pivy a besoin de plusieurs modules pour accéder a la vue 3D de
FreeCAD. Pour les fenétres, pivy est déja fourni dans
l'installateur de FreeCAD pour Linux, il est généralement installé
automatiquement lorsque vous installez FreeCAD partir d'un
référentiel officiel. Sur MacOSX, malheureusement, vous aurez
besoin de compiler Pivy vous méme.

Installation

Prérequis

227 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Je crois, qu'avant de compiler Pivy (http://pivy.coin3d.org/)
vous devez avoir Coin (http://www.coin3d.org/) et SoQt
(http://www.coin3d.org/lib/soqt/releases/1.5.0) d'installés.

J'ai trouvé que pour la compilation sur Mac, il suffisait d'installer
le Coin3 binary package (http://www.coin3d.org
/lib/plonesoftwarecenter view).

La tentative d'installation de Coin sur MacPorts était
problématique : j'ai essayé d'ajouter un grand nombre de paquets
X Windows, et, finalement, tout c'est terminé avec une erreur de
script !

Pour Fedora, j'ai trouvé un RPM avec Coin3.

SoQt, compilé a partir des sources (http://www.coin3d.org
/lib/soqt/releases/1.5.0) fonctionne tres bien sur Mac et Linux.

Debian & Ubuntu

Depuis Debian Squeeze et Ubuntu Lucid, Pivy est disponible
directement a partir des dépots officiels, et, nous permet
d'économiser beaucoup de tracas.

En attendant, vous pouvez soit télécharger 1'un des packages
que nous avons fait (pour Debian et Ubuntu karmic), disponibles
sur les pages de téléchargements , ou, vous pouvez le compiler
vous-meéme.

La meilleure fagcon de compiler facilement Pivy, est de prendre le
debian source package pour Pivy, et, faire un package avec
debuild.

C'est le méme code source que sur le site officiel de Pivy, mais,
les gens de Debian ont ajoutés plusieurs bug-fixing. Il compile
également treés bien sur : Ubuntu Karmic
(http://packages.debian.org/squeeze/python-pivy) ...
télécharger .orig.gz et .diff.gz, décompressez le tout, puis
appliquez .diff a la source :

allez dans le dossier source de Pivy décompressé, et appliquez le
patch .diff :

228 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

pour avoir Pivy, correctement compilé, avec un package
officiellement installable. Ensuite, il suffit d'installer le package
avec gdebi.

Autres distributions Linux

D'abord, téléchargez les dernieres sources du project's repository
(http://pivy.coin3d.org/mercurial/) :

En Mars 2012, la derniere version était la pivy-0.5.

Ensuite, vous avez besoin d'un outil appelé SWIG pour générer le
code C++ pour les Python bindings. Pivy-0.5 rapports qui a été
testé seulement avec SWIG 1.3.31, 1.3.33, 1.3.35 et 1.3.40.
Ainsi, vous pouvez télécharger une archive source pour l'une de
ces anciennes versions de SWIG (http://www.swig.org).

Puis, décompressez-le, et, faites en ligne de commande (en tant
que root) :

1
\./configure !
\make |
make install (or checkinstall you use it) X

]

Il faut quelques secondes pour la compilation.

Alternativement, vous pouvez essayer avec une compilation plus
recent SWIG. En Mars 2012, la version référentielle typique était
2.0.4.

Pivy a un probleme de compilation avec les versions inférieures
2.0.4 de SWIG sur Mac OS (voir ci-dessous), mais semble
compiler correctement sur Fedora Core 15.

229 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Apres cela, allez dans le source Pivy et tapez :

pour créer les fichiers sources. Notez que cette génération de
fichiers peut produire des milliers de mises en garde, mais
j'espere qu'il n'y aura pas d'erreurs.

Ceci est probablement obsolete, mais vous risquez de rencontrer
une erreur de compilation, ou, un "const char*" ne peut pas étre
converti en un "char*".

Pour corriger cela, il vous suffit d'écrire une "const", dans les
lignes appropriées, avant la génération. Il y a six lignes a
corriger.

Apres cela, installez (en tant que root) :

Ca y est, pivy est installé.
Mac OS

Ces instructions peuvent ne pas étre completes. Quelque chose
plus ou moins comme cela a fonctionné pour OS 10.7 de Mars
2012. J'utilise MacPorts (http://www.macports.org/) pour les
dépots, mais d'autres options devraient également fonctionner.

En ce qui concerne linux, téléchargez les dernieres sources :

Si vous n'avez pas hg, vous pouvez l'obtenir a partir MacPorts
(http://www.macports.org/) :

Puis, comme ci-dessus vous avez besoin SWIG
(http://www.swig.org/).

230 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Faites :

J'ai trouvé que j'avais besoin aussi de faire :
[T T T T T T T T T T T T T T T T EE |
Eport install swig-python E

En Mars 2012, MacPorts SWIG est la version 2.0.4. Comme il
est indiqué ci-dessus pour Linux, il vaudrait mieux télécharger
une version plus ancienne. SWIG 2.0.4 semble avoir un bug qui
empéche la compilation de Pivy.

Regardez le premier message dans ce : digest
(https://sourceforge.net/mailarchive

/message.php?msg id=28114815)

Cela peut étre corrigé, en modifiant les 2 emplacements source et
déréférencer : *arg4, *argb a la place de arg4, arg5.
Maintenant nous pouvons compiler Pivy:

I

python setup.py build

isudo python setup.py install
I

Windows

En supposant que vous utilisiez Visual Studio 2005 ou une
version ultérieure, vous devrez ouvrir une invite de commande
avec Visual Studio 2005 Command prompt dans le menu
Outils.

Si l'interpréteur Python n'est pas encore dans le chemin systeme
(PATH), faites :

Pour que Pivy soit fonctionnel, vous devriez télécharger les
dernieres sources a partir du référentiel du projet :

[T T T T T T T T T T T T T T E T |
Esvn co https://svn.coin3d.org/repos/Pivy/trunk Pivy E

231 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Ensuite, vous avez besoin d'un outil appelé SWIG
(http://www.swig.org/) pour générer le code C++ pour les
Python bindings. Il est recommandé d'utiliser la version 1.3.25
de SWIG, pas la derniere version, parceque, Pivy ne fonctionne
pas correctement avec la version 1.3.25. Télécharger le binaire
pour la version 1.3.25 de Swig (http://www.swig.org).

Puis décompressez-le et a partir de la ligne de commande,
ajoutez le chemin (path) du systeme

Sous Windows, le fichier de configuration Pivy attend SoWin au
lieu de SoQt par défaut. Je n'ai pas trouvé de facon évidente pour
compiler avec SoQt, alors, j'ai modifié le fichier setup.py
directement.

A la ligne 200 il suffit de retirer la partie sowin : (‘gui._sowin’,
'sowin-config’, 'pivy.gui.') (ne pas enlever la parenthese
fermante !).

Apres cela, allez dans le source de pivy et tapez :

qui crée les fichiers source. Vous pouvez rencontrer une erreur
de compilation, cause, plusieurs fichiers d'en-téte n'ont pas
été trouvés.

Dans ce cas, réglez la variable INCLUDE comme ceci :

et si les en-tétes soqt, ne sont pas au méme endroit que les
en-tétes Coin, faites aussi ceci :

232 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

et finalement, pour les en-tétes Qt faites :

Si vous utilisez Express Edition of Visual Studio, vous pouvez
obtenir une exception Python keyerror.

Dans ce cas, vous devez modifier de petites choses dans
msvccompiler.py, qui se trouve, dans votre installation Python.

Aller a la ligne 122 et remplacez la ligne :

par

[T T T T T T T T T T T T T T E T |
Evsbase = r"Software\Microsoft\VCExpress\%0.1f" % version E
Puis réessayez.

Si vous obtenez une deuxieme erreur comme :

T T T TS T T T T T T T T T T T TS T TS ST SIS T e T e e EEEE i
Eerror: Python was built Visual Studio 2003;... E
vous devez également remplacer la ligne 128 comme ceci :

[T T T T T T T T T T T T T T T T EE |
Eself.set_macro(”FrameworkSDKDir“, net, "sdkinstallrootvl.l") E
par

[T T T T T T T T T T T T T T E T |
Eself.setfmacro(”FrameworkSDKDir“, net, "sdkinstallrootv2.0") E
Réessayez encore une fois.

Si vous obtenez de nouveau une erreur comme :

T T T TS T T T T T T T T T T T TS T TS ST SIS T e T e e EEEE i
Eerror: Python was built Visual Studio version 8.0, extensions need to be built the same veé

alors vous devriez vérifier les variables d'environnement
DISTUTILS_USE_SDK et MSSDK avec :

233 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

1
iecho %DISTUTILS_USE_SDK%
:echo %MSSDK%

;set DISTUTILS_USE_SDK=1
:set MSSDK=1

Maintenant, vous pouvez rencontrer une erreur de compilation,
ou un const char* ne peut pas étre converti en un char*.

Pour corriger cela il vous suffit d'écrire un const avant, dans les
lignes appropriées, il y a six lignes a corriger.

Apres copiez le répertoire généré par Pivy dans un endroit ou
l'interpréteur Python de FreeCAD peut le trouver.

Utilisation

Pour vérifier si pivy est correctement installé :

Pour avoir acces a Pivy a partir de la scénographique de
FreeCAD, procédez comme ceci:

1
. pivy coin !
App.newDocument () # Open a document and a view !
wview = Gui.ActiveDocument.ActiveView X
[FCSceneGraph = view.getSceneGraph() # returns a pivy Python object that holds a SoSeparator, the main "cq
:FCSceneGraph.addChild(coin.SoCube()) # add a box to scene !

Vous pouvez maintenant explorer la FCSceneGraph avec la
commande dir().

Documentation

Malheureusement, la documentation sur Pivy est "pour le
moment" presque inexistante sur le net. Mais vous pouvez
trouver de la documentation tres utile sur Coin, car Pivy a
simplement traduit les fonctions, Coin, des noeuds et des
méthodes en Python, les noms sont conservés (mémes noms)
ainsi que les propriétés ne sont différentes que par la syntaxe

234 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

entre le C et Python :

m https://bitbucket.org/Coin3D/coin/wiki/Documentation -
Coin3D API Reference

m http://www-evasion.imag.fr/~Francois.Faure
/doc/inventorMentor/sgi_html/index.html - The Inventor
Mentor - La "bible" de Inventor langage de description de
scene.

Vous pouvez également consulter le fichier Draft.py dans le
dossier FreeCAD Mod/Draft, car Pivy est fortement utilisé.

pyCollada

m homepage: http://pycollada.github.com

m]license: BSD

m option, est nécessaire pour permettre l'importation et
l'exportation de fichiers Collada (.DAE)

pyCollada (http://pycollada.github.com) est une bibliotheque
Python qui permet aux programmes de lire et d'écrire des
fichiers Collada (*.DAE) (http://en.wikipedia.org
/wiki/COLLADA). Lorsque pyCollada est installé sur votre
Systéme, FreeCAD (availableinversion 0.13

) le détecte et ajoute les options d'importation et d'exportation,
qui permettent 1'ouverture et 1'enregistrement de fichiers au
format Collada.

Installation

Pycollada n'est généralement pas encore disponible dans les
dépots des distributions Linux, mais puisqu'il est fait uniquement
en Python, il ne nécessite pas de compilation, et est facile a
installer.

Vous avez 2 facons de l'installer, soit directement a partir du
pycollada git repository officiel, ou avec 1'outil easy_install.

Linux

235 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Dans les deux cas, vous aurez besoin des paquetages suivants,
installés d'avance sur votre systéme :

:python-lxml E
python-numpy |
:python-dateutil X

|

\git clone git://github.com/pycollada/pycollada.git pycollada |
lcd pycollada X
:sudo python setup.py install !

1

Avec easy _install (easy_install)

En supposant que vous avez déja installé completement Python,
l'utilitaire easy _install doit étre déja présent :

Vous devez vous assurer que pycollada, est correctement
installé, en utilisant la commande suivante dans la console
Python :

Si la commande ne retourne aucun message d'erreur, alors tout
est OK.

Windows

1. Installez Python. Alors que FreeCAD et quelques autres
programmes sont livrés avec une version embarquée de
Python, une installation fixe aidera les prochaines étapes.
Vous pouvez obtenir Python ici: https://www.python.org
/downloads/. Bien sir, vous devrez choisir la bonne version,
dans ce cas, ce serait 2.6.X, FreeCAD utilise actuellement la
2.6.2 (Personnellement je suis installé avec la version 2.6.2,
et pour la forme, vous pouvez vérifier la version en démarrant

236 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Python.exe dans le dossier bin de FreeCAD). Vous aurez
également a ajouter le chemin du répertoire d'installation
dans la variable path afin que vous puissiez accéder a Python
a partir de la console (cmd). Maintenant, nous pouvons
installer tout ce qu'il nous manquante, au total il y a trois
choses que nous devons installer: numpy, setuptools et
pycollada
2. Fetch numpy ici: http://sourceforge.net/projects/numpy/files
/NumPy/. Choisissez une version qui s'adapte a la version
utilisée par FreeCAD, dans chaque dossier de version numpy
il existe plusieurs programmes d'installation pour les
différentes versions de Python, l'installateur sera placé dans
le dossier numpy de votre installation Python, ou FreeCAD
peut y accéder aussi
3. Fetch setuptools ici : https://pypi.python.org/pypi/setuptools
(Nous devons installer les setuptools pour installer pycollada
dans l'étape suivante)
. décompressez dans un dossier le fichier setuptools téléchargé
. Démarrer une console (cmd) avec la permission admin
. Accédez au dossier décompressé de setuptools
. installer les setuptools "Python setup.py install" par
basculement dans la console (cmd), ne fonctionnera pas si
Python n'est pas installé ou lorsque la variable path n'a pas
été configurée
8. Fetch pycollada ici: https://pypi.python.org/pypi/pycollada/ (a
déja été affiché ci-dessus) et encore une fois:
9. Décompressez le fichier pycollada téléchargé dans un dossier
10. Démarrer une console (cmd) avec la permission
d'administration, ou utilisez celui que vous avez ouvert il n'y
a pas longtemps
11. Accédez au dossier pycollada décompressé
12. Installez les setuptools "Python setup.py install" a partir de la
console (cmd)

N O O >

m Une autre réeférence pour utiliser easy install:
http://jishus.org/?p=452

Mac OS
Si vous utilisez 1'accumulation des Homebrew FreeCAD vous

237 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

pouvez installer pycollada dans votre systeme Python en utilisant
pip.

Si vous devez installer pip:

...

Si vous utilisez une version binaire de FreeCAD, vous pouvez dire
pip installez pycollada dans le site-packages a l'intérieur
FreeCAD.app:

IfcOpenShell

= homepage: http://www.ifcopenshell.org

m license: LGPL

m option, requis pour étendre les capacités d'importation de
fichiers IFC

IFCOpenShell, est une bibliotheque actuellement en
développement, ce qui permet d'importer (et bient6t d'exporter)
Industry foundation Classes (*.Fichiers IFC)
(http://fr.wikipedia.org/wiki/Industry Foundation Classes).

Ceci est une extension pour le format STEP
(http://fr.wikipedia.org/wiki/Standard pour 1%27%C3
%A9change de donn%C3%A9es de produit), et, devient la
norme dans les workflows BIM (http://fr.wikipedia.org
/wiki/Building Information Modeling). Lorsque ifcopenshell est
correctement installé sur votre systeme, le |« Module Arch|de
FreeCAD le détectera, et, 1'utilisera pour importer des fichiers
IFC. Etant donné qu'ifcopenshell est basé sur OpenCasCade,
comme FreeCAD, la qualité de l'importation est tres élevée, en
produisant une géométrie de solides de haute qualité.

238 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Installation

Etant donné que 'ifcopenshell est assez nouveau, vous devrez
probablement le compiler vous-méme.

Linux

Vous aurez besoin de deux ou trois paquets de développement,
installés sur votre systeme afin de rassembler les ifcopenshell :

liboce-*-dev E
python-dev |
:swig |

1

mais, étant donné que FreeCAD exige tout, vous pouvez compiler
FreeCAD, vous n'aurez aucune dépendance supplémentaire pour
compiler IfcOpenShell.

Prenez le dernier code source ici :

mkdir ifcopenshell-build I
cd ifcopenshell-build |
icmake . ./ifcopenshell/cmake X

1

Etant donné que ifcopenshell est fait principalement pour
Blender (http://www.blender.org/), il utilise python3 par défaut.
Pour l'utiliser a l'intérieur de FreeCAD, vous devez le compiler
avec la méme version de Python qui est utilisé dans FreeCAD.

239 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Vous devrez peut-étre forcer les parametres avec la version de
Python et cmake (réglez la version de Python avec la votre) :

...

1
make

Vous pouvez vérifier que ifcopenshell, a été correctement
installé en tapant dans la console Python :

...

Si la commande ne retourne aucun message d'erreur, alors tout
est OK.

Windows

Documentation copiée a partir du fichier README IfcOpenShell

Les utilisateurs sont priés d'utiliser le fichier .sln de Visual
Studio qui se trouve dans win/folder.

Pour les utilisateurs de Windows une version pré-construite Open
CASCADE est disponible sur le site d'OpenCascade
(http://opencascade.org). Téléchargez, et, installez cette version
dans le chemin d'acces d'Open CASCADE, et, des fichiers de la
bibliotheque de MS Visual Studio C++.

Pour créer le IfcPython wrapper, SWIG doit étre installé.
Téléchargez la derniere version de swigwin (http://www.swig.org
/download.html). Apres avoir extrait le fichier .zip, veuillez
ajouter le dossier a la variable d'environnement PATH. Python
doit étre installé, veuillez fournir les chemins d'acces des fichiers
include, et, bibliotheque pour Visual Studio.

Teigha Converter

240 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

m homepage: http://www.opendesign.com/guestfiles
/TeighaFileConverter

m license: freeware

m option, utilisé pour permettre l'importation et l'exportation de
fichiers DWG

Le convertisseur Teigha Converter est un petit utilitaire
disponible gratuitement qui permet de convertir plusieurs
versions de fichiers DWG et DXF. FreeCAD peut l'utiliser pour
permettre l'importation et 1'exportation de fichiers DWG, en
convertissant les fichiers DWG au format DXF de maniere
transparente, puis utiliser son importateur DXF standard pour
importer le contenu du fichier. Les restrictions de la DXF
importer s'appliquent.

Installation

S'installe sur toutes les plateformes, par l'installation du package
approprié dans http://www.opendesign.com/guestfiles
/TeighaFileConverter. Apres l'installation, si l'utilitaire n'est pas
trouvé automatiquement par FreeCAD, vous devrez configurer
manuellement le chemin de I'exécutable du convertisseur, dans le
menu Edition -> Préférences -> Projet -> Options
d'importation/exportation.

< précédent: Localisation Index suivant: Source documentation >

241 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Credits

242 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

<translate> FreeCAD would not be what it is without the
generous contributions of many people. Here's an overview of the
people and companies who contributed to FreeCAD over time.
For credits for the third party libraries see the Third Party
Libraries page.

Developement

Project managers

Lead developers of the FreeCAD project: </translate>

m Jurgen Riegel
m Werner Mayer
m Yorik van Havre

<translate>
Main developers

People who work regularly on the FreeCAD code: </translate>

m Logari81 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=270)

m Luke A. Parry (http://freecadamusements.blogspot.co.uk/)

m Jose Luis Cercos Pita (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=574)

m Jan Rheinlaender (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=997)

m shoogen (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=765)

m tanderson69 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=208)

<translate>
Other coders

People who contributed code to the FreeCAD project:

243 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

</translate>

m ickby (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=686)

m jmaustpc (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=611)

m j-dowsett (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=652)

m keithsloan52 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=930)

m wandererfan (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=1375)

m Joachim Zettler

m Graeme van der Vlugt

m Berthold Grupp

m Georg Wiora

m Martin Burbaum

m Jacques-Antoine Gaudin

m Ken Cline

m Dmitry Chigrin

m Remigiusz Fiedler (DXF-parser)

<translate>

Companies

Companies which donated code or developer time: </translate>
m Imetric 3D

<translate>

Community

People from the community who put a lot of efforts in helping the
FreeCAD project either by being active on the forum, keeping a
blog about FreeCAD, making video tutorials, packaging FreeCAD
for Windows/Linux/MacOS X, writing a FreeCAD book... (listed by
alphabetical order) </translate>

244 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

m bejant (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=1940)

m Brad Collette (http://www.packtpub.com/freecad-solid-
modeling-with-python/book)

m cblt2] (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=251)

m Daniel Falck (http://opensourcedesigntools.blogspot.com/)

m Eduardo Magdalena

m hobbes1069 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=725)

m jdurston (5needinput) (http://www.youtube.com
/user/bneedinput)

m jmaustpc (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=611)

m John Morris (butchwax) (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=861)

m Kwahooo (http://freecad-tutorial.blogspot.com/)

m lhagan (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=108)

m marcxs (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=1047)

m Mario52

m Normandc

m peterl94 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=1819)

m pperisin (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=356)

m Quick61

m Renatorivo

m Rockn

<translate> </translate>

Récupérée de « http://www.freecadweb.org
/wiki/index.php?title=Manual02/fr&oldid=145223 »

245 sur 246 09/06/2015 15:05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

Catégories : Poweruser Documentation/fr | Python Code/fr
Tutorials/fr | Poweruser Documentation
Developer Documentation/fr | Developer

m Derniere modification de cette page le 8 février 2015 a 23:42.

m Cette page a été consultée 15 587 fois.

m Le contenu est disponible sous licence Creative Commons
Attribution sauf mention contraire.

246 sur 246 09/06/2015 15:05

