
Manual02/fr
De FreeCAD Documentation

Manuel

de

FreeCAD

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

1 sur 246 09/06/2015 15:05



Ceci est le Manuel de FreeCAD. Il comprend les parties
essentielles de la Page de garde de la documentation wiki.
Cette page est spécialement destinée à l'impression, comme un
gros document, donc, si vous lisez ceci en ligne, vous pourrez
préférer aller directement à la version Aide en ligne, qui est

plus facile à parcourir.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

2 sur 246 09/06/2015 15:05



Scripts et macros

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

3 sur 246 09/06/2015 15:05



Macros

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

4 sur 246 09/06/2015 15:05



Une macro est un moyen pratique et facile de créer une série de
commandes dans FreeCad.

Il suffit d'enregistrer la série de commandes que vous faites, puis
de sauver cet enregistrement sur disque en lui donnant un nom.
Une fois cet enregistrement (macro) sauvé, vous pourrez
l'exécuter autant de fois que vous le voulez.

Ces macros sont en réalité une liste de commandes écrites en
langage python (http://fr.wikipedia.org/wiki/Python_(langage)),
vous pouvez également les modifier, et créer des scripts très
complexes.

Fonctionnement

Si vous cochez dans menu Édition → Préférences → Général →
Macro → Montrer les commandes du script dans la console
Python , vous verrez dans la fenêtre " Console Python " que
chaque action que vous exécutez s'affiche, par exemple en
appuyant sur " Afficher la vue de face ", il s'affiche dans la
console Gui.activeDocument().activeView().viewFront() qui
est le code python correspondant.

Toutes ces commandes peuvent être enregistrées dans une
macro.

Les commandes, qui servent à faire les macros, se trouvent sur la

barre d'outils des macros : .

Sur la barre d'outils, il y a 4 boutons: enregistrement , 
arrêt de l'enregistrement , édition de la macro , et, 
exécuter la macro .

Il est extrêmement facile d'utiliser ces commandes : dès que vous
appuyez sur le bouton d'enregistrement, il vous est demandé de
donner un nom à la macro, éventuellement, donnez
l'emplacement où placer le fichier. Une fois que la macro est
terminée, cliquez sur le bouton stop , et, toutes les actions que
vous avez effectuées sont enregistrée. Pour exécuter la macro,
cliquer sur le bouton d' édition  et la boîte de dialogue Lancer

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

5 sur 246 09/06/2015 15:05



la macro s'affiche.

Vous pouvez ici gérer les macros enregistrées, lancer, créer,
supprimer ou éditer une macro. L'édition ou la création d'une
macro ouvre une nouvelle fenêtre dans FreeCad et vous pouvez
ainsi créer ou modifier le code de la macro éditée.

Exemple

Cliquez sur le bouton d' Enregistrement , donnez un nom à la
macro par exemple "cylinder 10x10" puis dans l'atelier Part,
créez un cylindre de rayon = 10 et hauteur = 10. Puis cliquer sur
le bouton Stop  pour arrêter la macro. Dans la fenêtre
d'édition de la macro vous pouvez voir le code en langage python
qui a été enregistré et si vous le désirez, en modifier le code.
Exécutez votre macro simplement en cliquant sur le bouton 
Exécuter la macro dans l'éditeur . La macro éditée ou la nouvelle
macro est toujours sauvegardée lors de l'exécution, de manière à
ne pas perdre les modifications apportées, les macros créées sont
toujours accessibles à chaque nouvelle ouverture de FreeCad.

Personnalisation

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

6 sur 246 09/06/2015 15:05



Bien sûr, il n'est pas pratique de charger une macro dans
l'éditeur en vue de l'exécuter. FreeCad fournit d'autres moyens
pour exécuter votre macro, vous pouvez assigner un raccourci
clavier à chaque macro ou créer un bouton de lancement sur la
barre de menus. Une fois votre macro créée, ces raccourcis
peuvent être crées par Outils → personnaliser → Macros

Customize ToolsBar This way you can make your macro become a
real tool, just like any standard FreeCAD tool. This, added to the
power of python scripting within FreeCAD, makes it possible to
easily add your own tools to the interface. Read on to the
Scripting page if you want to know more about python scripting...

Création de macros sans enregistrement

Il est aussi possible d’insérer le code python d'une macro avec
copier/coller sans enregistrement d'actions dans l'interface
graphique. Créer simplement le code python de la macro,
éditez-le, copiez-le et collez votre code directement dans l'éditeur
de macros de FreeCad. Puis vous pouvez la réutiliser comme bon
vous semble et la retrouver dans le répertoire réservé aux
macros, en passant par Macro → Macros ou l'éditeur de macros
sur la barre de menus .

Référence sur les Macros

Visitez la page Recettes Macros pour charger des macros et les

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

7 sur 246 09/06/2015 15:05



< précédent: Standard Menu suivant: Introduction to Python >

ajouter à votre installation FreeCad. L'emplacement des macros
est visible en cliquant sur l'icône de l'éditeur de macros 
et, en bas de la boîte de dialogue Destination de la macro.

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

8 sur 246 09/06/2015 15:05



Introduction à Python

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

9 sur 246 09/06/2015 15:05



Ceci est un petit tutoriel créé pour ceux qui veulent débuter en
programmation Python (http://fr.wikipedia.org
/wiki/Python_%28programming_language%29), qui est un
langage de programmation (http://fr.wikipedia.org
/wiki/Programming_language) open-source et multiplate-forme.
Python a de nombreuses fonctionnalités qui le différencie des
autre langages de programmation, et est facilement accessible à
celui qui veut se lancer dans la programmation.

Il a été conçu spécialement pour être facile à lire par les
êtres humains, il est ainsi facile à apprendre et à comprendre
Il est interprété. C'est-à-dire que contrairement aux langages
compilés comme le C, votre programme n'a pas besoin d'être
compilé pour être exécuté. Le code que vous écrivez peut
être directement exécuté, une ligne après l'autre si vous le
souhaitez. Cela permet de l'apprendre et de trouver les
erreurs dans votre code facilement, parce que vous avancez
lentement, une étape après l'autre.
Il peut être intégré dans d'autres programmes comme
langage de script. FreeCAD possède un interpréteur Python
intégré, vous pouvez ainsi y écrire du code Python. Cela
permet de manipuler des éléments de FreeCAD, par exemple
de créer des objets géométriques. Il s'agit d'une fonction
extrêmement puissante, parce qu'au lieu de se contenter de
cliquer sur un bouton appelé "Créer une sphère", qu'un
programmeur aurait placé là pour vous, vous avez la
possibilité de créer simplement vos propres outils pour
générer exactement les objets géométriques que vous
souhaitez.
Il est extensible; vous pouvez simplement installer de
nouveaux modules Python et étendre ses fonctionnalités. Par
exemple, il existe un module qui permet à Python de lire et
d'écrire des images jpg, de communiquer avec twitter, de
planifier des tâches exécutées pour votre système
d'exploitation, etc...

Et maintenant au travail ! Soyez conscient que ce qui suit est une
introduction simplifiée, et en aucun cas un tutoriel complet. Mais
nous espérons qu'après cette lecture vous aurez acquis les bases
nécessaires pour connaître et exploiter plus profondément les

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

10 sur 246 09/06/2015 15:05



mécanismes de FreeCad.

L’interpréteur

Habituellement, lors de l'écriture d'un programme informatique,
il suffit d'ouvrir votre environnement de programmation préféré
qui, est dans la plupart des cas, un éditeur de texte avec
plusieurs outils autour de lui, écrire votre programme, puis le
compiler et l'exécuter. Lorsque vous avez fait des erreurs
pendant l'écriture, votre programme ne fonctionnera pas! et vous
obtiendrez un message d'erreur vous indiquant ce qu'il s'est
passé. Ensuite, vous revenez à votre éditeur de texte, corrigez les
erreurs, exécutez à nouveau, et ainsi de suite jusqu'à ce que
votre programme fonctionne parfaitement.

En Python, tout ce processus, peut être exécuté de manière
transparente dans l'interpréteur Python. L’interpréteur Python est
une fenêtre avec une invite de commande, vous pouvez
simplement y taper votre code Python. Si vous installez Python
sur votre ordinateur (téléchargez (http://www.python.org
/download/) le depuis le site web Python si vous êtes sous
Windows ou Mac, installez le à partir des gestionnaire de
paquets, si vous êtes sous GNU / Linux), vous aurez l'interpréteur
Python dans votre menu de démarrage. Mais FreeCAD dispose
également d'un interpréteur Python intégré, vous n'êtes donc pas
obligé de l'installer, cet interpréteur est visible dans la fenêtre
inférieure (Si vous ne voyez pas cette fenêtre, cliquez sur
Affichage->Vues->Console Python). Tous ces exemples ont été
relu à partir de l'interpréteur disponible dans FreeCad.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

11 sur 246 09/06/2015 15:05



(If you don't have it, click on View → Views → Python console.)

L’interpréteur affiche la version de Python installée, puis le
symbole >>>, qui est l'invite de commande pour entrer votre
code Python. L'écriture du code dans l'interpréteur est très
simple: une ligne, est une instruction. Lorsque vous appuyez sur
ENTREE , votre ligne de code est exécuté (après avoir été
instantanément compilé et cela de manière transparente pour
vous).

Par exemple, écrivez ce code:

print "hello"

Ici print est une commande spéciale de Python qui signifie:
affiche ce que je te demande. Lorsque vous pressez ENTREE ,
l'opération s’exécute et le message "bonjour" s'affiche à l'écran.
Si vous effectuez une erreur, par exemple, écrivez:

print hello

Python vous dira qu'il ne sait pas ce qu'est bonjour. Les
caractères " (guillemets) spécifient que le contenu est une chaîne
de caractères qui doit être affichée. Sans les " (guillemets), la
commande d'affichage de bonjour n'est pas reconnue comme du
texte, mais comme un mot-réservé spécial de Python. L'important
est, que vous obtenez immédiatement une notification d'erreur.
En appuyant sur la flèche Haut  (ou, dans l'interpréteur
FreeCAD, CTRL + flèche Haut ), vous pouvez revenir à la
dernière commande que vous avez écrite et la corriger.

L'interpréteur Python dispose également d'un système d'aide
intégré. Voulez vous taper:

help

ou, par exemple, nous n'avons pas compris ce qui n'allait pas
avec notre commande d'affichage "help" ci-dessus, et nous allons
demander des informations spécifiques sur la commande "print":

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

12 sur 246 09/06/2015 15:05



tapez

help("print")

Nous voilà devant une longue description sur la commande
"print".

Maintenant, nous dominons totalement notre interpréteur, et
nous pouvons commencer à travailler sérieusement.

Les Variables

Bien sûr, vous vous dites que l'affichage de "bonjour" n'est pas
très intéressant. Il peut y avoir alors des choses plus
intéressantes comme par exemple, l'affichage de choses que vous
ne savez pas, et laisser Python trouver ces choses pour vous.
C'est là que le concept de "variable" entre en jeu. Une variable
est tout simplement une valeur que vous stockez en mémoire
avec un nom identificateur. Par exemple, tapez ceci:

a = "hello"
print a

Avez vous compris ce qui s'est passé ? Nous avons «sauvé» en
mémoire la chaîne "bonjour" dans la variable qui porte le nom de
a. Maintenant, a n'est plus un nom inconnu ! Nous pouvons
maintenant l'utiliser n'importe où, comme par exemple dans la
commande d'affichage à l'écran print. Nous pouvons dans Python
utiliser n'importe quel nom que nous voulons, tout en respectant
de simples règles, comme, ne pas utiliser d'espaces ou de signes
de ponctuation. Par exemple, nous pouvons écrire:

hello = "my own version of hello"
print hello

Compris ? maintenant hello n'est plus un mot inconnu. Que faire
alors si, par inattention ou par méprise nous choisissons un nom
qui existe dans Python? Admettons que nous voulons stocker
notre chaîne sous le nom de "print":

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

13 sur 246 09/06/2015 15:05



print = "hello"

Python se rend compte immédiatement de l'erreur et vous signale
qu'il est impossible de donner ce nom à votre variable. Il y a
quelques restrictions dans Python, les mots "réservés" ne
peuvent pas être modifiés! Mais, nos propres variables peuvent
être modifiées à tout moment, c'est exactement pour cela qu'elles
sont appelées variables, le contenu de la variable peut varier.
Par exemple:

myVariable = "hello"
print myVariable
myVariable = "good bye"
print myVariable

Nous venons de changer la valeur de myVariable. Nous pouvons
également copier des variables:

var1 = "hello"
var2 = var1
print var2

Notez qu'il est judicieux de donner des noms descriptifs à vos
variables, lorsque vous écrivez un long programme, vous ne
saurez plus à quoi sert votre variable "a". Mais, si vous la
nommez, par exemple MonMessageDeBienvenue, vous vous
souviendrez facilement a quoi vous l'aviez destinée quand vous la
verrez.

Plus de renseignements sur les variables Python
(http://fr.wikibooks.org/wiki/Programmation_Python/Variable)

Les Nombres

Vous savez qu'un programme informatique est utilisé pour traiter
toutes sortes de données, non seulement du texte mais aussi et
surtout des nombres. Une des choses les plus importantes dans
Python, est que Python doit savoir quel type de données seront
traitées. Nous avons vu dans notre exemple d'affichage "bonjour"
que la commande d'affichage print a reconnu «bonjour» comme

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

14 sur 246 09/06/2015 15:05



une chaîne. C'est grâce au " " " (guillemets), que la commande
d'affichage print sait qu'il va traiter une chaîne de caractères
alphabétiques (du texte).

Le type de donnée contenu dans une variable peut être connu à
n'importe quel moment grâce à la commande spéciale de Python
type():

myVar = "hello"
type(myVar)

Dans cet exemple, il s'affiche dans la console Python <type 'str'>
dans le langage informatique on dit qu'il est de type "string"
(chaîne de caractères alphabétiques). Il y a d'autres types
(http://fr.wikibooks.org/wiki/Programmation_Python/Type) de
données, par exemple: les nombres entier (integer) , les
nombres à virgule flottante (float) . . .:

firstNumber = 10
secondNumber = 20
print firstNumber + secondNumber
type(firstNumber)

C'est déjà plus intéressant, n'est-ce pas? Maintenant nous avons
une puissante calculatrice! Voyons maintenant comment elle
fonctionne. Python sait que 10 et 20 sont des nombres entiers.
Donc, ils sont stockés en mémoire sous forme "int" (integer), et
Python peut travailler avec eux comme il peut le faire avec des
nombres entiers. Regardez les résultats de ce code:

firstNumber = "10"
secondNumber = "20"
print firstNumber + secondNumber

Vu ? Nous avons forcé Python à considérer nos deux variables
non pas comme de simples nombres, mais comme des parties de
texte. Python peut concaténer deux parties de texte, mais il ne
cherchera pas à trouver leur somme. Nous avons parlé de
nombres entiers, il y a aussi des nombres à virgule flottante. La
différence est, que les nombres entiers n'ont pas de partie
décimale, alors que les nombres à virgule flottante peuvent avoir
une partie décimale:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

15 sur 246 09/06/2015 15:05



var1 = 13
var2 = 15.65
print "var1 is of type ", type(var1)
print "var2 is of type ", type(var2)

Les types entier et à virgule flottante, Int et Float peuvent
être mélangés sans problème:

total = var1 + var2
print total
print type(total)

Naturellement, la somme comporte des décimales, vrai? Pendant
l'opération, Python automatiquement a décidé que le résultat
serait un type Float (virgule flottante). Dans certains cas comme
celui-ci, Python détermine automatiquement quel type doit être
choisi pour un résultat. Dans d'autres cas il déclanchera une
erreur. Par exemple:

varA = "hello 123"
varB = 456
print varA + varB

Dans cet exemple , varA est une chaîne et varB est un int,
Python ne mélange pas les types différents et nous donnera une
erreur. Mais, nous pouvons forcer Python a mélanger des types
différents grâce à la conversion:

varA = "hello"
varB = 123
print varA + str(varB)

Maintenant, l'opération fonctionne, pourquoi ! Vous avez noté,
que nous avons converti varB en "string" au moment de
l'affichage avec la commande str(), mais nous n'avons pas
modifié le type de varB qui reste un int. Si nous voulons convertir
varB de façon permanente en une chaîne de caractères pour les
besoins futur du programme, nous aurons besoin de faire:

varB = str(varB)

Nous pouvons également utiliser les commandes int() et float()

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

16 sur 246 09/06/2015 15:05



pour convertir une chaîne de caractères str en un int ou float
Pour la conversion, il faut faire:

varA = "123"
print int(varA)
print float(varA)

Note au sujet des commandes Python

Vous avez sûrement remarqué que dans cette partie du tutoriel,
nous avons utilisé la commande d'affichage print de plusieurs
manières. Nous avons affiché des variables, des opérations, des
chaînes séparées par des virgules et même le résultat de la
commande Python type(). Peut-être avez vous également
remarqué qu'en faisant ces deux commandes,

type(varA)
print type(varA)

nous obtenons le même résultat.

Tout s'affiche automatiquement à l'écran parce que nous sommes
dans l'interpréteur. Lorsque nous allons écrire des programmes
plus complexes qui s'exécuteront hors de l’interpréteur, ils ne
seront pas affichés à l'écran, pour les afficher nous aurons besoin
d'utiliser la commande print. Mais maintenant, nous allons
cesser de l'utiliser pour augmenter la vitesse d'exécution.

Donc, nous allons simplement écrire:

myVar = "hello friends"
myVar

Attention, Python est sensible à la casse, myVar est différent de
myvar !!!
Vous avez remarqué que la plupart des commandes Python (ou
mots-réservés) que nous connaissons ont des parenthèses, qui
sont utilisées pour dire avec quoi la commande doit travailler:
type(), int(), str(). . . etc. La seule exception est la commande
print, qui en vérité ne l'est pas car, elle peut fonctionner aussi
bien avec ou sans parenthèses.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

17 sur 246 09/06/2015 15:05



Exemple:

print ("bonjour")
print "bonjour"

Les Listes (Tableaux)

Un autre type de données intéressant, est le type list. Le type
list est simplement une liste de données. De la même manière
que nous définissons une chaîne de texte en utilisant " "
(guillemets), nous définirons des listes en utilisant [ ] (crochets):

myList = [1,2,3]
type(myList)
myOtherList = ["Bart", "Frank", "Bob"]
myMixedList = ["hello", 345, 34.567]

Vous voyez qu'une liste peut contenir n'importe quel type de
données. Les listes sont très utiles car vous pouvez grouper des
variables ou des données ensembles. Vous pouvez alors faire
toutes sortes de choses au sein de ces groupes, par exemple, les
compter avec len():

len(myOtherList)

ou récupérer un objet de cette liste:

myName = myOtherList[0]
myFriendsName = myOtherList[1]

Vous voyez que la commande len() renvoie le nombre d'éléments
dans une liste, la «position» d'un objet dans la liste commence à
0. Le premier élément dans une liste est toujours à la position 0,
donc dans notre myOtherList, "Bob" est a la deuxième position.
Nous pouvons faire beaucoup plus de choses avec les listes tel
que le tri du contenu, la suppression ou l'ajout d'éléments
d'autres renseignements sur List (http://www.diveintopython.net
/native_data_types/lists.html).

Une chaîne de texte est très semblable à une liste et chaque

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

18 sur 246 09/06/2015 15:05



caractère peut être adressé séparément! Essayez ce code:

myvar = "hello"
len(myvar)
myvar[2]

Pratiquement, ce que vous faites avec les listes peut également
être fait avec les chaînes de caractères. En fait, les listes et les
chaînes de caractères sont des séquences que Python voit en
interne de la même manière.

Outre les chaînes de caractères "String", les entiers "Integer",
les nombres à virgule flottante "float" et les listes "list", il y a
beaucoup de type de données, plus de renseignements sur les
dictionnaires (http://www.diveintopython.net/native_data_types
/index.html#odbchelper.dict). Vous pouvez même créer vos
propres types de données avec des classes
(http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm).

L'Indentation

Une manière pratique et élégante d'afficher chaque élément de la
liste, est de naviguer à l’intérieur de cette liste.
Entrez ce code dans la console:

alldaltons = ["Joe", "William", "Jack", "Averell"]
for dalton in alldaltons:

print dalton + " Dalton"

Nous venons de faire une "itération" (encore un nouveau mot de
programmeur!) grâce à notre boucle " for ... in ... : " nous avons
scruté chaque "champ" de la variable alldaltons. Notez la
syntaxe particulière de la boucle, la commande se termine avec
un " : " ce qui indique à Python que la suite sera un bloc d'une ou
plusieurs commandes ou instructions.

Après avoir frappé ENTREE  derrière le " : ", l'invite de
commande va changer en " ... " ce qui indique à Python que la
suite sera une partie de celui-ci.

Alors comment savoir, combien de ligne(s) sera ou seront

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

19 sur 246 09/06/2015 15:05



exécutées par Python à l'intérieur de la boucle ? Pour créer un
bloc, Python utilise l'indentation. Les prochaines lignes ne
commenceront pas au prompt " >>> " mais elles commenceront
par un ou plusieurs espaces vides, ou, une ou plusieurs
tabulations. Les langages de programmation utilisent leurs
propres méthodes , comme, la mise entre parenthèses du bloc,
entre un BEGIN ... END etc.

Tant que vous écrirez vos lignes avec la même indentation, elles
seront considérées comme faisant partie du bloc. Si vous
commencez une ligne avec 2 espaces et la prochaine avec 4
espaces, il y aura une erreur. Lorsque vous avez terminé votre
bloc, il suffit d'écrire la suite du programme sans indentation, ou
appuyez simplement sur Entrée.

Créer des indentations permet aussi d'éclaircir la lecture code
dans le cas de grands programmes. Nous allons voir que de
nombreuses autres commandes indentées peuvent avoir des blocs
de code aussi.

>>> alldaltons = ["Joe", "William", "Jack", "Averell"]
ENTREE
>>> for dalton in alldaltons: ENTREE
... ESPACE ESPACE  print dalton + " Dalton" ENTREE
... ENTREE
>>>

La commande " for ... in ... : " peut être utilisée pour de
nombreuses procédures qui doivent être effectuées plus d'une
fois (en boucle). Elle peut aussi par exemple être combinée avec
la commande range():

serie = range(1,11)
total = 0
print "sum"
for number in serie:

print number
   total = total + number
print "----"
print total

Ou des choses plus complexes comme ceci:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

20 sur 246 09/06/2015 15:05



alldaltons = ["Joe", "William", "Jack", "Averell"]
for n in range(4):

print alldaltons[n], " is Dalton number ", n

Vous voyez que la commande range() a également la
particularité de commencer à 0 (si vous ne spécifiez pas un
nombre de départ) et que son dernier nombre sera le nombre que
vous aurez spécifié moins un . Bien sûr, cette commande
fonctionne parfaitement avec les autres commandes Python.

Par exemple:

alldaltons = ["Joe", "William", "Jack", "Averell"]
total = len(alldaltons)
for n in range(total):

print alldaltons[n]

Une autre fonction intéressante utilisée dans un bloc indenté est
la commande de condition if (si). Avec " if " la suite de la
procédure sera exécutée uniquement si la condition est
remplie.

alldaltons = ["Joe", "William", "Jack", "Averell"]
if "Joe" in alldaltons:

print "We found that Dalton!!!"

C'est bien, ce code affiche "OK il c'est bien un Dalton !!!" car la
condition est exacte. Mais maintenant essayons cette ligne:

if "Lucky" in alldaltons:

Il ne c'est rien affiché car la condition n'était pas remplie. Nous
pouvons alors lui demander else (si la condition n'est pas remplie
alors):

alldaltons = ["Joe", "William", "Jack", "Averell"]
if "Lucky" in alldaltons:

print "We found that Dalton!!!"
else:

print "Such Dalton doesn't exist!"

Les Fonctions

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

21 sur 246 09/06/2015 15:05



Il n'y a pas beaucoup mots réservés dans Python
(http://docs.python.org/reference
/lexical_analysis.html#identifiers), à peine une trentaine, et nous
en connaissons maintenant quelques unes. Imaginons que nous
voulions construire nous même une commande spéciale! Et bien,
il est extrêmement facile de construire sa propre commande dans
Python. Vous pouvez ajouter ces commandes dans votre
installation Python de manière à en augmenter les capacités et
les utiliser comme bon vous semble. Ces nouvelles commandes
que vous allez créer dans Python, s'appellent des Fonctions.
Elles sont faites de cette manière:

def printsqm(myValue):
print str(myValue)+" square meters"

printsqm(45)

Extrêmement simple ! Le mot réservé "def()" crée une nouvelle
fonction dans Python. Vous lui donnez un nom, dans l'exemple:
"printsqm". Dans les parenthèses, la variable qui va transmettre
les données à la fonction, dans l'exemple: "myValue". A
l'intérieur de la fonction (donc après le " : " et une indentation) ,
vous définissez les formules, les données ou tout ce que vous
voulez transformer et que la fonction va vous retourner.

Par exemple, regardez la commande (ou mot réservé) len(). Si
vous écrivez len() simplement, Python affichera "TypeError:
len() takes exactly one argument (0 given)" il vous dit, vous
voulez len() de quelque chose alors j'ai besoin d'un argument
pour l'exécuter ! Puis, par exemple, vous allez écrire
len("William") et vous en obtiendrez la longueur. Alors, "William"
ou une variable est un argument que vous passez à la len(). La
fonction len() est définie de telle manière qu'elle sait exactement
quoi faire avec l'argument qui lui a été transmis.

Le nom de la variable "myValue" peut être n'importe quel nom,
et cette variable ne sera utilisée qu'à l'intérieur de la fonction.
C'est juste un nom qui représentera l'argument dans la fonction
en vue de l'utiliser, mais elle sert aussi a renseigner la fonction
de combien d'arguments elle disposera. Par exemple, faites ceci:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

22 sur 246 09/06/2015 15:05



printsqm(45,34)

Cette commande affichera l'erreur "TypeError: printsqm()
takes exactly 1 argument (2 given)" car la fonction "def
printsqm(myValue):" ne demande qu'un seul argument,
"myValue" et, nous lui en avons donné deux, 45 et 34.

Maintenant, écrivez cette fonction:

def sum(val1,val2):
   total = val1 + val2

return total

sum(45,34)
myTotal = sum(45,34)

Nous avons créé une fonction qui demande deux arguments, les
exécutes , et nous renvoie le résultat. Le retour du résultat est
très utile car nous pouvons l'utiliser pour l'afficher ou le stocker
dans une variable myTotal (pour notre exemple mais n'importe
quel nom conviendra) ou les deux. Comme nous sommes dans
l'interpréteur de Python, le résultat s'affiche en faisant:

sum(45,34)

Mais une fois le programme terminé et exécuté hors de
l'interpréteur il n'y aura pas d'affichage ! Pour afficher le résultat
hors de l'interpréteur Python, il faut bien sûr utiliser la
commande print. Alors il faudra faire:

print sum(45,34)

Voilà c'est affiché.

Pour plus de renseignements sur les autres possibilités des
fonctions (http://www.diveintopython.net/getting_to_know_python
/declaring_functions.html).

Les Modules

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

23 sur 246 09/06/2015 15:05



Maintenant, vous avez une idée du fonctionnement de Python:
mais comment faire pour travailler avec les fichiers et les
modules.

Jusqu'à présent, nous avons écrit des instructions ligne par ligne
pour travailler dans l'interpréteur Python, pas vrai? Lorsque vous
voulez faire des choses plus complexes, il est commode d'écrire
les premières lignes de code, puis de les exécuter en une seule
fois. Eh bien, c'est très facile à faire, et cela permet aussi de
sauver son travail. Il suffit d'ouvrir un éditeur de texte (par
exemple, Le Bloc-notes Windows), et d'écrire toutes les lignes de
code de Python, de la même manière qu'elles sont écrites dans
l'interpréteur, avec les indentations, etc. Ensuite, enregistrez le
fichier sur votre disque, de préférence avec l'extension .Py.

Voilà, maintenant vous avez un programme Python complet. Bien
sûr, il y a de meilleurs éditeurs que le bloc-notes de Windows ou
le terminal (http://www.osxfacile.com/terminal.html) d'OS X
comme l'excellent Notepad++ (http://notepad-plus-plus.org/fr/)
(pour Windows) qui utilise la coloration syntaxique tout comme
XCode (https://developer.apple.com/xcode) (pour OS X) et ceci
démontre qu'un programme Python n'est qu'un fichier texte.

Pour exécuter un programme Python, il ya des centaines de
manières. Dans Windows, cliquez simplement sur le fichier,
ouvrez-le avec Python, et exécutez le. Mais vous pouvez
également l'exécuter avec l'interpréteur Python. Pour ce faire,
l’interpréteur doit savoir où se trouve le programme .Py. Dans
FreeCAD, le plus simple est de placer les fichiers .Py dans le
répertoire par défaut destiné aux programmes Python, cet
endroit connu de l'interpréteur inclut dans FreeCAD est
C:\Program Files\FreeCAD0.12\bin, mais d'autres endroits
sont aussi connu de FreeCad C:\Program
Files\FreeCAD0.12\Mod (tous les outils de FreeCad) et
C:\Travail\Mes documents\. . .\FREECAD\Macro où sont
répertoriés tous vos programmes créés dans l’interpréteur de
FreeCad Macro-->Macros. Le chemin de destination de vos
modules peut être forcé à partir du menu
Édition-->Préférences-->Macro Chemin de la macro.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

24 sur 246 09/06/2015 15:05



Supposons que nous écrivions ce fichier programme:

def sum(a,b):
return a + b

print "test.py succesfully loaded"

et, nous allons l'enregistrer en "test.py" dans . . ./FreeCAD/bin.

Maintenant, allons dans FreeCAD, et dans la fenêtre de
l'interpréteur, écrivez:

import test

sans l'extension .py.

Le contenu du fichier sera tout simplement exécuté, ligne par
ligne, comme si nous l'avions écrit dans l'interpréteur. La
fonction somme a été créée, et le message "test.py a bien été
chargé" sera affiché. Il ya une grande différence: la commande
import est faite non seulement pour exécuter des programmes
écrits dans des fichiers comme le nôtre, mais aussi de charger
des fonctions dans Python, de sorte qu'elles deviennent
disponibles dans l'interpréteur. Les fichiers contenant des
fonctions, comme le nôtre, sont appelés modules.

Normalement, lorsque nous écrivons une fonction sum() dans
l'interpréteur, nous l'exécutons simplement comme ceci,

sum(14,45)

comme nous l'avons fait plus haut.

Mais quand nous importons un module contenant une fonction
comme sum(a,b), la syntaxe est un peu différente. Nous ferons:

test.sum(14,45)

Autrement dit, le module est importé comme un «conteneur», et
toutes ses fonctions sont à l'intérieur. Cela est extrêmement utile,
parce que nous pouvons importer un grand nombre de modules,

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

25 sur 246 09/06/2015 15:05



et de les organiser.
Donc, en bref, quand vous voyez quelque_chose.quelque_chose
(avec un point entre les deux), signifie que quelque chose est à
l'intérieur quelque chose.

Nous pouvons aussi, importer et extraire notre fonction sum()
contenue dans "test.py" directement dans l’interpréteur, comme
ceci:

from test import *
sum(12,54)

Théoriquement, tous les modules se comportent de cette
manière. Vous importez un module, et vous utilisez ses fonctions
de cette manière: module.fonction(argument(s)).
Les modules travaillent de cette façon: ils définissent les
fonctions, les nouveaux types de données et les classes que vous
pouvez utiliser dans l'interpréteur Python ou dans vos propres
modules, parce que rien ne vous empêche d'importer des
modules à l'intérieur de votre module!

Encore une chose extrêmement utile. Comment connaître les
modules disponibles ? quelles sont les fonctions contenues dans
ces modules et comment les utiliser (c'est à dire quels arguments
sont demandés par la fonction)? Nous avons vu que Python a une
fonction d'aide().

Alors, dans l'interpréteur Python de FreeCad faisons:

help()
modules

Will give us a list of all available modules. We can now type q to
get out of the interactive help, and import any of them. We can
even browse their content with the dir() command

import math
dir(math)

Nous voyons maintenant toutes les fonctions contenues dans le
module math, ainsi que des trucs étranges comme: __ doc__, __

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

26 sur 246 09/06/2015 15:05



FILE__, __ name__ . . . .
Le __ doc__ est extrêmement utile, il s'agit d'un texte de
documentation. Dans les modules, chaque fonction de fait a une
__ doc__ qui explique comment l'utiliser. Par exemple, nous
voyons qu'il ya une fonction sin dans le module math.
Vous voulez savoir comment utiliser cette fonction ? alors:

print math.sin.__doc__

Et enfin, une dernier chose: Lorsque l'on travaille sur un nouveau
module, nous avons besoin de le tester. Donc, une fois que nous
avons écrit une partie du code, dans l'interpréteur Python, nous
ferons:

import myModule
myModule.myTestFunction()

Mais que faire, si myTestFunction() ne fonctionne pas
correctement? Nous retournons à notre éditeur et nous le
corrigeons. Puis, au lieu de fermer et de rouvrir l'interpréteur
python, nous allons tout simplement mettre à jour le module
comme ceci:

reload(myModule)

Démarrer avec FreeCAD

Eh bien, je pense que maintenant vous devez avoir une bonne
idée de la façon dont Python travaille, et vous pouvez commencer
à explorer ce que FreeCAD peut nous offrir. Les fonctions Python
de FreeCAD sont toutes bien organisées en différents modules.
Certaines d'entre elles sont déjà chargées (importées) au
démarrage de FreeCAD. Donc, il suffit de faire:

dir()

et lire dans l’interpréteur tous les modules chargés dans
FreeCad, voir Scripts de base dans FreeCad...

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

27 sur 246 09/06/2015 15:05



< précédent: Macros suivant: Python scripting tutorial >

Bien sûr, nous n'avons vu qu'une très petite partie de l'univers
Python. Il existe de nombreux concepts importants que nous
n'avons pas mentionné ici.
Voici deux liens de référence de Python sur le net:

Le site officiel de Python (http://docs.python.org/reference/)
(en)
Plongez dans le Wikibook/ Book de Python
(http://www.diveintopython.net) (en)
Wiki en français (http://fr.wikibooks.org
/wiki/Programmation_Python)
Un autre aussi en français (http://www.jchr.be/python
/index.htm)

Pensez à en faire des onglets !

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

28 sur 246 09/06/2015 15:05



Python scripting in FreeCAD

FreeCAD a été programmé dès la première ligne de code dans le
but d'être totalement contrôlé par des scripts écrits en Python.
Presque toutes les procédures de FreeCAD, telles que l'interface,
le contenu des scènes, même la représentation du contenu des
vues 3D, sont accessibles à partir de l'interpréteur Python ou de
vos propres scripts.
Par conséquence, FreeCAD est probablement l'une des
applications d'ingénierie la plus profondément personnalisable et
évolutive disponible actuellement.

Dans son état actuel, FreeCAD a très peu de commandes de base
pour interagir avec vos objets 3D, FreeCAD est encore jeune et
est encore au stade de développement, de plus, la philosophie du
développement de FreeCAD est orientée de manière à fournir
une plate-forme CAD plutôt qu'une application d'utilisation
spécifique.
Grâce aux scripts Python utilisables dans FreeCAD, nous avons
un moyen très simple et rapide de voir et de tester les nouvelles
fonctionnalités des modules élaborés par la communauté
internationale des utilisateurs, des utilisateurs qui, généralement
connaissent la programmation Python.
Python est l'un des langages interprétés les plus populaires et,
généralement considéré comme très facile à apprendre, bientôt,
vous pourrez aussi écrire vos scripts pour modeler "votre propre"
FreeCAD.

Si vous n'êtes pas familier avec Python, nous vous recommandons
de chercher des tutoriels sur internet et "jeter un œil rapide"
(http://python.50webs.com/) sur sa structure. Python est un
langage très facile à apprendre, en particulier parce qu'il peut
être exécuté à l'intérieur de l'interpréteur, de la plus simple
commande jusqu'à l'élaboration de programmes complexes, il
peut être exécuté à la volée sans avoir besoin de compilateur.
FreeCAD dispose de son propre interpréteur Python intégré. Si
vous ne voyez pas de fenêtre intitulée Console Python comme
illustré ci-dessous, vous pouvez l'activer en cliquant dans la barre
d'outils Affichage -> Vues -> Console Python pour afficher

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

29 sur 246 09/06/2015 15:05



l’interpréteur Python.

L'interpréteur Python

A partir de l’interpréteur Python, vous pouvez accéder à
l'ensemble des modules Python installés, les modules originaux
de FreeCAD, ainsi que tous les modules supplémentaires que
vous installerez plus tard dans FreeCAD. La capture d'écran
ci-dessous vous montre l'interpréteur Python:

A partir de l’interpréteur, vous pouvez exécuter du code Python
et naviguer à travers les classes et fonctions disponibles.
FreeCAD fournit un navigateur de classe très pratique pour
l'exploration de votre nouvel univers qu'est FreeCAD. Lorsque
vous tapez le nom d'une classe connue suivie d'un "." (point) (ce
qui veut dire que vous voulez ajouter quelque chose après le
point à partir de cette classe), une fenêtre s'ouvre et vous
renseigne sur les options et méthodes disponibles dans cette
classe. Lorsque vous sélectionnez une option, le texte d'aide qui
lui est associé (s'il est disponible) est automatiquement affiché:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

30 sur 246 09/06/2015 15:05



Alors, commencez ici en tapant App. ou Gui. (Attention à la casse
App est différent de app) et regardez ce qui se passe.
Une autre façon plus simple d'explorer Python le contenu des
modules et des classes est d'utiliser la commande d'affichage
dir().
Par exemple, en tapant dir() tous les modules actuellements
répertoriés et chargés dans FreeCAD s'affichent.Si vous tapez
dir(App) tout ce qu'il y a à l'intérieur du module App sera affiché
, etc.

Une autre caractéristique utile de l'interprèteur est la possibilité
de revenir en arrière dans l'historique des commandes et
récupérer une ligne de code que vous avez tapé plus tôt. Pour
naviguer dans l'historique des commandes, il suffit d'utiliser
CTRL + HAUT  ou CTRL + BAS .

Si vous cliquez avec le bouton droit de la souris dans la fenêtre
de l'interpréteur, vous avez également les options classiques d'un
traitement de texte, telles que copier tout l'histoire (utile lorsque
vous voulez expérimenter votre code avant de faire votre script
final), ou d'insérer un nom de fichier avec le chemin complet.

Aide Python

Dans le menu Aide de FreeCAD, vous trouverez une entrée
portant la mention Modules Python, qui va ouvrir dans le
navigateur une fenêtre contenant la liste complète, de la
documentation de l'ensemble des modules Python à disposition
de l’interpréteur FreeCAD, c'est à dire les modules fournis avec

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

31 sur 246 09/06/2015 15:05



Python et ceux intégrés dans FreeCAD. La documentation
disponible dépend de l'effort que le développeur a mis pour
documenter le code son module, les modules Python en général,
ont la réputation d'être bien documentés. FreeCAD doit rester
ouvert pour travailler avec ce système de documentation.

Modules incorporés (Built-in)

FreeCAD étant conçu pour être exécuté sans interface graphique
(GUI), la quasi-totalité de ses fonctionnalités est séparé en deux
groupes: les fonctionnalités de base, nommés «App», et la
fonctionnalité graphique, nommée «Gui». Donc, nos deux
principaux modules dans FreeCAD sont appelés App et Gui.
Ces deux modules peuvent également être accessibles à partir
des scripts, respectivement avec les noms FreeCAD et
FreeCADGui. Ils sont accessibles même hors de l’interpréteur.

Dans l'App module, vous trouverez tout ce qui concerne
l'application elle-même, comme, les procédures d'ouvrir ou
fermeture de fichiers, comme l'ouverture de la feuille active
ou lister le contenu de la feuille . . .

Dans l'Gui module, vous trouverez des outils pour accéder et
gérer les éléments graphiques, comme les boutons
utilisateurs et leur barres d'outils, et, plus intéressant, la
représentation graphique de l'ensemble du contenu FreeCAD.

Lister tout le contenu de ces modules est un contre-productif, car
ils grandissent très vite compte tenu de la progression du
développement de FreeCAD.
Mais les deux outils fourni (le navigateur de classe et de l'aide de
Python) vous donnerons, à tout moment, une complète
documentation mise à jour sur ces modules.

Les objets "App" et "Gui"

Comme nous l'avons dit, dans FreeCAD, tout est séparé entre le
noyau et la représentation du projet. Y compris les objets 3D.
Vous pouvez accéder aux propriétés des objets (appelés

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

32 sur 246 09/06/2015 15:05



fonctions dans FreeCAD) via le module App, et modifier la façon
dont ils sont représentés sur l'écran via le module de Gui.
Par exemple, un cube possède des propriétés qui le définissent,
(comme la largeur, longueur, hauteur) qui sont stockées dans un
App objet et, les propriétés de représentation (comme la couleur
des faces, le mode de dessin) qui sont stockées dans un objet
correspondant Gui.

Cette méthode de travail permet une multitude d'utilisations,
comme des algorithmes travaillant uniquement sur la partie
caractéristiques, sans avoir à se soucier de la partie visuelle,
voire de réorienter le contenu du document à une partie
non-graphique de l'application, tels que des listes, des tableurs,
ou l'analyse d'éléments.

Pour chaque objet App dans votre document, il existe un
objet correspondant Gui.
En fait le document lui-même possède à la fois des objets App et
des objets Gui. Bien sûr, ceci n'est valable que lorsque vous
exécutez FreeCAD dans son interface graphique. Dans la version
en ligne de commande (sans interface graphique), seuls les
"objets App" sont accessibles.
Notez que la partie "objet Gui" est réactualisé chaque fois qu'un
"objet App" est recalculé (par exemple lorsqu'il y a un
changement de paramètres), les changements que vous pourriez
avoir fait directement à l'objet Gui peuvent être perdues.

Pour accéder à la partie App d'un objet, vous devez tapez:

myObject = App.ActiveDocument.getObject("ObjectName")

où "ObjectName" est le nom de votre objet.
Le même résultat est obtenu en tapant:

myObject = App.ActiveDocument.ObjectName

Pour accéder à la partie Gui d'un l'objet , vous tapez:

myViewObject = Gui.ActiveDocument.getObject("ObjectName")

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

33 sur 246 09/06/2015 15:05



où "ObjectName" est le nom de votre objet.
Le même résultat est obtenu en tapant:

myViewObject = App.ActiveDocument.ObjectName.ViewObject

Si vous n'êtes pas dans l'interface graphique (Gui) (par exemple
si vous êtes en mode ligne de commande), la dernière ligne
retournée sera 'None'.

Les objets dans un document

Dans FreeCAD tout votre travail est dans un "Document". Ce
document contient vos formes géométriquee et peut être
sauvegardé dans un fichier. Dans FreeCAD, plusieurs documents
peuvent être ouverts en même temps. Le document, et les formes
géométriques contenues , sont des objets App et des objets Gui.
Les objets App contiennent les définitions des formes
géométriques réelles, tandis que les objets Gui contiennent les
différentes vues de votre document.
Vous pouvez ouvrir plusieurs fenêtres, chacune de ces fenêtres
peut afficher votre projet avec un facteur de zoom différent ou
des vues différentes du projet. Ces vues font toutes partie de
l'objet Gui de votre document.

Pour accéder à la partie App du document ouvert (actif), tapez:

myDocument = App.ActiveDocument

Pour créer un nouveau document, tapez:

myDocument = App.newDocument("Document Name")

Pour accéder à la partie graphique (Gui) du document ouvert
(actif), tapez:

myGuiDocument = Gui.ActiveDocument

Pour accéder à la vue courante, tapez:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

34 sur 246 09/06/2015 15:05



myView = Gui.ActiveDocument.ActiveView

Modules supplémentaires

Les modules FreeCAD et FreeCADGui sont utilisés uniquement
pour créer et gérer des objets dans le document FreeCAD. Ils ne
sont pas utilisés pour la création ou la modification des formes
géométriques.
Les formes géométriques peuvent être de plusieurs types, elles
sont donc construites par des modules supplémentaires, chaque
module s'occupe la gestion d'un type de forme géométrique
spécifique.
Par exemple, le module "Part utilisé par le noyau OpenCascade,
et donc capable de créer et manipuler des formes géométriques
de type B-rep (http://fr.wikipedia.org
/wiki/Boundary_representation), pour lequel OpenCascade est
construit.
Le module "Mesh" est capable de construire et modifier des
objets Mesh (mailles). De cette façon, FreeCAD est capable de
gérer une grande variété de types d'objets, qui peuvent coexister
dans le même document, et de nouveaux types d'objets pourront
êtres ajoutés facilement et constamment.

Création d'objets

Chaque module a sa propre manière de gérer sa forme
géométrique, mais il y a une chose qu'ils peuvent tous faire, c'est
de créer des objets dans le document.
Mais, le document FreeCAD connaît tous les types d'objets
disponibles fournis par les modules,
tapez:

FreeCAD.ActiveDocument.supportedTypes()

FreeCAD listera tous les objets possibles que vous pouvez créer.
Par exemple, nous allons créer un objet maillage (traité par le
module "Mesh") et une objet Part (traité par le module le "Part"):

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

35 sur 246 09/06/2015 15:05



myMesh = FreeCAD.ActiveDocument.addObject("Mesh::Feature","myMeshName")
myPart = FreeCAD.ActiveDocument.addObject("Part::Feature","myPartName")

Le premier argument est le type d'objet "Mesh::", le second est
le nom de l'objet "myMeshName". Nos deux objets semblent
identiques: Ils ne contiennent pas encore de forme géométrique,
et la plupart de leurs propriétés sont les mêmes lorsque vous les
inspecter avec dir(myMesh) et dir(myPart).
Sauf que, myMesh a une propriété "Mesh" (maille) et myPart a
une propriété "Part" (forme géométrique).
C'est de cette manière que les données de "Mesh" (maillage) et
"Part" (forme géométrique) sont stockées.
Par exemple, nous allons créer un cube (Part) et le stocker dans
notre objet myPart:

import Part
cube = Part.makeBox(2,2,2)
myPart.Shape = cube

Si vous essayez de stocker le cube avec la propriété objet Mesh
"myMesh", il retournera une erreur de type. Car ces propriétés
sont conçues uniquement pour stocker un type d'objet bien
défini.
Dans la propriété objet Mesh "myMesh", vous ne pouvez
enregistrer que des objets créé avec le module Mesh.
Notez que la plupart des modules disposent également d'un
raccourci pour ajouter leur formes géométriques au document:

import Part
cube = Part.makeBox(2,2,2)
Part.show(cube)

Modification d'objets

La modification d'un objet est faite de la même manière:

import Part
cube = Part.makeBox(2,2,2)
myPart.Shape = cube

Maintenant, nous allons construire un cube plus gros:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

36 sur 246 09/06/2015 15:05



< précédent: Python scripting tutorial suivant: Mesh Scripting >

biggercube = Part.makeBox(5,5,5)
myPart.Shape = biggercube

Questionner les objets

Vous pouvez toujours connaître de quel type est un objet.
Faites ceci:

myObj = FreeCAD.ActiveDocument.getObject("myObjectName")
print myObj.TypeId

ou de savoir si un objet fait partie d'un modèle de base (Part
Feature, Mesh Feature, etc):

print myObj.isDerivedFrom("Part::Feature")

Retourne TRUE ou FALSE

Maintenant vous pouvez commencer à travailler avec FreeCAD!
Pour savoir ce que vous pouvez faire avec le Part Module, lisez
la page Part scripting, ou la page Script Mesh pour travailler
avec le module Mesh .
Notez que, bien que les modules Part et Mesh sont les plus
complets et les plus largement utilisés, les autres modules tels
que le Draft Module (Projet) ont également leurs API scripts qui
peuvent vous être utiles.
Pour une liste complète de chaque module et de leurs outils
disponibles, visitez la section :Category:API (en).

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

37 sur 246 09/06/2015 15:05



Introduction

Avant de commencer, vous devez importer le module Mesh.
Tapez (Attention à la classe Mesh est différent de mesh):

import Mesh

Dès que vous avez importé le module de maillage de la classe
Mesh, vous accéderez facilitent aux fonctions C++ Mesh-Kernel
de FreeCAD.

Création et chargement

Pour créer un objet maillage vide il suffit d'utiliser la commande
standard:

mesh = Mesh.Mesh()

Vous pouvez aussi créer un objet à partir d'un fichier

mesh = Mesh.Mesh('D:/temp/Something.stl')

Une liste de fichiers compatibles avec "Mesh" (maillage) est
disponible ici.

Ou de créer un ensemble de triangles en les décrivants par leurs
sommets (Vertex):

planarMesh = [
# triangle 1
[-0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],[-0.5000,0.5000,0.0000],
#triangle 2
[-0.5000,-0.5000,0.0000],[0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],
]
planarMeshObject = Mesh.Mesh(planarMesh)
Mesh.show(planarMeshObject)

Le kernel-Mesh prend soin de créer une structure correcte de
données topologiques en triant les points communs et des bords
coïncidents.

Plus tard, vous verrez comment tester et examiner les données de

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

38 sur 246 09/06/2015 15:05



maillage.

Modélisation

Pour créer des formes géométriques régulières, vous pouvez
utiliser le script Python BuildRegularGeoms.py.

import BuildRegularGeoms

Ce script fournit les méthodes pour construire des figures
simples qui ont besoin d'une rotation comme des sphères,
ellipsoïdes, cylindres, tores et cônes.
Et il existe aussi une méthode pour créer un simple cube.
Pour créer un tore, par exemple, nous ferons:

t = BuildRegularGeoms.Toroid(8.0, 2.0, 50) # list with several thousands triangles
m = Mesh.Mesh(t)

Les deux premiers paramètres définissent les rayons du tore, et
le troisième paramètre est un facteur de sous-échantillonnage
pour le nombre de triangles qui seront créés. Plus cette valeur
est élevée plus la figure sera lisse et plus cette valeur est basse
plus grossière sera la figure.
La classe Mesh offre un ensemble de fonctions booléennes qui
peuvent êtres utilisées à des fins de modélisation. Il fournit
l'union, l'intersection et la différence entre deux objets maillés.

m1, m2              # are the input mesh objects
m3 = Mesh.Mesh(m1) # create a copy of m1
m3.unite(m2) # union of m1 and m2, the result is stored in m3
m4 = Mesh.Mesh(m1)
m4.intersect(m2) # intersection of m1 and m2
m5 = Mesh.Mesh(m1)
m5.difference(m2) # the difference of m1 and m2
m6 = Mesh.Mesh(m2)
m6.difference(m1) # the difference of m2 and m1, usually the result is different to m5

Et ici, un exemple complet qui calcule l'intersection entre une
sphère et un cylindre qui coupe la sphère.

import Mesh, BuildRegularGeoms
sphere = Mesh.Mesh( BuildRegularGeoms.Sphere(5.0, 50) )
cylinder = Mesh.Mesh( BuildRegularGeoms.Cylinder(2.0, 10.0, True, 1.0, 50) )
diff = sphere
diff = diff.difference(cylinder)
d = FreeCAD.newDocument()

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

39 sur 246 09/06/2015 15:05



< précédent: FreeCAD Scripting Basics
suivant: Topological data scripting >

d.addObject("Mesh::Feature","Diff_Sphere_Cylinder").Mesh=diff
d.recompute()

Examens et Test

Ecrire vos propres algorithmes

Exporter

Vous pouvez même écrire votre modèle de maillage dans un
module Python:

m.write("D:/Develop/Projekte/FreeCAD/FreeCAD_0.7/Mod/Mesh/SavedMesh.py")
import SavedMesh
m2 = Mesh.Mesh(SavedMesh.faces)

Relations avec Gui (Interface graphique)

Modules supplémentaires à tester

Une extension (difficile à utiliser) de scripts Mesh qui est à
tester.
Dans cette compilation test, toutes les méthodes sont appelées et
toutes les propriétés et attributs sont manipulés.
Donc si vous êtes assez audacieux pour le tester, allez voir
(http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk
/src/Mod/Mesh/App/MeshTestsApp.py?view=markup) cette
compilation de modules "unifié".

See also Mesh API

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

40 sur 246 09/06/2015 15:05



Cette page décrit différentes méthodes pour créer et modifier des
pièces avec Python.
Avant de lire cette page, si vous n'êtes pas familier avec la
programmation Python, vous pouvez vous diriger sur cette page
d'introduction à Python et scripts de base en Python pour
FreeCAD.

Introduction

Nous allons ici vous expliquer comment contrôler la boîte à
outils (Part Module) ou de n'importe quel script externe,
directement à partir de l'interpréteur Python inclus dans
FreeCAD, .
Assurez-vous de parcourir l'article de familiarisation et scripts de
base si vous avez besoin de plus amples renseignements sur la
façon dont les scripts Python fonctionnent dans FreeCAD.

Class Diagram

Ceci est un Unified Modeling Language (UML)
(http://fr.wikipedia.org/wiki/Unified_Modeling_Language) de la
classe la plus importante de Part Module:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

41 sur 246 09/06/2015 15:05



Geometry

The geometric objects are the building block of all topological
objects:

Geom Base class of the geometric objects
Line A straight line in 3D, defined by starting point and end
point
Circle Circle or circle segment defined by a center point and
start and end point
...... And soon some more

Topology

Sont aussi disponibles des données de type topologique:

Compound Groupe de types différents d'objets topologiques.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

42 sur 246 09/06/2015 15:05



Compsolid Un groupe de solides reliés par leurs faces. C'est
un concept des notions de WIRE (filaire,bord..) et SHELL
(coquille,enveloppe) des solides.
Solid Une portion de l'espace limité par son enveloppe. Il est
en 3 dimensions.
Shell Un groupe de faces reliés par leurs bords.Un "SHELL"
peut être ouvert ou fermé.
Face En 2D, c'est une surface plane; en 3D, c'est une seule
face du volume. Sa géométrie est coupée par des contours. Il
est en deux dimensions.
Wire Un ensemble relié par ses VERTEX (sommets). Il peut
être de contour ouvert ou fermé suivant si les sommets sont
reliés ou non.
Edge Elément topologique correspondant à une courbe
retenue. Un "Edge" est généralement limité par des sommets.
Il a une dimension.
Vertex Elément topologiques correspondant à un point. Il n'a
pas de dimension.
Shape Est le terme générique pour traduire tout ce qui
précède.

Exemple rapide : Création topologique simple

Nous allons créer une topologie avec
une géométrie toute simple.
Nous devrons veiller à ce que les
sommets des pièces géométriques
soient à la même position, quatre
sommets, deux cercles et deux
lignes.

Création de la géométrie

Nous devons d'abord créer les parties distinctes géométriques en
filaire.
Nous devons veiller à ce que tous les sommets des pièces
géométriques qui vont êtres raccordées soient à la même
position.
Sinon, plus tard nous pourrions ne pas être en mesure de relier

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

43 sur 246 09/06/2015 15:05



les pièces géométriques en une topologie!

Donc, nous créons d'abord les points:

from FreeCAD import Base
V1 = Base.Vector(0,10,0)
V2 = Base.Vector(30,10,0)
V3 = Base.Vector(30,-10,0)
V4 = Base.Vector(0,-10,0)

Arc

Pour créer un arc de cercle, nous créons un point
de repère puis nous créons l'arc de cercle passant
par trois points:

VC1 = Base.Vector(-10,0,0)
C1 = Part.Arc(V1,VC1,V4)
# and the second one
VC2 = Base.Vector(40,0,0)
C2 = Part.Arc(V2,VC2,V3)

Ligne

La ligne peut être créée très simplement en
dehors des points :

L1 = Part.Line(V1,V2)
# and the second one
L2 = Part.Line(V4,V3)

Tout relier

La dernière étape consiste à relier les éléments géométriquement
ensemble, et façonner une forme topologique:

S1 = Part.Shape([C1,C2,L1,L2])

Construire un prisme

Maintenant nous allons extruder notre forme filaire dans une
direction, et créer une forme en 3 Dimensions:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

44 sur 246 09/06/2015 15:05



W = Part.Wire(S1.Edges)
P = W.extrude(Base.Vector(0,0,10))

Affichons le tout

Part.show(P)

Création de formes simples

Vous pouvez créer facilement des formes topologiques avec
"make...()" qui est une méthode du "Module Part":

b = Part.makeBox(100,100,100)
Part.show(b)

La combinaison de make...() avec d'autres methodes sont
disponibles:

makeBox(l,w,h): Construit un cube et pointe sur p dans la
direction d et de dimensions (longueur,largeur,hauteur).
makeCircle(radius): Construit un cercle de rayon (r).
makeCone(radius1,radius2,height): Construit un cône de
(rayon1,rayon2,hauteur).
makeCylinder(radius,height): Construit un cylindre de
(rayon,hauteur).
makeLine((x1,y1,z1),(x2,y2,z2)): Construit une ligne aux
coordonnées (x1,y1,z1),(x2,y2,z2) dans l'espace 3D.
makePlane(length,width): Construit un rectangle de
(longueur,largeur).
makePolygon(list): Construit un polygone (liste de points).
makeSphere(radius): Construit une sphère de (rayon).
makeTorus(radius1,radius2): Construit un tore de
(rayon1,rayon2).

La liste complète des API du module est sur la page Part API.

Importer les modules nécessaires

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

45 sur 246 09/06/2015 15:05



Nous avons d'abord besoin d'importer le module Part afin que
nous puissions utiliser son contenu Python.
Nous allons également importer le module Base à l'intérieur du
module de FreeCAD:

import Part
from FreeCAD import Base

Création d'un Vecteur

Les Vecteurs (http://fr.wikipedia.org/wiki/Vecteur) sont l'une des
informations les plus importantes lors de la construction des
formes géométriques.
Ils contiennent habituellement 3 nombres (mais pas toujours) les
coordonnées cartésiennes x, y et z.
Vous pouvez créez un vecteur comme ceci:

myVector = Base.Vector(3,2,0)

Nous venons de créer un vecteur de coordonnées x = 3, y = 2, z
= 0.
Dans le module Part, les vecteurs sont utilisés partout.
Le module Part utilise aussi une autre façon de représenter un
point, appelé Vertex, qui n'est actuellement rien d'autre qu'un
conteneur pour un vecteur.
Vous pouvez accéder aux vecteurs d'un sommet comme ceci:

myVertex = myShape.Vertexes[0]
print myVertex.Point
> Vector (3, 2, 0)

Création d'une arête (edge)

Une arête (bord) n'est rien d'autre qu'une ligne avec deux Vertex
(sommets):

edge = Part.makeLine((0,0,0), (10,0,0))
edge.Vertexes
> [<Vertex object at 01877430>, <Vertex object at 014888E0>]

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

46 sur 246 09/06/2015 15:05



PS: Vous pouvez aussi créer un arête en donnant deux Vecteurs:

vec1 = Base.Vector(0,0,0)
vec2 = Base.Vector(10,0,0)
line = Part.Line(vec1,vec2)
edge = line.toShape()

Vous pouvez trouver la longueur et le centre d'une arête comme
ceci:

edge.Length
> 10.0
edge.CenterOfMass
> Vector (5, 0, 0)

Mise en forme à l'écran

Jusqu'à présent, nous avons créé un objet a arêtes vives (bords),
mais il n'est pas visible à l'écran.
C'est parce que nous n'avons manipulé que des objets en Python.
L'écran FreeCAD n'affiche uniquement que les vues 3D que vous
lui demandez d'afficher.
Pour cela, nous utilisons une méthode simple:

Part.show(edge)

Un Objet 3D sera affiché dans notre document FreeCAD, et notre
dessin sera affiché sous forme filaire.
Utilisez cette commande chaque fois que vous voudrez afficher
votre forme géométrique à l'écran.

Création d'un contour (Wire)

Un contour est une ligne multi-arêtes, et peut être créé dans une
liste d'arêtes ou même une liste de lignes (fils):

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

47 sur 246 09/06/2015 15:05



edge1 = Part.makeLine((0,0,0), (10,0,0))
edge2 = Part.makeLine((10,0,0), (10,10,0))
wire1 = Part.Wire([edge1,edge2])
edge3 = Part.makeLine((10,10,0), (0,10,0))
edge4 = Part.makeLine((0,10,0), (0,0,0))
wire2 = Part.Wire([edge3,edge4])
wire3 = Part.Wire([wire1,wire2])
wire3.Edges
> [<Edge object at 016695F8>, <Edge object at 0197AED8>, <Edge object at 01828B20>, <Edge object at 0190A788
Part.show(wire3)

Part.show (wire3) permet d'afficher les 4 bords qui composent
notre contour filaire.
D'autres informations utiles, peuvent être facilement récupérées:

wire3.Length
> 40.0
wire3.CenterOfMass
> Vector (5, 5, 0)
wire3.isClosed()
> True
wire2.isClosed()
> False

Création d'une face

Seul les faces à contour fermés seront valides.
Dans cet exemple, wire3 est un contour fermé, et Wire2 est un
contour ouvert (voir ci-dessus)

face = Part.Face(wire3)
face.Area
> 99.999999999999972
face.CenterOfMass
> Vector (5, 5, 0)
face.Length
> 40.0
face.isValid()
> True
sface = Part.Face(wire2)
face.isValid()
> False

Seul les faces auront une superficie, mais les lignes et les bords
(arêtes) n'en possède pas .

Création d'un cercle

Un cercle est créé simplement comme ceci:

circle = Part.makeCircle(10)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

48 sur 246 09/06/2015 15:05



circle.Curve
> Circle (Radius : 10, Position : (0, 0, 0), Direction : (0, 0, 1))

Si vous voulez le créer à une coordonnée précise, faites comme
ceci:

ccircle = Part.makeCircle(10, Base.Vector(10,0,0), Base.Vector(1,0,0))
ccircle.Curve
> Circle (Radius : 10, Position : (10, 0, 0), Direction : (1, 0, 0))

ccircle sera créé à une distance de 10 à partir de l'axe d'origine x
et sera orienté dans la direction de l'axe x.
Remarque: makeCircle accepte uniquement Base.Vector() pour la
position mais pas les tuples (http://fr.wikipedia.org
/wiki/Modèle_relationnel) normaux.
Vous pouvez également créer un arc de cercle en donnant l'angle
de départ et l'angle de la fin comme suit:

from math import pi
arc1 = Part.makeCircle(10, Base.Vector(0,0,0), Base.Vector(0,0,1), 0, 180)
arc2 = Part.makeCircle(10, Base.Vector(0,0,0), Base.Vector(0,0,1), 180, 360)

Si nous joignions les deux arcs arc1 et arc2 nous obtiendrons un
cercle.
L'angle fourni doit être exprimé en degrés, s'il sont en radians,
vous devez les convertir en degrès avec la formule: degrés =
radians * 180/PI ou en utilisant le module mathématiques
Python (après avoir fait import math, bien sûr):

degrees = math.degrees(radians)

Création d'un arc sur des points (repères)

Malheureusement, il n'existe pas de fonction makeArc mais nous
avons la fonction Part.Arc pour créer un arc sur trois points de
référence.
Fondamentalement, nous pouvons supposer un arc attaché sur un
point de départ, passant sur un point central et se termine sur
un point final en .
Part.Arc crée un objet arc pour lequel .ToShape() doit être
appelée pour obtenir un objet ligne (edge), de cette manière nous

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

49 sur 246 09/06/2015 15:05



utiliserons Part.Line lieu de Part.makeLine.

arc = Part.Arc(Base.Vector(0,0,0),Base.Vector(0,5,0),Base.Vector(5,5,0))
arc
> <Arc object>
arc_edge = arc.toShape()

Arc travaille uniquement avec Base.Vector() pour les points
mais pas pour les tuples.
arc_edge est ce qui sera affiché à l'aide Part.show (arc_edge).
Vous pouvez également obtenir un arc de cercle en utilisant une
partie de cercle:

from math import pi
circle = Part.Circle(Base.Vector(0,0,0),Base.Vector(0,0,1),10)
arc = Part.Arc(c,0,pi)

Les arcs Arc sont des lignes (edges). Ils peuvent donc, être
utilisés aussi comme contour en filaire.

Création de polygones

Un polygone est tout simplement une ligne (wire) avec de
multiples lignes droites.
La fonction makePolygon crée une liste de points et crée une
ligne de points en points:

lshape_wire = Part.makePolygon([Base.Vector(0,5,0),Base.Vector(0,0,0),Base.Vector(5,0,0)])

Création de courbes de Bézier

Les courbes de Bézier (http://fr.wikipedia.org/wiki/Courbe_de_B
%C3%A9zier) sont utilisées pour modéliser des courbes lisses à
l'aide d'une série de repères (points de contrôle) avec un nombre
de repères représentants la précision (fluidité de la courbe)
optionnel. La fonction ci-dessous fait un Part.BezierCurve avec
une série de points FreeCAD.Vector. (Note : l'indice du premier
repère et du nombre commencent à 1, et pas à 0.)

def makeBCurveEdge(Points):
   geomCurve = Part.BezierCurve()
   geomCurve.setPoles(Points)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

50 sur 246 09/06/2015 15:05



   edge = Part.Edge(geomCurve)
return(edge)

Création d'une forme plane

Une forme plane, est tout simplement une surface plane
rectangulaire.
La méthode utilisée pour créer une forme plane est la suivante:
makePlane(longueur, largeur, [point de départ, direction]).
Par défaut point de départ = Vecteur(0,0,0) et direction =
Vecteur(0,0,1).
L'utilisation point de départ = Vecteur(0,0,1) va créer la forme
sur le plan axe z, tandis que direction = Vecteur(1,0,0) va
créer la forme sur le plan axe x:
(Pour s'y retrouver un peu sur les axes, Vecteur ( 0 , 0 , 1 )
est égal à Vecteur ( X=0 , Y=0 , Z=1 ) l'ordre des axes sera
toujours ( x , y , z ))

plane = Part.makePlane(2,2)
plane
><Face object at 028AF990>
plane = Part.makePlane(2,2, Base.Vector(3,0,0), Base.Vector(0,1,0))
plane.BoundBox
> BoundBox (3, 0, 0, 5, 0, 2)

BoundBox est un rectangle qui possède une diagonale
commençant sur le plan (3,0,0) et se terminant à (5,0,2).
L'épaisseur de la boîte (Box) dans l'axe y est égal à zéro, car
notre forme est totalement plane.

PS: makePlane accepte uniquement Base.Vector() pour
start_pnt et dir_normal mais ici, pas de tuples

Création d'une ellipse

Pour créer une ellipse, il existe plusieurs façons:

Part.Ellipse()

Créez une ellipse avec, grand rayon = 2, petit rayon = 1 et centre
= (0,0,0)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

51 sur 246 09/06/2015 15:05



Part.Ellipse(Ellipse)

Créez une copie des données de l'ellipse

Part.Ellipse(S1,S2,Center)

Crée une ellipse positionnée au point "Center", le plan de
l'ellipse est défini par Center, S1 et S2,
le grand axe est définit par Center et S1,
son grand rayon est la distance entre Center et S1,
son petit rayon est la distance entre S2 et le grand axe.

Part.Ellipse(Center,MajorRadius,MinorRadius)

Crée une ellipse avec un grand rayon MajorRadius et un petit
rayon MinorRadius, et situé dans le plan défini par (0,0,1)

eli = Part.Ellipse(Base.Vector(10,0,0),Base.Vector(0,5,0),Base.Vector(0,0,0))
Part.show(eli.toShape())

Dans le code ci-dessus, nous avons passé S1 (Grand rayon), S2
(Petit rayon) et le centre (les coordonnées centrales).
De même que l'Arc, l'Ellipse crée également un objet Ellipse
mais pas d'arête (bords), nous avons donc besoin de le convertir
en arête à l'aide toShape() pour l'afficher.

PS: Arc accepte uniquement Base.Vector() pour les points mais
pas les tuples.

eli = Part.Ellipse(Base.Vector(0,0,0),10,5)
Part.show(eli.toShape())

pour construire l'Ellipse ci-dessus, nous avons entré les
coordonnées centrales, le Grand rayon et le Petit rayon.

Création d'un Tore

Nous créons un Tore en utilisant la méthode makeTorus(
rayon1 , rayon2 , [ pnt , dir , angle1 , angle2 , angle ] ).

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

52 sur 246 09/06/2015 15:05



Par défaut,
Rayon1 = est le rayon du grande cercle
Rayon2 = est le rayon du petit cercle,
pnt = Vecteur(0,0,0),pnt est le centre de tore
dir = Vecteur(0,0,1), dir est la direction normale
angle1 = 0, est l'angle de début pour le petit cercle exprimé en
radians
angle2 = 360 est l'angle de fin pour le petit cercle exprimé en
radians
angle = 360 le dernier paramètre est la section du tore

torus = Part.makeTorus(10, 2)

Le code ci-dessus créera un tore avec un diamètre de 20 (rayon
de 10) et une épaisseur de 4 (rayon du petite cerlce 2)

tor=Part.makeTorus(10,5,Base.Vector(0,0,0),Base.Vector(0,0,1),0,180)

Le code ci-dessus créera une portion du tore

tor=Part.makeTorus(10,5,Base.Vector(0,0,0),Base.Vector(0,0,1),0,360,180)

Le code ci-dessus créera un demi tore, seul le dernier paramètre
change à savoir l'angle et, les angles restants sont prédéfinis.
En donnant un angle de 180 degrés, crée un tore de 0 à 180
degrés, c'est à dire un demi tore.

Création d'un cube ou d'un parallélépipède

Utilisez makeBox ( longueur , largeur , hauteur , [ pnt , dir ]
).
Par défaut pnt=Vector(0,0,0) and dir=Vector(0,0,1)

box = Part.makeBox(10,10,10)
len(box.Vertexes)
> 8

Création d'une Sphère

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

53 sur 246 09/06/2015 15:05



Nous utiliserons makeSphere ( rayon , [ pnt , dir , angle1 ,
angle2 , angle3 ] ).
rayon = rayon de la sphère par défaut,
pnt = Vecteur (0,0,0),
dir = Vecteur (0,0,1),
angle1 = -90, verticale minimale de la sphère
angle2 = 90, verticale maximale de la sphère
angle3 = 360, le diamètre de la sphère elle-même

sphere = Part.makeSphere(10)
hemisphere = Part.makeSphere(10,Base.Vector(0,0,0),Base.Vector(0,0,1),-90,90,180)

Création d'un Cylindre

Nous utiliserons makeCylinder ( radius , height , [ pnt , dir
,angle ] ).
Par défaut,
pnt=Vector(0,0,0),dir=Vector(0,0,1) and angle=360

cylinder = Part.makeCylinder(5,20)
partCylinder = Part.makeCylinder(5,20,Base.Vector(20,0,0),Base.Vector(0,0,1),180)

Création d'un Cône

Nous utiliserons makeCone ( radius1 , radius2 , height , [ pnt
, dir , angle ] ).
Par défaut,
pnt=Vector(0,0,0), dir=Vector(0,0,1) and angle=360

cone = Part.makeCone(10,0,20)
semicone = Part.makeCone(10,0,20,Base.Vector(20,0,0),Base.Vector(0,0,1),180)

Modification d'une forme

Il ya plusieurs manières de modifier des formes. Certaines sont
de simples opérations de transformation telles que le
déplacement ou la rotation de formes, d'autres, sont plus
complexes, tels que fusion et en soustraction d'une forme à une

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

54 sur 246 09/06/2015 15:05



autre. Tenez en compte.

Opérations de Transformation

Transformer une forme

La transformation est l'action de déplacer une forme d'un endroit
à un autre.
Toute forme (arête, face, cube, etc ..) peut être transformé de la
même manière:

myShape = Part.makeBox(2,2,2)
myShape.translate(Base.Vector(2,0,0))

Cette commande va déplacer notre forme "myShape" de 2 unités
dans la direction x.

Rotation d'une forme

Pour faire pivoter une forme, vous devez spécifier le centre de
rotation, l'axe, et l'angle de rotation:

myShape.rotate(Vector(0,0,0),Vector(0,0,1),180)

Cette opération va faire pivoter notre forme de 180 degrés sur
l'axe z.

Transformations génériques avec matrices

Une matrice est un moyen très simple de mémoriser les
transformations dans le mode 3D. Dans une seule matrice, vous
pouvez définir les valeurs de transformation, rotation et mise à
l'échelle à appliquer à un objet.
Par exemple:

myMat = Base.Matrix()
myMat.move(Base.Vector(2,0,0))
myMat.rotateZ(math.pi/2)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

55 sur 246 09/06/2015 15:05



PS: les matrices de FreeCAD travaillent en radians. En outre,
presque toutes les opérations matricielles qui travaillent avec un
vecteur peut aussi avoir 3 nombres, de sorte que ces 2 lignes
effectuent le même travail:

myMat.move(2,0,0)
myMat.move(Base.Vector(2,0,0))

Lorsque notre matrice est paramétrée, nous pouvons l'appliquer
à notre forme. FreeCAD fournit nous fournit 2 méthodes:
transformShape() et transformGeometry().
La différence est que, avec la première, vous ne verez pas de
différence (voir "mise à l'échelle d'une forme" ci-dessous).
Donc, nous pouvons opérer notre transformation comme ceci:

 myShape.trasformShape(myMat)

ou

myShape.transformGeometry(myMat)

Echelle du dessin (forme)

Changer l'échelle d'une forme est une opération plus dangereuse,
car, contrairement à la translation ou à la rotation, le changement
d'échelle non uniforme (avec des valeurs différentes pour x, y et
z) peut modifier la structure de la forme!
Par exemple, le redimensionnement d'un cercle avec une valeur
plus élevée horizontalement que verticalement le transformera
en une ellipse, qui mathématiquement très différent.
Pour modifier l'échelle, nous ne pouvons pas utiliser le
transformShape, nous devons utiliser transformGeometry():

myMat = Base.Matrix()
myMat.scale(2,1,1)
myShape=myShape.transformGeometry(myMat)

Opérations Booléennes

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

56 sur 246 09/06/2015 15:05



Soustraction

Soustraire une forme d'une autre est appelé, dans le jargon OCC
(http://www.opencascade.org/org/doc/)/FreeCAD "cut" (coupe) et,
se fait de cette manière:

cylinder = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))
sphere = Part.makeSphere(5,Base.Vector(5,0,0))
diff = cylinder.cut(sphere)

Intersection

De la même manière, l'intersection entre 2 formes est appelé
"common" et se fait de cette manière:

cylinder1 = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))
cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1))
common = cylinder1.common(cylinder2)

Fusion

La fusion "fuse", fonctionne de la même manière:

cylinder1 = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))
cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1))
fuse = cylinder1.fuse(cylinder2)

Section

Une section, est l'intersection entre une forme solide et une
forme plane.
Il retournera une courbe d'intersection, et sera composé de bords
(edges, arêtes)

cylinder1 = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))
cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1))
section = cylinder1.section(cylinder2)
section.Wires
> []
section.Edges
> [<Edge object at 0D87CFE8>, <Edge object at 019564F8>, <Edge object at 0D998458>,
<Edge  object at 0D86DE18>, <Edge object at 0D9B8E80>, <Edge object at 012A3640>,
<Edge object at 0D8F4BB0>]

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

57 sur 246 09/06/2015 15:05



Extrusion

L'extrusion est une action de "pousser" une forme plane dans une
certaine direction et résultant en un corps solide.
Par exemple, pousser sur un cercle pour le transformer en tube:

circle = Part.makeCircle(10)
tube = circle.extrude(Base.Vector(0,0,2))

Si votre cercle est vide, vous obtiendrez un tube vide.
Mais si votre cercle est un disque, avec une face pleine, vous
obtiendrez un cylindre solide:

wire = Part.Wire(circle)
disc = Part.makeFace(wire)
cylinder = disc.extrude(Base.Vector(0,0,2))

Exploration de la forme (shape)

Vous pouvez facilement explorer la structure de ses données
topologique:

import Part
b = Part.makeBox(100,100,100)
b.Wires
w = b.Wires[0]
w
w.Wires
w.Vertexes
Part.show(w)
w.Edges
e = w.Edges[0]
e.Vertexes
v = e.Vertexes[0]
v.Point

En tapant ce code dans l'interpréteur Python, vous aurez une
bonne compréhension de la structure de Part objets.
Ici, notre commande makebox() créé une forme solide. Ce
solide, comme tous les solides Part, contiennent des faces. Une
face est constituée de lignes, qui sont un ensemble de bords,
arêtes qui délimitent la face. Chaque face a au moins un contour
fermé (il peut en avoir plus si la face comporte un ou plusieurs
trou). Dans une ligne, nous pouvons voir chaque côté
séparément, et nous pouvons voir les sommets (Vertex) de

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

58 sur 246 09/06/2015 15:05



chaque bord ou arête. Lignes et arêtes n'ont que deux sommets,
évidemment.

Analyse des arêtes (Edge)

Dans le cas d'un bord (ou arête), qui est une courbe arbitraire, il
est fort probable que vous voulez faire une discrétisation. Dans
FreeCAD, les bords sont paramétrés par leurs longueurs.
Cela signifie, que vous pouvez suivre une arête/courbe par sa
longueur:

import Part
box = Part.makeBox(100,100,100)
anEdge = box.Edges[0]
print anEdge.Length

Maintenant, vous pouvez accéder à un grand nombre de
propriétés de l'arête en utilisant sa longueur comme une position.
C'est à dire que, si l'arête(ou bord) a une longueur de 100 mm la
position de départ est 0 et sa position extrème est 100.

anEdge.tangentAt(0.0) # tangent direction at the beginning
anEdge.valueAt(0.0) # Point at the beginning
anEdge.valueAt(100.0) # Point at the end of the edge
anEdge.derivative1At(50.0) # first derivative of the curve in the middle
anEdge.derivative2At(50.0) # second derivative of the curve in the middle
anEdge.derivative3At(50.0) # third derivative of the curve in the middle
anEdge.centerOfCurvatureAt(50) # center of the curvature for that position
anEdge.curvatureAt(50.0) # the curvature
anEdge.normalAt(50) # normal vector at that position (if defined)

Utilisation de la sélection

Ici, nous allons voir comment nous pouvons utiliser la fonction de
sélection, quand l'utilisateur a fait une sélection dans la
visionneuse.
Tout d'abord, nous créons une boîte (box), et nous le voyons et la
sélectionnons dans la visionneuse.

import Part
Part.show(Part.makeBox(100,100,100))
Gui.SendMsgToActiveView("ViewFit")

Sélectionnez maintenant quelques faces ou arêtes.
Avec ce script, vous pouvez parcourir tous les objets sélectionnés

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

59 sur 246 09/06/2015 15:05



et visionner leurs sous-éléments:

for o in Gui.Selection.getSelectionEx():
print o.ObjectName
for s in o.SubElementNames:

print "name: ",s
for s in o.SubObjects:

print "object: ",s

Sélectionnez quelques bords et ce script va calculer la longueur:

length = 0.0
for o in Gui.Selection.getSelectionEx():

for s in o.SubObjects:
length += s.Length

print "Length of the selected edges:" ,length

Exemple Complet: "The OCC bottle"

Un exemple typique, trouvée sur OpenCasCade Getting Started
Page (http://www.opencascade.org/org/gettingstarted/appli/) vous
montre comment construire une bouteille.
C'est un excellent exercice pour FreeCAD. En fait, vous pouvez
suivre notre exemple ci-dessous et regarder simultanément la
page OCC (http://www.opencascade.org/org/doc/), vous
comprendrez comment les structures OCC sont misent en œuvre
dans FreeCAD.
Le script complet ci-dessous de MakeBottle.py est également
inclus dans l'installation de FreeCAD dans le dossier Mod/Part et
peut être appelé à partir de l'interpréteur Python en tapant:

import Part
import MakeBottle
bottle = MakeBottle.makeBottle()
Part.show(bottle)

Le script complet

Ici, le script complet de MakeBottle.py (extension .py):

import Part, FreeCAD, math
from FreeCAD import Base

def makeBottle(myWidth=50.0, myHeight=70.0, myThickness=30.0):
   aPnt1=Base.Vector(-myWidth/2.,0,0)
   aPnt2=Base.Vector(-myWidth/2.,-myThickness/4.,0)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

60 sur 246 09/06/2015 15:05



   aPnt3=Base.Vector(0,-myThickness/2.,0)
   aPnt4=Base.Vector(myWidth/2.,-myThickness/4.,0)
   aPnt5=Base.Vector(myWidth/2.,0,0)

   aArcOfCircle = Part.Arc(aPnt2,aPnt3,aPnt4)
   aSegment1=Part.Line(aPnt1,aPnt2)
   aSegment2=Part.Line(aPnt4,aPnt5)
   aEdge1=aSegment1.toShape()
   aEdge2=aArcOfCircle.toShape()
   aEdge3=aSegment2.toShape()
   aWire=Part.Wire([aEdge1,aEdge2,aEdge3])

   aTrsf=Base.Matrix()
   aTrsf.rotateZ(math.pi) # rotate around the z-axis

   aMirroredWire=aWire.transformGeometry(aTrsf)
   myWireProfile=Part.Wire([aWire,aMirroredWire])
   myFaceProfile=Part.Face(myWireProfile)
   aPrismVec=Base.Vector(0,0,myHeight)
   myBody=myFaceProfile.extrude(aPrismVec)
   myBody=myBody.makeFillet(myThickness/12.0,myBody.Edges)
   neckLocation=Base.Vector(0,0,myHeight)
   neckNormal=Base.Vector(0,0,1)
   myNeckRadius = myThickness / 4.

myNeckHeight = myHeight / 10
   myNeck = Part.makeCylinder(myNeckRadius,myNeckHeight,neckLocation,neckNormal)
   myBody = myBody.fuse(myNeck)

   faceToRemove = 0
   zMax = -1.0

for xp in myBody.Faces:
try:

           surf = xp.Surface
if type(surf) == Part.Plane:

               z = surf.Position.z
if z > zMax:

                   zMax = z
                   faceToRemove = xp

except:
continue

   myBody = myBody.makeThickness([faceToRemove],-myThickness/50 , 1.e-3)

return myBody

Détail et déroulement MakeBottle.py

import Part, FreeCAD, math
from FreeCAD import Base

Nous aurons besoin, bien sûr, du module Part, mais aussi du
module FreeCAD.Base,
qui contient les structures de base de FreeCAD comme les
vectors et matrixes.

def makeBottle(myWidth=50.0, myHeight=70.0, myThickness=30.0):
   aPnt1=Base.Vector(-myWidth/2.,0,0)
   aPnt2=Base.Vector(-myWidth/2.,-myThickness/4.,0)
   aPnt3=Base.Vector(0,-myThickness/2.,0)
   aPnt4=Base.Vector(myWidth/2.,-myThickness/4.,0)
   aPnt5=Base.Vector(myWidth/2.,0,0)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

61 sur 246 09/06/2015 15:05



Ici, nous définissons notre fonction MakeBottle.
Cette fonction peut être appelée sans argument, comme nous
l'avons fait ci-dessus, les valeurs par défaut, de largeur, hauteur
et épaisseur seront utilisés.
Ensuite, nous définissons une paire de points qui seront utilisés
pour la construction de notre profil de base.

   aArcOfCircle = Part.Arc(aPnt2,aPnt3,aPnt4)
   aSegment1=Part.Line(aPnt1,aPnt2)
   aSegment2=Part.Line(aPnt4,aPnt5)

C'est ici que nous définissons les formes géométriques: un arc,
composé de 3 points, et deux segments de ligne, de 2 points
chacun.

   aEdge1=aSegment1.toShape()
   aEdge2=aArcOfCircle.toShape()
   aEdge3=aSegment2.toShape()
   aWire=Part.Wire([aEdge1,aEdge2,aEdge3])

Rappelez-vous la différence entre la géométrie et les formes?
Nous allons construire les formes de notre forme géométrique. 3
bords (bords ou arêtes peuvent être des segments de droites ou
des courbes), puis nous raccordons tous les sommets.

   aTrsf=Base.Matrix()
   aTrsf.rotateZ(math.pi) # rotate around the z-axis
   aMirroredWire=aWire.transformGeometry(aTrsf)
   myWireProfile=Part.Wire([aWire,aMirroredWire])

Jusqu'à présent, nous n'avons construit que la moitié du profil.
Qui est plus facile que de construire l'ensemble du profil, et nous
allons simplement refléter l'autre moitié du profil, et coller les
deux moitiés ensemble. Nous allons donc d'abord créer une
matrice. Une matrice, est un mode opératoire pour appliquer des
transformations aux objets dans le monde de la 3D, car, il peut
contenir dans une seule structure toutes les transformations de
base qui peuvent êtres fait sur les objets 3D (déplacement,
rotation et échelle). Nous créons la matrice, nous lui faisons subir
un effet miroir, et nous créons une copie de notre dessin avec
cette matrice. C'est de cette façon, que la transformation est
appliquée. Nous avons maintenant deux contours, et nous
pouvons avec eux faire un troisième contours, les contours sont

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

62 sur 246 09/06/2015 15:05



en fait des listes de bords.

   myFaceProfile=Part.Face(myWireProfile)
   aPrismVec=Base.Vector(0,0,myHeight)
   myBody=myFaceProfile.extrude(aPrismVec)
   myBody=myBody.makeFillet(myThickness/12.0,myBody.Edges)

Maintenant, nous avons un contour fermé, il peut être transformé
en une face. Une fois que nous avons une face, nous pouvons
l'extruder.
Une fois fait, nous avons un solide. Puis, nous appliquons arrondi
à notre objet, car nous voulons lui donner un aspect "design",
n'est-ce pas?

   neckLocation=Base.Vector(0,0,myHeight)
   neckNormal=Base.Vector(0,0,1)
   myNeckRadius = myThickness / 4.

myNeckHeight = myHeight / 10
   myNeck = Part.makeCylinder(myNeckRadius,myNeckHeight,neckLocation,neckNormal)

Maintenant, le corps de la bouteille est fait, nous avons encore
besoin de créer le goulot.
Donc, nous construisons un nouveau solide, avec un cylindre.

   myBody = myBody.fuse(myNeck)

L'opération de fusion, qui dans d'autres applications est parfois
appelé union, est très puissante.
Cette opération prendra soin de coller ce qui doit être collé et
enlever ce qui doit être enlevé.

return myBody

Puis, nous revenons à notre bouteille (Part solid), qui est le
résultat de notre fonction (return myBody).
Ce Part solid, comme toute autre forme solide, peut être
attribuée à un Objet dans un document FreeCAD, avec:

myObject = FreeCAD.ActiveDocument.addObject("Part::Feature","myObject")
myObject.Shape = bottle

ou, encore plus simple:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

63 sur 246 09/06/2015 15:05



Part.show(bottle)

Cube percé

Ici un exemple complet de construction d'un cube percé.

La construction se fait face par face et quand le cube est terminé,
il est évidé d'un cylindre traversant.

import Draft, Part, FreeCAD, math, PartGui, FreeCADGui, PyQt4
from math import sqrt, pi, sin, cos, asin
from FreeCAD import Base

size = 10
poly = Part.makePolygon( [ (0,0,0), (size, 0, 0), (size, 0, size), (0, 0, size), (0, 0, 0)])

face1 = Part.Face(poly)
face2 = Part.Face(poly)
face3 = Part.Face(poly)
face4 = Part.Face(poly)
face5 = Part.Face(poly)
face6 = Part.Face(poly)

myMat = FreeCAD.Matrix()
myMat.rotateZ(math.pi/2)
face2.transformShape(myMat)
face2.translate(FreeCAD.Vector(size, 0, 0))

myMat.rotateZ(math.pi/2)
face3.transformShape(myMat)
face3.translate(FreeCAD.Vector(size, size, 0))

myMat.rotateZ(math.pi/2)
face4.transformShape(myMat)
face4.translate(FreeCAD.Vector(0, size, 0))

myMat = FreeCAD.Matrix()
myMat.rotateX(-math.pi/2)
face5.transformShape(myMat)

face6.transformShape(myMat)               
face6.translate(FreeCAD.Vector(0,0,size))

myShell = Part.makeShell([face1,face2,face3,face4,face5,face6])   

mySolid = Part.makeSolid(myShell)
mySolidRev = mySolid.copy()
mySolidRev.reverse()

myCyl = Part.makeCylinder(2,20)
myCyl.translate(FreeCAD.Vector(size/2, size/2, 0))

cut_part = mySolidRev.cut(myCyl)

Part.show(cut_part)

Chargement et sauvegarde

Il ya plusieurs façons de sauver votre travail dans le Part Module

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

64 sur 246 09/06/2015 15:05



< précédent: Mesh Scripting/fr suivant: Mesh to Part/fr >

. Vous pouvez bien sûr sauvegarder votre document au format
FreeCAD, mais vous pouvez également enregistrer les objets
directement dans un format courant de CAO, tels que BREP
(http://fr.wikipedia.org/wiki/B-Rep), IGS (http://fr.wikipedia.org
/wiki/Initial_Graphics_Exchange_Specification), STEP
(http://en.wikipedia.org/wiki/Step_(software)) et STL
(http://fr.wikipedia.org/wiki/STL_(format)).

L'enregistrement d'une forme (un projet) dans un fichier est
facile, il y a les fonctions exportBrep(), exportIges(),
exportStl() et exportStep() qui sont des méthodes disponibles
pour toutes les formes d'objets.
Donc, en faisant:

import Part
s = Part.makeBox(0,0,0,10,10,10)
s.exportStep("test.stp")

Ceci sauve votre box (cube) dans le format .STP
Pour ouvrir un fichier BREP, IGES ou STEP simplement en faisant
le contraire:

import Part
s = Part.Shape()
s.read("test.stp")

Pour convertir un fichier .stp en .igs faites simplement :

import Part
 s = Part.Shape()
 s.read("file.stp") # incoming file igs, stp, stl, brep
 s.exportIges("file.igs") # outbound file igs

Notez que l'importation ou l'ouverture de fichiers BREP, IGES
ou STEP peut également être effectuée directement à partir du
Menu Fichier -> Ouvrir, Menu Fichier -> Importer ou l'icone
"Ouvrir un document ou importer des fichiers", et pour
l'exportation d'un fichier par Menu Fichier -> Exporter

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

65 sur 246 09/06/2015 15:05



Converting Part objects to Meshes/fr

La conversion des objets de haut niveau tels que les objets
(formes) en objets simples comme les mailles (Mesh) est une
opération facile, où, toutes les faces d'un Objet Part deviennent
une composition de triangles (exemple sur le site de coin3d un
des moteurs de FreeCAD) (http://www.coin3d.org/usage
/casestudies/users/usageexample.2008-05-30.6001136448
/4DVista.PNG).
Le résultat de cette triangulation (tessellation
(http://en.wikipedia.org/wiki/Tessellation)) est ensuite utilisé pour
construire un maillage (Mesh):

#let's assume our document contains one part object
import Mesh
faces = []
shape = FreeCAD.ActiveDocument.ActiveObject.Shape
triangles = shape.tessellate(1) # the number represents the precision of the tessellation)
for tri in triangles[1]:
    face = []

for i in range(3):
        vindex = tri[i]
        face.append(triangles[0][vindex])
    faces.append(face)
m = Mesh.Mesh(faces)
Mesh.show(m)

Parfois, la triangulation de certaines faces offertes par
OpenCascade (http://www.opencascade.org/) sont assez laid. Si
une face a un forme rectangulaire et ne contient pas de trous ou
n'est pas limité par des courbes, vous pouvez également créer un
maillage sur cette forme:

import Mesh
def makeMeshFromFace(u,v,face):

(a,b,c,d)=face.ParameterRange
        pts=[]

for j in range(v):
for i in range(u):

                        s=1.0/(u-1)*(i*b+(u-1-i)*a)
                        t=1.0/(v-1)*(j*d+(v-1-j)*c)
                        pts.append(face.valueAt(s,t))

        mesh=Mesh.Mesh()
for j in range(v-1):

for i in range(u-1):
                        mesh.addFacet(pts[u*j+i],pts[u*j+i+1],pts[u*(j+1)+i])
                        mesh.addFacet(pts[u*(j+1)+i],pts[u*j+i+1],pts[u*(j+1)+i+1])

return mesh

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

66 sur 246 09/06/2015 15:05



Conversion de Mailles en Part objects

La conversion des mailles en Part objets est une opération
extrêmement importante en CAO, car, très souvent vous recevrez
des données 3D au format Mesh (maillage) à partir d'autres
utilisateurs ou émis par d'autres applications de CAO. Les Mailles
sont très pratiques pour représenter les formes géométriques
libres et de grandes scènes visuelles, car il est très léger, mais
pour la CAO nous préférons généralement des objets de niveau
supérieur qui portent beaucoup plus d'informations comme, l'idée
de solides, ou faces sont faites de courbes au lieu de triangles.

La conversion des mailles en un de ces objets de niveau supérieur
(gérée par le Part Module dans FreeCAD) n'est pas une opération
facile. Les Mailles peuvent êtres faites de milliers de triangles
(par exemple lorsqu'ils sont générés par un scanner 3D), et des
solides faits du même nombre de faces serait extrêmement lourd
à manipuler. Donc, vous voudrez généralement voir l'objet
optimisé lors de la conversion.

FreeCAD propose actuellement deux méthodes pour convertir
des Parts objets en mailles. La première méthode est simple, la
conversion directe, sans aucune optimisation:

import Mesh,Part
mesh = Mesh.createTorus()
shape = Part.Shape()
shape.makeShapeFromMesh(mesh.Topology,0.05) # the second arg is the tolerance for sewing
solid = Part.makeSolid(shape)
Part.show(solid)

La seconde méthode, offre la possibilité d'examiner les aspects de
mailles coplanaires, lorsque l'angle entre eux est sous une
certaine valeur. Cela permet de construire des formes beaucoup
plus simples:

# let's assume our document contains one Mesh object
import Mesh,Part,MeshPart
faces = []
mesh = App.ActiveDocument.ActiveObject.Mesh
segments = mesh.getPlanes(0.00001) # use rather strict tolerance here

for i in segments:
if len(i) > 0:

# a segment can have inner holes
     wires = MeshPart.wireFromSegment(mesh, i)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

67 sur 246 09/06/2015 15:05



< précédent: Topological data scripting suivant: Scenegraph >

# we assume that the exterior boundary is that one with the biggest bounding box
if len(wires) > 0:

        ext=None
        max_length=0

for i in wires:
if i.BoundBox.DiagonalLength > max_length:

              max_length = i.BoundBox.DiagonalLength
              ext = i

        wires.remove(ext)
# all interior wires mark a hole and must reverse their orientation, otherwise Part.Face fails
for i in wires:

           i.reverse()

# make sure that the exterior wires comes as first in the lsit
        wires.insert(0, ext)
        faces.append(Part.Face(wires))

shell=Part.Compound(faces)
Part.show(shell)
#solid = Part.Solid(Part.Shell(faces))
#Part.show(solid)

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

68 sur 246 09/06/2015 15:05



De base, FreeCAD est une puissante compilation de différentes
bibliothèques graphiques, la plus importante étant OpenCascade
(http://en.wikipedia.org/wiki/Open_CASCADE), pour la gestion et
la construction des formes géométriques, Coin3d
(http://en.wikipedia.org/wiki/Coin3D) pour l'affichage des formes
géométriques, et Qt (http://fr.wikipedia.org/wiki/Qt) pour créer
une interface utilisateur graphique (GUI) agréable et
fonctionnelle.

Les formes géométriques qui apparaissent dans les vues 3D de
FreeCAD sont des rendus obtenus par la bibliothèque Coin3D
(Coin3D est une application de OpenInventor standard
(http://fr.wikipedia.org/wiki/Inventor_(bibliothèque_logicielle))).

Le logiciel OpenCascade fournit les même fonctionnalités que
coin3D, mais, dans les débuts de FreeCAD, il a été décidé de ne
pas utiliser le moteur d'OpenCascade et de se tourner plutôt vers
le logiciel coin3D plus performant. Une bonne façon de se
renseigner sur cette bibliothèque est de lire le livre Open
Inventor Mentor (http://www-evasion.imag.fr/Membres
/Francois.Faure/doc/inventorMentor/sgi_html/).

Actuellement OpenInventor (http://fr.wikipedia.org
/wiki/Inventor_(bibliothèque_logicielle)) est un langage de
description de scènes en 3 dimensions. La scène décrite dans
OpenInventor est restituée en OpenGL sur votre moniteur.
Coin3D prend en charge toutes ces procédures, de telle sorte que
le programmeur n'a pas besoin de traiter les appels complexes
d'OpenGL, il lui suffit simplement de fournir le code
OpenInventor adéquat.

Le gros avantage d'OpenInventor est, qu'il est une norme fort
bien connue et très bien documentée.
Le gros travail que FreeCAD fait pour vous, consiste
essentiellement à traduire les informations sur les formes
géométriques OpenCascade en langage OpenInventor.

OpenInventor décrit une scène 3D sous la forme d'une scène
graphique (http://fr.wikipedia.org/wiki/Graphe_de_scène) ,
comme le montre l'exemple ci dessous:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

69 sur 246 09/06/2015 15:05



 image from Inventor

mentor (http://www-evasion.imag.fr/~Francois.Faure
/doc/inventorMentor/sgi_html/index.html)

OpenInventor scenegraph, décrit tout ce qui fait partie d'une
scène 3D, comme les formes géométriques, les couleurs, les
matériaux, les lumières etc., et structure toutes les données
d'une manière claire et précise.
Cette structure peut être groupée en sous-structures vous
permettant d'organiser le contenu de votre scène de la manière
qui vous conviens le mieux.
Voici un exemple d'un fichier OpenInventor:

#Inventor V2.0 ascii

Separator {
    RotationXYZ {
       axis Z
       angle 0

}
    Transform {
       translation 0 0 0.5

}
    Separator {
       Material {
          diffuseColor 0.05 0.05 0.05

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

70 sur 246 09/06/2015 15:05



}
       Transform {
          rotation 1 0 0 1.5708
          scaleFactor 0.2 0.5 0.2

}
       Cylinder {

}
}

}

Comme vous pouvez le voir, la structure est très simple. Vous
utilisez des séparateurs (Separator) pour organiser vos blocs de
données, un peu comme vous le feriez pour organiser vos fichiers
dans des dossiers.
Chaque instruction influe celle qui suit, par exemple, les deux
premiers articles à la racine de nos Separator sont une rotation
(RotationXYZ {..}) et une transformation (Transform {..}), ils
auront une incidence directe sur tous les éléments suivants
(comme, si vous changez l'attribut d'un dossier, tous les sous
dossiers seront affectés).
Dans un séparateur, nous définirons la matière, dans un autre, la
transformation. Notre cylindre sera donc affecté par les deux
transformations, celle qui lui a été appliqué directement et celle
qui a été appliquée à son séparateur parent
(Separator{..Separator{..}} à la manière des dossiers dans un
disque dur).

Nous avons également beaucoup d'autres d'éléments pour
organiser notre scène (projet), tels que des groupes, des
commutateurs ou des annotations.
Nous pouvons donner à nos objets des définitions très complexes,
de la couleur, des textures des modes d'ombrage et de
transparence. Nous pouvons aussi définir de la lumière, des
caméras et, même du mouvement.
Il est aussi possible d'intégrer des portions de scripts dans des
fichiers OpenInventor et de définir des comportements plus
complexes.

Si vous voulez en apprendre plus sur OpenInventor, allez tout de
suite sur The Inventor Mentor: Programming Object-Oriented 3D
Graphics with Open Inventor (http://www-evasion.imag.fr
/~Francois.Faure/doc/inventorMentor/sgi_html/index.html).

Normalement, dans FreeCAD, nous n'avons pas besoin d'interagir

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

71 sur 246 09/06/2015 15:05



< précédent: Mesh to Part suivant: Pivy >

directement avec scenegraph OpenInventor.
Dans un document FreeCAD, chaque objet maillage, forme de la
pièce ou toute autre chose, est automatiquement converti en
code OpenInventor et est inséré dans la scène graphique que
vous voyez dans la vue 3D.

Toutes modifications dans le document, ajout ou suppression
d'objets, sont en permanence mises à jour dans la scène
graphique. En fait, chaque objet (dans l'espace de l'Application),
dispose d'un constructeur de la vue (un objet correspondant dans
l'espace Gui), responsable de la création du code OpenInventor.

Mais il y a de nombreux avantages à pouvoir accéder directement
à la scène graphique. Par exemple, nous pouvons modifier
temporairement l'apparence d'un objet, ou nous pouvons ajouter
des objets à la scène qui n'ont aucune existence réelle dans le
document FreeCAD, tels que la construction de la géométrie, les
aides, conseils graphiques ou des outils qui permettent des
manipulations ou des informations à l'écran.

FreeCAD dispose de plusieurs outils pour voir ou modifier le code
OpenInventor.

Par exemple, le code Python suivant, montre la représentation
OpenInventor d'un objet sélectionné:

obj = FreeCAD.ActiveDocument.ActiveObject
viewprovider = obj.ViewObject
print viewprovider.toString()

Mais nous avons aussi un module Python qui permet un accès
complet à toute chose gérée par Coin3D, comme, notre scène
graphique FreeCAD.
Alors, lisez la suite sur la page de pivy.

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

72 sur 246 09/06/2015 15:05



Pivy (http://pivy.coin3d.org/) est une bibliothèque de codes qui
sert de passerelle entre Python et Coin3d
(http://www.coin3d.org), la bibliothèque 3D de rendu graphique
utilisé par FreeCAD. Lors de l'importation dans l'interpréteur
Python, Pivy permet de dialoguer immédiatement avec les
procédures de Coin3d, tels que les vue3D, ou même d'en créer de
nouvelles.
Pivy est inclus d'origine dans l'installation FreeCAD.

La bibliothèque d'outils est divisée en plusieurs parties,

coin: pour manipuler formes graphiques (projet) et gérer le
système graphique (GUI), tels que plusieurs fenêtres ou, dans
notre cas,
qt  : pour les interfaces.

Ces modules sont aussi accessibles à pivy, s'ils sont présents sur
le système bien sûr.
Le module coin est toujours présent, et de toute façon c'est lui
que nous allons utiliser, nous n'aurons pas besoin de nous
occuper de l'affichage 3D dans une interface, FreeCAD s'en
occupe lui-même.
Tout ce que nous aurons à faire, c'est:

from pivy import coin

Accéder et modifier une scène
graphique

Nous avons vu dans la page Scenegraph comment coin organise
une scène. Tout ce qui est affiché en 3D dans FreeCAD est
construit et géré par coin.
Nous avons une racine, et tous les objets sur l'écran sont ses
enfants, reliés par des nodes (noeuds). Les enfants aussi
peuvent avoir une descendance.

FreeCAD a un moyen facile d'accéder a la racine d'une scène 3D:

sg = FreeCADGui.ActiveDocument.ActiveView.getSceneGraph()

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

73 sur 246 09/06/2015 15:05



print sg

La racine de la scène 3D sera:

<pivy.coin.SoSelection; proxy of <Swig Object of type 'SoSelection *' at 0x360cb60> >

Vous pouvez inspecter immédiatement les enfants (branches) de
la scène 3D:

for node in sg.getChildren():
print node

Certains de ces nodes, comme SoSeparators ou SoGroups,
peuvent avoir des enfants eux-mêmes. La liste complète des coin
objets disponibles peut être trouvée dans la documentation
official coin documentation (http://doc.coin3d.org
/Coin/classes.html).

Maintenant essayons d'ajouter quelque chose à notre scène
(projet).
Nous allons ajouter un beau cube rouge:

col = coin.SoBaseColor()
col.rgb=(1,0,0)
cub = coin.SoCube()
myCustomNode = coin.SoSeparator()
myCustomNode.addChild(col)
myCustomNode.addChild(cub)
sg.addChild(myCustomNode)

et voici notre (beau) cube rouge.
Maintenant, nous allons essayer ceci:

col.rgb=(1,1,0)

Vu ? Tout est encore accessible et modifiable à la volée.
Pas besoin de recalculer ou redessiner quoi que ce soit, coin
s'occupe de tout. Vous pouvez ajouter ce que vous voulez à votre
scène (projet), propriétés de changements, cacher des objets,
montrer des objets temporairement, faire n'importe quoi.
Bien sûr, cela ne concerne que l'affichage de la vue 3D.
L'affichage du document ouvert est recalculé par FreeCAD, et

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

74 sur 246 09/06/2015 15:05



recalcule un objet quand il a besoin de l'être.
Donc, si vous changez l'aspect d'un objet existant dans FreeCAD,
ces modifications seront perdues si l'objet est recalculé, ou
lorsque vous rouvrez le fichier.

Un truc, pour travailler avec scenegraphs dans vos scripts, vous
pouvez, lorsque c'est nécessaire accéder à certaines propriétés
des nodes que vous avez ajoutés.
Par exemple, si nous voulions faire évoluer notre cube, nous
aurions ajouté un node SoTranslation à notre node personnalisé
et,
il aurait ressemblé à ceci:

col = coin.SoBaseColor()
col.rgb=(1,0,0)
trans = coin.SoTranslation()
trans.translation.setValue([0,0,0])
cub = coin.SoCube()
myCustomNode = coin.SoSeparator()
myCustomNode.addChild(col)
mtCustomNode.addChild(trans)
myCustomNode.addChild(cub)
sg.addChild(myCustomNode)

Souvenez-vous que dans une scène graphique OpenInventor,
l'ordre est très important. Un noeud affecte ce qui suit, de sorte
que, si vous dites: couleur rouge, cube, couleur jaune, sphère !
vous obtiendrez un cube rouge et une sphère jaune.
Si nous traduisons maintenant notre noeud personnalisé, il vient
après le cube, et ne l'affecte pas.
Si nous l'avions inséré lors de sa création, comme l'exemple
ci-dessus,
nous pourrions faire maintenant:

trans.translation.setValue([2,0,0])

Et notre cube sauterait de 2 unités vers la droite.
Enfin, pour supprimer quelque chose, nous ferons:

sg.removeChild(myCustomNode)

Utilisation des mécanismes de rappel

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

75 sur 246 09/06/2015 15:05



(callback)

Un mécanisme de rappel (http://fr.wikipedia.org
/wiki/Fonction_de_rappel) est un système qui permet à la
bibliothèque que vous utilisez, comme notre bibliothèque coin de
faire un rappel comme, rappeler une certaine fonction pour
l'Objet Python en cours d'exécution.
Cela est extrêmement utile, car, de cette manière coin peut vous
avertir si un événement particulier survient dans la scène.
Coin peut voir des choses très différentes, comme, la position de
la souris, les clics sur un bouton de la souris, les touches du
clavier qui sont pressées, et bien d'autres choses.

FreeCAD dispose d'un moyen facile pour utiliser ces rappels:

class ButtonTest:
def __init__(self):
self.view = FreeCADGui.ActiveDocument.ActiveView
self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.getMouseClick

def getMouseClick(self,event_cb):
    event = event_cb.getEvent()

if event.getState() == SoMouseButtonEvent.DOWN:
print "Alert!!! A mouse button has been improperly clicked!!!"
self.view.removeEventCallbackSWIG(SoMouseButtonEvent.getClassTypeId(),self.callback)

ButtonTest()

Le rappel doit être initiée à partir d'un objet, et, cet objet doit
toujours être actif au moment du rappel.
Voir aussi une liste complète des événements possibles et leurs
paramètres (en), ou dans la documentation officielle de coin
(http://doc.coin3d.org/Coin/classes.html).

Documentation

Malheureusement, pivy ne dispose pas encore d'une
documentation appropriée, mais puisqu'il s'agit d'une traduction
exacte de coin, vous pouvez utiliser en toute sécurité la
documentation révérencielle de coin (http://doc.coin3d.org
/Coin/classes.html), et utiliser le style Python au lieu du style c
++ ( par exemple SoFile::getClassTypeId() en c++, serait
SoFile.getClassId() en pivy )

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

76 sur 246 09/06/2015 15:05



< précédent: Scenegraph suivant: PySide >Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

77 sur 246 09/06/2015 15:05



PySide

PySide (http://fr.wikipedia.org/wiki/PySide)est un Python
obligatoire de l'outil mutiplateforme GUI de Qt. FreeCAD utilise
PySide pour tous les GUI (Interface Graphique Utilisateur).
PySidea évolué à partir du package PyQt qui était auparavant
utilisé par FreeCAD pour son interface graphique. Voir
Differences Between PySide and PyQt (http://qt-project.org
/wiki/Differences_Between_PySide_and_PyQt) pour plus
d'information sur ces différences.

Les utilisateurs de FreeCAD atteingnent souvent les limites tout
en utilisant l'interface intégrée. Mais pour les utilisateurs qui
souhaitent personnaliser leurs opérations alors l'interface Python
existe et est documentée dans le Didacticiel de scripts Python.
L'interface Python pour FreeCAD avait une grande flexibilité et
de la puissance.Pour cette interaction de l'utilisateur Python avec
Freecad , on utilise PySide, qui est est documenté sur cette page.

Python offre la mention «d'impression» qui donne le code:

print 'Hello World'

Avec l'instruction Python print vous avez seulement un contrôle
limité de l'apparence et du comportement. PySide fournit le
contrôle manquant et gère également les environnements (tels
que l'environnement de fichier macro FreeCAD) où les
installations intégrées de Python ne sont pas suffisantes

Les capacités de PySide varient de:

à

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

78 sur 246 09/06/2015 15:05



PySide est décrit dans les 3 pages suivantes qui doivent se suivre
l'une après l'autre

Exemples PySide Débutant (Bonjour tout le monde, annonces,
saisir du texte, entrez le numéro)
Exemples PySide intermédiaire (fenêtre dimensionnement,
cacher des widgets, des menus contextuels, position de la
souris, les événements de souris)
Exemples PySide avancés (widgets, etc.)

Elles divisent l'objet en 3 parties, différenciées selon le niveau de
connaissance de PySide, Python et l FreeCAD. La première page
est un aperçu et un documents de référence donnant une
description de PySide et comment il est mis en place tandis que
les deuxième et troisième pages sont pour la plupart des
exemples de code à différents niveaux.

L'intention est que les pages associées fourniront du code Python
simple pour exécuter PySide de sorte que l'utilisateur travaillant
sur un problème peut facilement copier le code, le collez-le
dansson propre travail, l'adapter si nécessaire et retourner à leur
résolution de problèmes avec FreeCAD. J'espère qu'ils n' auront
pas à aller fouiller à travers l'Internet à la recherche de réponses
aux questions PySide. Dans le même temps cette page n' est pas
destinée à remplacer les différents tutoriels PySide complets et
les sites de référence disponibles sur le web.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

79 sur 246 09/06/2015 15:05



< previous: Pivy next: Scripted objects >Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

80 sur 246 09/06/2015 15:05



Outre les types d'objets standards tels que les annotations, les
mailles et les objets Parts, FreeCAD offre également la possibilité
incroyable d'écrire des scripts d'objets 100% Python. Ces "objets"
se comporteront exactement comme n'importe quels autres
objets dans FreeCAD, et sont, sauvegardés et restaurés
automatiquement dans le répertoire de chargement/sauvegarde.
Une particularité doit être comprise, ces objets sont enregistrés
dans des fichiers FreeCAD FcStd avec le module Python cPickle
(http://docs.python.org/release/2.5/lib/module-
cPickle.html). Ce module transforme un objet (code) Python en
une chaîne de caractères (texte), lui permettant d'être ajouté au
fichier sauvegardé.

Une fois chargé, le module cPickle utilise cette chaîne pour
recréer l'objet d'origine, à condition qu'il ait accès au code source
qui l'a créé.

Cela signifie que si vous enregistrez un tel objet personnalisé et
l'ouvrez sur une machine où le code source Python qui a créé
l'objet n'est pas présent, l'objet ne sera pas recréé.
Si vous distribuez ces scripts à d'autres, vous devrez aussi
distribuer l'ensemble du script Python qui l'a créé.

Les fonctionnalités de Python suivent les mêmes règles que
toutes les fonctionnalités de FreeCAD: ils sont séparés en
plusieurs parties celle App (application) et GUI parts
(interface graphique).
La partie Object App (application), définit la forme géométrique
de notre objet, tandis que la partie graphique (GUI), définit la
façon dont l'objet sera affiché à l'écran.
L'outil View Provider Object (créateur de vue), comme toutes
les fonctions FreeCAD, n'est disponible que lorsque vous
exécutez FreeCAD dans son interface (GUI).

Il ya plusieurs manières et méthodes disponibles pour créer votre
projet. Les méthodes utilisées doivent êtres une des méthodes
prédéfinies que vous fourni FreeCAD, et apparaîtra dans la
fenêtre Propriété, afin qu'ils puissent être modifiés par
l'utilisateur (onglet Données).
De cette manière, les objets sont FeaturePython (ont toutes les

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

81 sur 246 09/06/2015 15:05



propriétés de Python) et sont totalements paramétriques.
Vous pouvez paramétrer les propriétés et l'affichage
ViewObject de l'objet séparément.

Astuce: dans les versions antérieures, nous avons utilisé le
module Python cPickle (http://docs.python.org/release/2.5/lib
/module-cPickle.html). Cependant, ce module exécute du code
arbitrairement et provoque ainsi des problèmes de sécurité.
Alors, nous avons opté pour le module Python json.

Exemples de base

L'exemple suivant (portion) peut être trouvé sur la page, src/Mod
/TemplatePyMod/FeaturePython.py (http://free-
cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod
/TemplatePyMod/FeaturePython.py?view=markup) qui inclus
beaucoup d'autres exemples:

"Examples for a feature class and its view provider."

import FreeCAD, FreeCADGui
from pivy import coin

class Box:
def __init__(self, obj):

"'''Add some custom properties to our box feature'''"
        obj.addProperty("App::PropertyLength","Length","Box","Length of the box").Length=1.0
        obj.addProperty("App::PropertyLength","Width","Box","Width of the box").Width=1.0
        obj.addProperty("App::PropertyLength","Height","Box", "Height of the box").Height=1.0
        obj.Proxy = self

def onChanged(self, fp, prop):
"'''Do something when a property has changed'''"

        FreeCAD.Console.PrintMessage("Change property: " + str(prop) + "\n")

def execute(self, fp):
"'''Do something when doing a recomputation, this method is mandatory'''"

        FreeCAD.Console.PrintMessage("Recompute Python Box feature\n")

class ViewProviderBox:
def __init__(self, obj):

"'''Set this object to the proxy object of the actual view provider'''"
        obj.addProperty("App::PropertyColor","Color","Box","Color of the box").Color=(1.0,0.0,0.0)
        obj.Proxy = self

def attach(self, obj):
"'''Setup the scene sub-graph of the view provider, this method is mandatory'''"
self.shaded = coin.SoGroup()
self.wireframe = coin.SoGroup()
self.scale = coin.SoScale()
self.color = coin.SoBaseColor()

        data=coin.SoCube()
self.shaded.addChild(self.scale)
self.shaded.addChild(self.color)
self.shaded.addChild(data)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

82 sur 246 09/06/2015 15:05



        obj.addDisplayMode(self.shaded,"Shaded");
        style=coin.SoDrawStyle()
        style.style = coin.SoDrawStyle.LINES

self.wireframe.addChild(style)
self.wireframe.addChild(self.scale)
self.wireframe.addChild(self.color)
self.wireframe.addChild(data)

        obj.addDisplayMode(self.wireframe,"Wireframe");
self.onChanged(obj,"Color")

def updateData(self, fp, prop):
"'''If a property of the handled feature has changed we have the chance to handle this here'''"
# fp is the handled feature, prop is the name of the property that has changed

        l = fp.getPropertyByName("Length")
        w = fp.getPropertyByName("Width")
        h = fp.getPropertyByName("Height")

self.scale.scaleFactor.setValue(l,w,h)
pass

def getDisplayModes(self,obj):
"'''Return a list of display modes.'''"

        modes=[]
        modes.append("Shaded")
        modes.append("Wireframe")

return modes

def getDefaultDisplayMode(self):
"'''Return the name of the default display mode. It must be defined in getDisplayModes.'''"
return "Shaded"

def setDisplayMode(self,mode):
"'''Map the display mode defined in attach with those defined in getDisplayModes.\'''

                '''Since they have the same names nothing needs to be done. This method is optional'''"
return mode

def onChanged(self, vp, prop):
"'''Here we can do something when a single property got changed'''"

        FreeCAD.Console.PrintMessage("Change property: " + str(prop) + "\n")
if prop == "Color":

            c = vp.getPropertyByName("Color")
self.color.rgb.setValue(c[0],c[1],c[2])

def getIcon(self):
"'''Return the icon in XPM format which will appear in the tree view. This method is\'''

                '''optional and if not defined a default icon is shown.'''"
return """

            /* XPM */
            static const char * ViewProviderBox_xpm[] = {
            "16 16 6 1",
            "   c None",
            ".  c #141010",
            "+  c #615BD2",
            "@  c #C39D55",
            "#  c #000000",
            "$  c #57C355",
            "        ........",
            "   ......++..+..",
            "   .@@@@.++..++.",
            "   .@@@@.++..++.",
            "   .@@  .++++++.",
            "  ..@@  .++..++.",
            "###@@@@ .++..++.",
            "##$.@@$#.++++++.",
            "#$#$.$$$........",
            "#$$#######      ",
            "#$$#$$$$$#      ",
            "#$$#$$$$$#      ",
            "#$$#$$$$$#      ",
            " #$#$$$$$#      ",
            "  ##$$$$$#      ",
            "   #######      "};
            """

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

83 sur 246 09/06/2015 15:05



def __getstate__(self):
"'''When saving the document this object gets stored using Python's json module.\'''

                '''Since we have some un-serializable parts here -- the Coin stuff -- we must define this method
                '''to return a tuple of all serializable objects or None.'''"

return None

def __setstate__(self,state):
"'''When restoring the serialized object from document we have the chance to set some internals here.

                '''Since no data were serialized nothing needs to be done here.'''"
return None

def makeBox():
    FreeCAD.newDocument()
    a=FreeCAD.ActiveDocument.addObject("App::FeaturePython","Box")
    Box(a)
    ViewProviderBox(a.ViewObject)

Propriétés disponibles

Les propriétés sont les bases des FeaturePython objets.
Grâce à elles, l'utilisateur est en mesure d'interagir et de
modifier son objet.
Après avoir créé un nouveau ObjetPython dans votre document (
a = FreeCAD.ActiveDocument.addObject ("App ::
FeaturePython", "Box") ), ses propriétés sont directement
accessibles, vous pouvez obtenir la liste,
en faisant:

obj.supportedProperties()

Et voici, la liste des propriétés disponibles:

App::PropertyBool
App::PropertyBoolList
App::PropertyFloat
App::PropertyFloatList
App::PropertyFloatConstraint
App::PropertyQuantity
App::PropertyQuantityConstraint
App::PropertyAngle
App::PropertyDistance
App::PropertyLength
App::PropertySpeed
App::PropertyAcceleration
App::PropertyForce
App::PropertyPressure
App::PropertyInteger
App::PropertyIntegerConstraint
App::PropertyPercent
App::PropertyEnumeration
App::PropertyIntegerList
App::PropertyIntegerSet
App::PropertyMap
App::PropertyString

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

84 sur 246 09/06/2015 15:05



App::PropertyUUID
App::PropertyFont
App::PropertyStringList
App::PropertyLink
App::PropertyLinkSub
App::PropertyLinkList
App::PropertyLinkSubList
App::PropertyMatrix
App::PropertyVector
App::PropertyVectorList
App::PropertyPlacement
App::PropertyPlacementLink
App::PropertyColor
App::PropertyColorList
App::PropertyMaterial
App::PropertyPath
App::PropertyFile
App::PropertyFileIncluded
App::PropertyPythonObject
Part::PropertyPartShape
Part::PropertyGeometryList
Part::PropertyShapeHistory
Part::PropertyFilletEdges
Sketcher::PropertyConstraintList

Lors de l'ajout de propriétés à vos objets, prenez soin de ceci:

Ne pas utiliser de caractères "<" ou ">" dans les
descriptions des propriétés (qui coupent des portions de code
dans le fichier xml.Fcstd)
Les propriétés sont stockées dans un fichier texte .Fcstd.
Toutes les propriétés dont le nom vient après "Shape" sont
triés dans l'ordre alphabétique, donc, si vous avez une forme
dans vos propriétés, et comme les propriétés sont chargées
après la forme, il peut y avoir des comportements inattendus!

==Property Type== By default the properties can be updated. It
is possible to make the properties read-only, for instance in the
case one wants to show the result of a method. It is also possible
to hide the property. The property type can be set using

obj.setEditorMode("MyPropertyName", mode)

Mode est un int court qui peut avoir la valeur: 0 -- mode par
défaut, lecture et écriture 1 -- lecture seule 2 -- caché

Autres exemples plus complexes

Cet exemple utilise le module Part Module pour créer un

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

85 sur 246 09/06/2015 15:05



octaèdre (http://fr.wikipedia.org/wiki/Octaèdre), puis crée sa
représentation coin (http://www.coin3d.org/) avec pivy

En premier, c'est l'objet document lui-même:

import FreeCAD, FreeCADGui, Part

class Octahedron:
def __init__(self, obj):

"Add some custom properties to our box feature"
         obj.addProperty("App::PropertyLength","Length","Octahedron","Length of the octahedron").Length=1.0
         obj.addProperty("App::PropertyLength","Width","Octahedron","Width of the octahedron").Width=1.0
         obj.addProperty("App::PropertyLength","Height","Octahedron", "Height of the octahedron").Height=
         obj.addProperty("Part::PropertyPartShape","Shape","Octahedron", "Shape of the octahedron")
         obj.Proxy = self

def execute(self, fp):
# Define six vetices for the shape

         v1 = FreeCAD.Vector(0,0,0)
         v2 = FreeCAD.Vector(fp.Length,0,0)
         v3 = FreeCAD.Vector(0,fp.Width,0)
         v4 = FreeCAD.Vector(fp.Length,fp.Width,0)
         v5 = FreeCAD.Vector(fp.Length/2,fp.Width/2,fp.Height/2)
         v6 = FreeCAD.Vector(fp.Length/2,fp.Width/2,-fp.Height/2)

# Make the wires/faces
         f1 = self.make_face(v1,v2,v5)
         f2 = self.make_face(v2,v4,v5)
         f3 = self.make_face(v4,v3,v5)
         f4 = self.make_face(v3,v1,v5)
         f5 = self.make_face(v2,v1,v6)
         f6 = self.make_face(v4,v2,v6)
         f7 = self.make_face(v3,v4,v6)
         f8 = self.make_face(v1,v3,v6)
         shell=Part.makeShell([f1,f2,f3,f4,f5,f6,f7,f8])
         solid=Part.makeSolid(shell)
         fp.Shape = solid

# helper mehod to create the faces
def make_face(self,v1,v2,v3):

         wire = Part.makePolygon([v1,v2,v3,v1])
         face = Part.Face(wire)

return face

Puis, nous avons view provider object, qui est responsable
d'afficher l'objet dans la scène 3D (votre projet à l'écran):

class ViewProviderOctahedron:
def __init__(self, obj):

"Set this object to the proxy object of the actual view provider"
         obj.addProperty("App::PropertyColor","Color","Octahedron","Color of the octahedron").Color=(1.0,
         obj.Proxy = self

def attach(self, obj):
"Setup the scene sub-graph of the view provider, this method is mandatory"
self.shaded = coin.SoGroup()
self.wireframe = coin.SoGroup()
self.scale = coin.SoScale()
self.color = coin.SoBaseColor()

self.data=coin.SoCoordinate3()
self.face=coin.SoIndexedLineSet()

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

86 sur 246 09/06/2015 15:05



self.shaded.addChild(self.scale)
self.shaded.addChild(self.color)
self.shaded.addChild(self.data)
self.shaded.addChild(self.face)

         obj.addDisplayMode(self.shaded,"Shaded");
         style=coin.SoDrawStyle()
         style.style = coin.SoDrawStyle.LINES

self.wireframe.addChild(style)
self.wireframe.addChild(self.scale)
self.wireframe.addChild(self.color)
self.wireframe.addChild(self.data)
self.wireframe.addChild(self.face)

         obj.addDisplayMode(self.wireframe,"Wireframe");
self.onChanged(obj,"Color")

def updateData(self, fp, prop):
"If a property of the handled feature has changed we have the chance to handle this here"
# fp is the handled feature, prop is the name of the property that has changed
if prop == "Shape":

            s = fp.getPropertyByName("Shape")
self.data.point.setNum(6)

            cnt=0
for i in s.Vertexes:

self.data.point.set1Value(cnt,i.X,i.Y,i.Z)
               cnt=cnt+1

self.face.coordIndex.set1Value(0,0)
self.face.coordIndex.set1Value(1,1)
self.face.coordIndex.set1Value(2,2)
self.face.coordIndex.set1Value(3,-1)

self.face.coordIndex.set1Value(4,1)
self.face.coordIndex.set1Value(5,3)
self.face.coordIndex.set1Value(6,2)
self.face.coordIndex.set1Value(7,-1)

self.face.coordIndex.set1Value(8,3)
self.face.coordIndex.set1Value(9,4)
self.face.coordIndex.set1Value(10,2)
self.face.coordIndex.set1Value(11,-1)

self.face.coordIndex.set1Value(12,4)
self.face.coordIndex.set1Value(13,0)
self.face.coordIndex.set1Value(14,2)
self.face.coordIndex.set1Value(15,-1)

self.face.coordIndex.set1Value(16,1)
self.face.coordIndex.set1Value(17,0)
self.face.coordIndex.set1Value(18,5)
self.face.coordIndex.set1Value(19,-1)

self.face.coordIndex.set1Value(20,3)
self.face.coordIndex.set1Value(21,1)
self.face.coordIndex.set1Value(22,5)
self.face.coordIndex.set1Value(23,-1)

self.face.coordIndex.set1Value(24,4)
self.face.coordIndex.set1Value(25,3)
self.face.coordIndex.set1Value(26,5)
self.face.coordIndex.set1Value(27,-1)

self.face.coordIndex.set1Value(28,0)
self.face.coordIndex.set1Value(29,4)
self.face.coordIndex.set1Value(30,5)
self.face.coordIndex.set1Value(31,-1)

def getDisplayModes(self,obj):
"Return a list of display modes."

         modes=[]
         modes.append("Shaded")
         modes.append("Wireframe")

return modes

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

87 sur 246 09/06/2015 15:05



def getDefaultDisplayMode(self):
"Return the name of the default display mode. It must be defined in getDisplayModes."
return "Shaded"

def setDisplayMode(self,mode):
return mode

def onChanged(self, vp, prop):
"Here we can do something when a single property got changed"

         FreeCAD.Console.PrintMessage("Change property: " + str(prop) + "\n")
if prop == "Color":

            c = vp.getPropertyByName("Color")
self.color.rgb.setValue(c[0],c[1],c[2])

def getIcon(self):
return """

            /* XPM */
            static const char * ViewProviderBox_xpm[] = {
            "16 16 6 1",
            "    c None",
            ".   c #141010",
            "+   c #615BD2",
            "@   c #C39D55",
            "#   c #000000",
            "$   c #57C355",
            "        ........",
            "   ......++..+..",
            "   .@@@@.++..++.",
            "   .@@@@.++..++.",
            "   .@@  .++++++.",
            "  ..@@  .++..++.",
            "###@@@@ .++..++.",
            "##$.@@$#.++++++.",
            "#$#$.$$$........",
            "#$$#######      ",
            "#$$#$$$$$#      ",
            "#$$#$$$$$#      ",
            "#$$#$$$$$#      ",
            " #$#$$$$$#      ",
            "  ##$$$$$#      ",
            "   #######      "};
            """

def __getstate__(self):
return None

def __setstate__(self,state):
return None

Enfin, une fois que notre objet et son viewobject sont définis,
nous n'avons qu'a les appeler:

FreeCAD.newDocument()
      a=FreeCAD.ActiveDocument.addObject("App::FeaturePython","Octahedron")
      Octahedron(a)
      ViewProviderOctahedron(a.ViewObject)

Création d'objets sélectionnables

Si vous voulez travailler sur un objet sélectionné, ou du moins

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

88 sur 246 09/06/2015 15:05



une partie de celui-ci, vous cliquez sur l'objet dans la fenêtre,
vous devez inclure la forme géométrique à l'intérieur d'un noeud
SoFCSelection node.
Si votre objet a une représentation complexe, avec des widgets,
des annotations, etc, vous pouvez n'inclure qu'une partie de
celui-ci dans un SoFCSelection.
Tout ce qui est SoFCSelection est constamment "scanné" par
FreeCAD pour voir s'il est sélectionné/présélectionné, il est donc
logique de ne rien surcharger avec des scans inutiles.

Voici un exemple de ce que vous devrez faire pour inclure un
self.face:

selectionNode = coin.SoType.fromName("SoFCSelection").createInstance()
selectionNode.documentName.setValue(FreeCAD.ActiveDocument.Name)
selectionNode.objectName.setValue(obj.Object.Name) # here obj is the ViewObject, we need its associated App Object
selectionNode.subElementName.setValue("Face")
selectNode.addChild(self.face)
...
self.shaded.addChild(selectionNode)
self.wireframe.addChild(selectionNode)

Vous créez Simplement un SoFCSelection node (noeud), puis
vous lui ajoutez vos noeuds géométriques, alors seulement vous
l'ajoutez à votre noeud principal, au lieu d'ajouter vos noeuds
géométriques directement.

Travailler avec des formes simples

Si votre objet paramétrique renvoie simplement une forme, vous
n'avez pas besoin d'utiliser un objet créateur de vue (view
provider object).
La forme sera affichée à l'aide du module standard de
représentation des formes de FreeCAD:

class Line:
def __init__(self, obj):

'''"App two point properties" '''
        obj.addProperty("App::PropertyVector","p1","Line","Start point")
        obj.addProperty("App::PropertyVector","p2","Line","End point").p2=FreeCAD.Vector(1,0,0)
        obj.Proxy = self

def execute(self, fp):
'''"Print a short message when doing a recomputation, this method is mandatory" '''

        fp.Shape = Part.makeLine(fp.p1,fp.p2)

a=FreeCAD.ActiveDocument.addObject("Part::FeaturePython","Line")

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

89 sur 246 09/06/2015 15:05



< précédent: PySide suivant: Embedding FreeCAD >

Line(a)
a.ViewObject.Proxy=0 # just set it to something different from None (this assignment is needed to run an internal notifica
FreeCAD.ActiveDocument.recompute()

Same code with use ViewProviderLine

import FreeCAD as App
import FreeCADGui
import FreeCAD
import Part

class Line:
def __init__(self, obj):

'''"App two point properties" '''
         obj.addProperty("App::PropertyVector","p1","Line","Start point")
         obj.addProperty("App::PropertyVector","p2","Line","End point").p2=FreeCAD.Vector(100,0,0)
         obj.Proxy = self

def execute(self, fp):
'''"Print a short message when doing a recomputation, this method is mandatory" '''

        fp.Shape = Part.makeLine(fp.p1,fp.p2)

class ViewProviderLine:
def __init__(self, obj):

''' Set this object to the proxy object of the actual view provider '''
      obj.Proxy = self

def getDefaultDisplayMode(self):
''' Return the name of the default display mode. It must be defined in getDisplayModes. '''
return "Flat Lines"

a=FreeCAD.ActiveDocument.addObject("Part::FeaturePython","Line")
Line(a)
ViewProviderLine(a.ViewObject)
App.ActiveDocument.recompute()

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

90 sur 246 09/06/2015 15:05



FreeCAD a la capacité incroyable de pouvoir être importé en
tant que module Python dans d'autres programmes ou, dans
une console Python autonome, avec tous ses modules et ses
composants. Il est même possible d'importer l'interface
graphique (GUI) de FreeCAD en tant que module python avec
toutefois, quelques restrictions.

Utilisation de FreeCAD sans interface graphique
(GUI)

Une première application, directe, facile et utile que vous pouvez
faire est d'importer des documents FreeCAD dans votre
programme. Dans l'exemple suivant, nous allons importer Part
geometry d'un document FreeCAD dans blender
(http://www.blender.org). Voici le script complet.

J'espère que vous serez impressionné par sa simplicité:
FREECADPATH = '/opt/FreeCAD/lib' # path to your FreeCAD.so or FreeCAD.dll file
import Blender, sys
sys.path.append(FREECADPATH)

def import_fcstd(filename):
try:

import FreeCAD
except ValueError:

       Blender.Draw.PupMenu('Error%t|FreeCAD library not found. Please check the FREECADPATH variable in the import script
else:

       scene = Blender.Scene.GetCurrent()
import Part

       doc = FreeCAD.open(filename)
       objects = doc.Objects

for ob in objects:
if ob.Type[:4] == 'Part':

               shape = ob.Shape
if shape.Faces:

                   mesh = Blender.Mesh.New()
                   rawdata = shape.tessellate(1)

for v in rawdata[0]:
                       mesh.verts.append((v.x,v.y,v.z))

for f in rawdata[1]:
                       mesh.faces.append.append(f)
                   scene.objects.new(mesh,ob.Name)
       Blender.Redraw()

def main():
   Blender.Window.FileSelector(import_fcstd, 'IMPORT FCSTD',
                        Blender.sys.makename(ext='.fcstd'))    

# This lets you import the script without running it
if __name__=='__main__':
   main()

Première chose, s'assurer que Python va trouver notre
bibliothèque FreeCAD. Une fois qu'il l'a trouvée, tous les modules
FreeCAD comme Part, que nous allons aussi utiliser, seront

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

91 sur 246 09/06/2015 15:05



disponibles automatiquement.

Donc, nous utilisons tout simplement la variable sys.path, qui va
donner à Python le chemin des modules à rechercher, et nous
ajoutons le chemin FreeCAD lib. Cette modification n'est que
temporaire, et sera perdue quand nous aurons terminé avec
notre interpréteur Python. Une autre façon, est de créer un lien
vers votre bibliothèque FreeCAD dans l'un des chemins (Path) de
recherche Python. Nous placerons le chemin dans une constante
(FREECADPATH), un autre utilisateur du script aura ainsi plus
de facilité pour configurer son propre système.

Une fois certain que la bibliothèque a été chargée (the try/except
sequence), nous pourrons travailler avec FreeCAD, de la même
manière que si nous le ferions à l'intérieur de l’interpréteur
Python de FreeCAD. Nous ouvrons le document FreeCAD que
nous avons chargé avec la fonction main(), et nous listons ses
objets. Puis, comme nous avons choisi de nous occuper que de la
forme géométrique, nous vérifions si la propriété Type de chaque
objet contient Part, puis nous faison une tesselation
(http://fr.wikipedia.org/wiki/Tesselation).

La tesselation produit une liste de sommets (Vertex) et une liste
de faces définis par les indices de sommets. C'est parfait,
puisque c'est exactement de cette manière que Blender définit les
mailles. Donc, notre tâche est ridiculement simple, nous ajoutons
juste les deux listes des sommets et faces comme un maillage de
Blender. Une fois fait, nous allons juste redessiner l'écran et, c'est
fini !

Vous avez vu, ce script est très simple (en fait, j'en ai écris un
plus évolué ici (http://yorik.orgfree.com/scripts
/import_freecad.py)), vous voudrez peut-être l'étendre, par
exemple importer des objets "mesh", ou importer "Part geometry"
qui n'a pas de face, ou importer d'autres formats que FreeCAD
peut lire. Vous pouvez également exporter les formes
géométriques dans un document FreeCAD, la procédure est la
même. Vous pouvez également créer un dialogue, afin que
l'utilisateur puisse choisir ce qu'il veut importer, etc . . . En
réalité, la beauté dans tout cela, réside du fait que vous laissez

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

92 sur 246 09/06/2015 15:05



faire la totalité du travail à FreeCAD, tout en présentant ses
résultats dans le programme de votre choix.

Utilisation de FreeCAD avec interface graphique
(GUI)

Depuis la version 4.2 de Qt, Qt a la capacité d'intégrer des
plugins Qt-GUI dépendants d'applications hôtes non-Qt, et, de
partager la boucle évènementielle de l'hôte.

Principalement pour FreeCAD, cela signifie qu'il peut être
importé à partir d'une autre application avec son interface
utilisateur entière (GUI) par conséquences, l'application hôte
prend le contrôle total de FreeCAD.

L'ensemble du code Python nécessaire pour atteindre ce but, n'a
que deux lignes:

import FreeCADGui 
FreeCADGui.showMainWindow()

Si, l'application hôte est basée sur Qt, alors cette solution devrait
fonctionner sur toutes les plates-formes supportées par Qt.
Toutefois, l'hôte doit être de la même version Qt que la version
utilisée pour FreeCAD, sinon, vous pouvez obtenir des erreurs
d'exécution inattendues.

Cependant, pour les applications non-Qt, il ya quelques
restrictions, que vous devez connaitre:

Cette solution ne fonctionnera probablement pas avec tous
les autres outils (toolkit):

Pour Windows, il fonctionnera aussi longtemps que
l'application hôte utilisée est compatible avec Win32 ou,
tout autres outils (toolkit) qui utilisent l'API Win32,
comme wxWidgets, MFC ou WinForms.
Pour le faire fonctionner sous X11
(http://fr.wikipedia.org/wiki/X_Window_System)
(Linux), l'application hôte doit utiliser la bibliothèque
"glib (http://developer.gnome.org/glib/)".

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

93 sur 246 09/06/2015 15:05



< précédent: Scripted objects suivant: Code snippets >

PS:pour toute application console, cette solution, bien sûr ne
fonctionnera pas car, il n'y a pas de fonctionnement "boucle
évènementielle" dans ce système.

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

94 sur 246 09/06/2015 15:05



Cette page contient, des exemples, des extraits de code en
Python FreeCAD, recueillis auprès d'utilisateurs expérimentés et
de produits de discussions sur les forums
(http://forum.freecadweb.org/).

Lisez les et utilisez les comme point de départ pour vos propres
scripts . .

Un fichier typique InitGui.py

En plus de votre module principal, chaque module doit contenir,
un fichier InitGui.py, responsable de l'insertion du module dans
l'interface principale.

Ceci est un simple exemple.

class ScriptWorkbench (Workbench): 
    MenuText = "Scripts"

def Initialize(self):
import Scripts # assuming Scripts.py is your module
list = ["Script_Cmd"] # That list must contain command names, that can be defined in Scripts.py
self.appendToolbar("My Scripts",list)

Gui.addWorkbench(ScriptWorkbench())

Un fichier module typique

Ceci est l'exemple d'un fichier module principal, il contient tout
ce que fait votre module. C'est le fichier Scripts.py invoqué dans
l'exemple précédent. Vous avez ici toutes vos commandes
personnalisées.

import FreeCAD, FreeCADGui 

class ScriptCmd: 
def Activated(self): 

# Here your write what your ScriptCmd does...
       FreeCAD.Console.PrintMessage('Hello, World!')

def GetResources(self): 
return {'Pixmap' : 'path_to_an_icon/myicon.png', 'MenuText': 'Short text', 'ToolTip': 'More detailed text'

FreeCADGui.addCommand('Script_Cmd', ScriptCmd())

Importer un nouveau type de fichier

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

95 sur 246 09/06/2015 15:05



Importer un nouveau type de fichier dans FreeCAD est facile.
FreeCAD ne prends pas en considération l'importation de
n'importe quelle données dans un document ouvert, parce que,
vous ne pouvez pas ouvrir directement un nouveau type de
fichier.

Donc, ce que vous devez faire, c'est ajouter la nouvelle extension
de fichier à la liste des extensions connues de FreeCAD, et,
d'écrire le code qui va lire le fichier et créer les objets FreeCAD
que vous voulez.

Cette ligne doit être ajoutée au fichier InitGui.py pour ajouter la
nouvelle extension de fichier à la liste:

# Assumes Import_Ext.py is the file that has the code for opening and reading .ext files
FreeCAD.addImportType("Your new File Type (*.ext)","Import_Ext")

Puis, dans le fichier Import_Ext.py, faites:

def open(filename): 
   doc=App.newDocument()

# here you do all what is needed with filename, read, classify data, create corresponding FreeCAD objects
   doc.recompute()

Pour exporter votre document avec une nouvelle extension, le
fonctionnement est le même, mais vous devrez faire:

FreeCAD.addExportType("Your new File Type (*.ext)","Export_Ext") 

Ajouter une ligne

Une ligne, à uniquement deux points.

import Part,PartGui 
doc=App.activeDocument()
# add a line element to the document and set its points 
l=Part.Line()
l.StartPoint=(0.0,0.0,0.0)
l.EndPoint=(1.0,1.0,1.0)
doc.addObject("Part::Feature","Line").Shape=l.toShape()
doc.recompute()

Ajouter un polygone

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

96 sur 246 09/06/2015 15:05



Un polygone est simplement un ensemble de segments
connnectés (un polyline dans AutoCAD) il n'est pas
obligatoirement fermé.

import Part,PartGui 
doc=App.activeDocument()
n=list()
# create a 3D vector, set its coordinates and add it to the list 
v=App.Vector(0,0,0)
n.append(v)
v=App.Vector(10,0,0)
n.append(v)
#... repeat for all nodes 
# Create a polygon object and set its nodes 
p=doc.addObject("Part::Polygon","Polygon")
p.Nodes=n 
doc.recompute()

Ajout et suppression d'objet(s) dans un groupe

doc=App.activeDocument()
grp=doc.addObject("App::DocumentObjectGroup", "Group")
lin=doc.addObject("Part::Feature", "Line")
grp.addObject(lin) # adds the lin object to the group grp
grp.removeObject(lin) # removes the lin object from the group grp

PS: vous pouvez aussi ajouter un groupe dans un groupe . . .

Ajout d'une maille (Mesh)

import Mesh
doc=App.activeDocument()
# create a new empty mesh
m = Mesh.Mesh()
# build up box out of 12 facets
m.addFacet(0.0,0.0,0.0, 0.0,0.0,1.0, 0.0,1.0,1.0)
m.addFacet(0.0,0.0,0.0, 0.0,1.0,1.0, 0.0,1.0,0.0)
m.addFacet(0.0,0.0,0.0, 1.0,0.0,0.0, 1.0,0.0,1.0)
m.addFacet(0.0,0.0,0.0, 1.0,0.0,1.0, 0.0,0.0,1.0)
m.addFacet(0.0,0.0,0.0, 0.0,1.0,0.0, 1.0,1.0,0.0)
m.addFacet(0.0,0.0,0.0, 1.0,1.0,0.0, 1.0,0.0,0.0)
m.addFacet(0.0,1.0,0.0, 0.0,1.0,1.0, 1.0,1.0,1.0)
m.addFacet(0.0,1.0,0.0, 1.0,1.0,1.0, 1.0,1.0,0.0)
m.addFacet(0.0,1.0,1.0, 0.0,0.0,1.0, 1.0,0.0,1.0)
m.addFacet(0.0,1.0,1.0, 1.0,0.0,1.0, 1.0,1.0,1.0)
m.addFacet(1.0,1.0,0.0, 1.0,1.0,1.0, 1.0,0.0,1.0)
m.addFacet(1.0,1.0,0.0, 1.0,0.0,1.0, 1.0,0.0,0.0)
# scale to a edge langth of 100
m.scale(100.0)
# add the mesh to the active document
me=doc.addObject("Mesh::Feature","Cube")
me.Mesh=m

Ajout d'un arc ou d'un cercle

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

97 sur 246 09/06/2015 15:05



import Part
doc = App.activeDocument()
c = Part.Circle()
c.Radius=10.0
f = doc.addObject("Part::Feature", "Circle") # create a document with a circle feature 
f.Shape = c.toShape() # Assign the circle shape to the shape property 
doc.recompute()

Accéder et changer la représentation d'un objet

Chaque objet dans un document FreeCAD a un objet vue associé
a une représentation qui stocke tous les paramètres qui
définissent les propriétés de l'objet, comme, la couleur,
l'épaisseur de la ligne, etc ..

gad=Gui.activeDocument() # access the active document containing all 
# view representations of the features in the
# corresponding App document 

v=gad.getObject("Cube") # access the view representation to the Mesh feature 'Cube' 
v.ShapeColor # prints the color to the console 
v.ShapeColor=(1.0,1.0,1.0) # sets the shape color to white

Observation des évènements de la souris dans la
vue 3D via Python

Le cadre Inventor permet d'ajouter un ou plusieurs noeuds
(nodes) de rappel à la scène graphique visualisée. Par défaut,
FreeCAD, possède un noeud (node) de rappel installé par la
visionneuse (fenêtre d'affichage des graphes), qui permet
d'ajouter des fonctions statiques ou globales en C++. Des
méthodes de liaisons appropriées sont fournies avec Python, pour
permettre l'utilisation de cette technique à partir de codes
Python.

App.newDocument()
v=Gui.activeDocument().activeView()

#This class logs any mouse button events. As the registered callback function fires twice for 'down' and
#'up' events we need a boolean flag to handle this.
class ViewObserver:

def logPosition(self, info):
       down = (info["State"] == "DOWN")
       pos = info["Position"]

if (down):
           FreeCAD.Console.PrintMessage("Clicked on position: ("+str(pos[0])+", "+str(pos[1])+")\n")

o = ViewObserver()
c = v.addEventCallback("SoMouseButtonEvent",o.logPosition)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

98 sur 246 09/06/2015 15:05



Maintenant, choisissez une zone dans l'écran (surface de travail)
3D et observez les messages affichés dans la fenêtre de sortie.

Pour terminer l'observation il suffit de faire:

v.removeEventCallback("SoMouseButtonEvent",c)

Les types d’évènements suivants sont pris en charge:

SoEvent -- tous types d'évènements
SoButtonEvent -- tous les évènements, boutons, molette
SoLocation2Event -- tous les évènements 2D (déplacements
normaux de la souris)
SoMotion3Event -- tous les évènements 3D (pour le
spaceball)
SoKeyboardEvent -- évènements des touches flèche haut  et
flèche bas
SoMouseButtonEvent -- tous les évènements boutons Haut
et Bas de la souris
SoSpaceballButtonEvent -- tous les évènements Haut et
Bas (pour le spaceball)

Les fonctions Python qui peuvent être enregistrées avec
addEventCallback() attendent la définition d'une bibliothèque.

Suivant la façon dont l’évènement survient, la bibliothèque peut
disposer de différentes clefs.

Il y a une clef pour chaque événement:

Type -- le nom du type d'évènement par exemple
SoMouseEvent, SoLocation2Event, ...
Time -- l'heure courante codée dans une chaîne string
Position -- un tuple de deux integers
(http://docs.python.org/library/functions.html#int),
donant la position x,y de la souris
ShiftDown -- type boolean, true si Shift  est pressé sinon,
false
CtrlDown -- type boolean, true si Ctrl  est pressé sinon,
false

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

99 sur 246 09/06/2015 15:05



AltDown -- type boolean, true si Alt  est pressé sinon, false

Pour un évènement bouton comme clavier, souris ou spaceball

State -- la chaîne UP si le bouton est relevé, DOWN si le
bouton est enfoncé ou UNKNOWN si rien ne se passe

Pour un évènement clavier:

Key -- le caractère de la touche qui est pressée

Pour un évènement bouton de souris:

Button -- le bouton pressé peut être BUTTON1, ...,
BUTTON5 ou tous

Pour un évènement spaceball:

Button -- le bouton pressé peut être BUTTON1, ...,
BUTTON7 ou tous

Et finalement les évènement de mouvements:

Translation -- un tuple de trois float()
(http://docs.python.org/library/functions.html#float)
Rotation -- un quaternion, tuple de quattre float()
(http://docs.python.org/library/functions.html#float)

Manipulation de scènes graphiques en Python

Il est aussi possible d'afficher ou de changer de scène en
programmation Python, avec le module pivy en combinaison avec
Coin (http://www.coin3d.org/)

from pivy.coin import *                # load the pivy module
view = Gui.ActiveDocument.ActiveView # get the active viewer
root = view.getSceneGraph() # the root is an SoSeparator node
root.addChild(SoCube())
view.fitAll()

L'API Python de pivy est créé en utilisant l'outil SWIG
(http://www.swig.org/). Comme dans FreeCAD nous utilisons

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

100 sur 246 09/06/2015 15:05



certains noeuds (nodes) écrits automatiquement nous ne pouvons
pas les créer directement en Python. Il est cependant, possible de
créer un noeud avec son nom interne. Un exemple de
SoFCSelection, le type peut être créé avec:

type = SoType.fromName("SoFCSelection")
node = type.createInstance()

Ajouter et effacer des objets de la scène

Ajouter de nouveaux noeuds dans la scène graphique peut être
fait de cette façon. Prenez toujours soin d'ajouter un
SoSeparator pour, contenir les propriétés de la forme
géométrique, les coordonnées et le matériel d'un même objet.
L'exemple suivant ajoute une ligne rouge à partir de (0,0,0) à
(10,0,0):

from pivy import coin
sg = Gui.ActiveDocument.ActiveView.getSceneGraph()
co = coin.SoCoordinate3()
pts = [[0,0,0],[10,0,0]]
co.point.setValues(0,len(pts),pts)
ma = coin.SoBaseColor()
ma.rgb = (1,0,0)
li = coin.SoLineSet()
li.numVertices.setValue(2)
no = coin.SoSeparator()
no.addChild(co)
no.addChild(ma)
no.addChild(li)
sg.addChild(no)

Pour le supprimer, il suffit de:

sg.removeChild(no)

Ajout de widgets personnalisés à l'interface

Vous pouvez créer un widget avec Qt designer
(http://fr.wikipedia.org/wiki/Qt), le transformer en Script Python
et l'incorporer dans l'interface de FreeCAD avec PySide.

Généralement codé comme ceci (il est simple, vous pouvez aussi
le coder directement en Python):

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

101 sur 246 09/06/2015 15:05



class myWidget_Ui(object):
def setupUi(self, myWidget):
   myWidget.setObjectName("my Nice New Widget")
   myWidget.resize(QtCore.QSize(QtCore.QRect(0,0,300,100).size()).expandedTo(myWidget.minimumSizeHint()))

self.label = QtGui.QLabel(myWidget) # creates a label
self.label.setGeometry(QtCore.QRect(50,50,200,24)) # sets its size
self.label.setObjectName("label") # sets its name, so it can be found by name

def retranslateUi(self, draftToolbar): # built-in QT function that manages translations of widgets
   myWidget.setWindowTitle(QtGui.QApplication.translate("myWidget", "My Widget", None, QtGui.QApplication

self.label.setText(QtGui.QApplication.translate("myWidget", "Welcome to my new widget!", None, QtGui.QApplication

Puis, vous devez créer une référence à la fenêtre FreeCAD Qt, lui
insérer le widget personnalisé, et transférer le code Ui du widget
que nous venons de faire dans le vôtre avec:

app = QtGui.qApp
FCmw = app.activeWindow() # the active qt window, = the freecad window since we are inside it
myNewFreeCADWidget = QtGui.QDockWidget() # create a new dckwidget
myNewFreeCADWidget.ui = myWidget_Ui() # load the Ui script
myNewFreeCADWidget.ui.setupUi(myNewFreeCADWidget) # setup the ui
FCmw.addDockWidget(QtCore.Qt.RightDockWidgetArea,myNewFreeCADWidget) # add the widget to the main window

Ici, le code Python est généré par le compilateur Ui Python
avec le module pyuic.py (il existe aussi pyuic4.py attention à
la compatibilité).

Vous pouvez trouver ce fichier à l'emplacement
"C:\Program Files\FreeCAD0.13\bin\PyQt4\uic",

pyuic.py est l'outil qui convertit les fichiers qt-designer .ui
(Interface Utilisateur) en fichier .py (code Python), la ligne de
commande dans la console DOS est "pyuic -x fichier.ui >
fichier.py"
vous pouvez créer un fichier .bat pour automatiser la
commande:
(avec Python27) copier cette ligne dans un fichier texte, et, le
sauver le sous le nom "compile.bat"

@"C:\Python27\python" "C:\Python27\Lib\site-packages\PyQt4\uic\pyuic.py" -x %1.ui > %1.py

(au besoin, adaptez le chemin à votre version de Python)

Si vous utilisez les outils fourni dans FreeCAD, le code sera,

@"C:\Program Files\FreeCAD0.13\bin\python" "C:\Program Files\FreeCAD0.13\bin\PyQt4\uic\pyuic.py" -x %1.ui > %1.py

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

102 sur 246 09/06/2015 15:05



et tapez à la ligne de commande " compile fichier " sans
extension, le nom "fichier" entré .ui, sera le nom sortant
avec extension .py
ATTENTION: il faut que les fichiers soient présents, et,
accessibles, vérifiez que les fichiers sont présents et
que les chemins sont justes !
pour cet exemple entièrement automatique et simplifié,
"compile.bat" est au même endroit que le fichier.ui à
convertir en fichier.py

Autres liens de documentation "Python and Qt"
(http://www.qtrac.eu/pyqtbook.html) , sur Développez.com
(http://ogirardot.developpez.com/introduction-pyqt/) et bien
d'autres.

Vous pouvez installer une version complète de Python qui
comprend PyQt, Qt Designer ...
(http://www.riverbankcomputing.co.uk/software/pyqt/download)

Ajout d'une liste déroulante

Le code suivant vous permet d'ajouter une liste déroulante dans
FreeCAD, en plus des onglets "Projet" et "tâches".

Il utilise également le module uic pour charger un fichier ui
directement dans cet onglet.

# create new Tab in ComboView
from PySide import QtGui,QtCore
#from PySide import uic

def getMainWindow():
"returns the main window"
# using QtGui.qApp.activeWindow() isn't very reliable because if another
# widget than the mainwindow is active (e.g. a dialog) the wrong widget is
# returned

   toplevel = QtGui.qApp.topLevelWidgets()
for i in toplevel:

if i.metaObject().className() == "Gui::MainWindow":
return i

raise Exception("No main window found")

def getComboView(mw):
   dw=mw.findChildren(QtGui.QDockWidget)

for i in dw:
if str(i.objectName()) == "Combo View":

return i.findChild(QtGui.QTabWidget)
elif str(i.objectName()) == "Python Console":

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

103 sur 246 09/06/2015 15:05



return i.findChild(QtGui.QTabWidget)
raise Exception ("No tab widget found")

mw = getMainWindow()
tab = getComboView(getMainWindow())
tab2=QtGui.QDialog()
tab.addTab(tab2,"A Special Tab")

#uic.loadUi("/myTaskPanelforTabs.ui",tab2)
tab2.show()
#tab.removeTab(2)

Enable or disable a window

from PySide import QtGui
mw=FreeCADGui.getMainWindow()
dws=mw.findChildren(QtGui.QDockWidget)

# objectName may be :
# "Report view"
# "Tree view"
# "Property view"
# "Selection view"
# "Combo View"
# "Python console"
# "draftToolbar"

for i in dws:
if i.objectName() == "Report view":

    dw=i
break

va=dw.toggleViewAction()
va.setChecked(True) # True or False
dw.setVisible(True) # True or False

Ouverture d'une page web

import WebGui
WebGui.openBrowser("http://www.example.com")

Obtenir le code HTML d'une page Web ouverte

from PyQt4 import QtGui,QtWebKit
a = QtGui.qApp
mw = a.activeWindow()
v = mw.findChild(QtWebKit.QWebFrame)
html = unicode(v.toHtml())
print html

Extraire et utiliser les coordonnées de 3 points
sélectionnés

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

104 sur 246 09/06/2015 15:05



# -*- coding: utf-8 -*-
# the line above to put the accentuated in the remarks
# If this line is missing, an error will be returned
# extract and use the coordinates of 3 objects selected
import Part, FreeCAD, math, PartGui, FreeCADGui
from FreeCAD import Base, Console
sel = FreeCADGui.Selection.getSelection() # " sel " contains the items selected
if len(sel)!=3 :
# If there are no 3 objects selected, an error is displayed in the report view
# The \r and \n at the end of line mean return and the newline CR + LF.

  Console.PrintError("Select 3 points exactly\r\n")
else :
  points=[]
for obj in sel:

    points.append(obj.Shape.BoundBox.Center)

for pt in points:
# display of the coordinates in the report view

    Console.PrintMessage(str(pt.x)+"\r\n")
    Console.PrintMessage(str(pt.y)+"\r\n")
    Console.PrintMessage(str(pt.z)+"\r\n")

  Console.PrintMessage(str(pt[1]) + "\r\n")

Lister les objets

# -*- coding: utf-8 -*-
import FreeCAD,Draft
# List all objects of the document
doc = FreeCAD.ActiveDocument
objs = FreeCAD.ActiveDocument.Objects
#App.Console.PrintMessage(str(objs) + "\n")
#App.Console.PrintMessage(str(len(FreeCAD.ActiveDocument.Objects)) + " Objects"  + "\n")

for obj in objs:
    a = obj.Name # list the Name  of the object  (not modifiable)
    b = obj.Label # list the Label of the object  (modifiable)

try:
        c = obj.LabelText # list the LabeText of the text (modifiable)
        App.Console.PrintMessage(str(a) +" "+ str(b) +" "+ str(c) + "\n") # Displays the Name the Label and the text

except:
        App.Console.PrintMessage(str(a) +" "+ str(b) + "\n") # Displays the Name and the Label of the object

#doc.removeObject("Box") # Clears the designated object

Fonction résidente avec action au clic de souris

# -*- coding: utf-8 -*-
# causes an action to the mouse click on an object
# This function remains resident (in memory) with the function "addObserver(s)"
# "removeObserver(s) # Uninstalls the resident function
class SelObserver:

def addSelection(self,doc,obj,sub,pnt):               # Selection object
#def setPreselection(self,doc,obj,sub):                # Preselection object

        App.Console.PrintMessage("addSelection"+ "\n")
        App.Console.PrintMessage(str(doc)+ "\n") # Name of the document
        App.Console.PrintMessage(str(obj)+ "\n") # Name of the object
        App.Console.PrintMessage(str(sub)+ "\n") # The part of the object name
        App.Console.PrintMessage(str(pnt)+ "\n") # Coordinates of the object
        App.Console.PrintMessage("______"+ "\n")

def removeSelection(self,doc,obj,sub):                # Delete the selected object

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

105 sur 246 09/06/2015 15:05



        App.Console.PrintMessage("removeSelection"+ "\n")
def setSelection(self,doc):                           # Selection in ComboView

        App.Console.PrintMessage("setSelection"+ "\n")
def clearSelection(self,doc):                         # If click on the screen, clear the selection

        App.Console.PrintMessage("clearSelection"+ "\n") # If click on another object, clear the previous object
s =SelObserver()
FreeCADGui.Selection.addObserver(s) # install the function mode resident
#FreeCADGui.Selection.removeObserver(s)                   # Uninstall the resident function

Lister les composantes d'un objet

# -*- coding: utf-8 -*-
# This function list the components of an object
# and extract this object its XYZ coordinates,
# its edges and their lengths center of mass and coordinates
# its faces and their center of mass
# its faces and their surfaces and coordinates
# 8/05/2014

import Draft,Part
def detail():
    sel = FreeCADGui.Selection.getSelection() # Select an object

if len(sel) != 0:                           # If there is a selection then
        Vertx=[]
        Edges=[]
        Faces=[]
        compt_V=0
        compt_E=0
        compt_F=0
        pas    =0
        perimetre = 0.0
        EdgesLong = []

# Displays the "Name" and the "Label" of the selection
        App.Console.PrintMessage("Selection > " + str(sel[0].Name) + "  " + str(sel[0].Label) +"\n"+"\n")

for j in enumerate(sel[0].Shape.Edges):                                     # Search the "Edges" and their lengths
            compt_E+=1
            Edges.append("Edge%d" % (j[0]+1))
            EdgesLong.append(str(sel[0].Shape.Edges[compt_E-1].Length))
            perimetre += (sel[0].Shape.Edges[compt_E-1].Length) # calculates the perimeter

# Displays the "Edge" and its length
            App.Console.PrintMessage("Edge"+str(compt_E)+" Length > "+str(sel[0].Shape.Edges[compt_E-1].Length

# Displays the "Edge" and its center mass
            App.Console.PrintMessage("Edge"+str(compt_E)+" Center > "+str(sel[0].Shape.Edges[compt_E-1].CenterOfMass

            num = sel[0].Shape.Edges[compt_E-1].Vertexes[0]
            Vertx.append("X1: "+str(num.Point.x))
            Vertx.append("Y1: "+str(num.Point.y))
            Vertx.append("Z1: "+str(num.Point.z))

# Displays the coordinates 1
            App.Console.PrintMessage("X1: "+str(num.Point[0])+" Y1: "+str(num.Point[1])+" Z1: "+str(num.Point

try:
                num = sel[0].Shape.Edges[compt_E-1].Vertexes[1]
                Vertx.append("X2: "+str(num.Point.x))
                Vertx.append("Y2: "+str(num.Point.y))
                Vertx.append("Z2: "+str(num.Point.z))

except:
                Vertx.append("-")
                Vertx.append("-")
                Vertx.append("-")

# Displays the coordinates 2
            App.Console.PrintMessage("X2: "+str(num.Point[0])+" Y2: "+str(num.Point[1])+" Z2: "+str(num.Point

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

106 sur 246 09/06/2015 15:05



            App.Console.PrintMessage("\n")
        App.Console.PrintMessage("Perimeter of the form  : "+str(perimetre)+"\n")

        App.Console.PrintMessage("\n")
        FacesSurf = []

for j in enumerate(sel[0].Shape.Faces):                                      # Search the "Faces" and their surfac
            compt_F+=1
            Faces.append("Face%d" % (j[0]+1))
            FacesSurf.append(str(sel[0].Shape.Faces[compt_F-1].Area))

# Displays 'Face' and its surface
            App.Console.PrintMessage("Face"+str(compt_F)+" >  Surface "+str(sel[0].Shape.Faces[compt_F-1]

# Displays 'Face' and its CenterOfMass
            App.Console.PrintMessage("Face"+str(compt_F)+" >  Center  "+str(sel[0].Shape.Faces[compt_F-1]

# Displays 'Face' and its Coordinates
            FacesCoor = []
            fco = 0

for f0 in sel[0].Shape.Faces[compt_F-1].Vertexes:                        # Search the Vertexes of the face
                fco += 1
                FacesCoor.append("X"+str(fco)+": "+str(f0.Point.x))
                FacesCoor.append("Y"+str(fco)+": "+str(f0.Point.y))
                FacesCoor.append("Z"+str(fco)+": "+str(f0.Point.z))

# Displays 'Face' and its Coordinates
            App.Console.PrintMessage("Face"+str(compt_F)+" >  Coordinate"+str(FacesCoor)+"\n")

# Displays 'Face' and its Volume
            App.Console.PrintMessage("Face"+str(compt_F)+" >  Volume  "+str(sel[0].Shape.Faces[compt_F-1]
            App.Console.PrintMessage("\n")

# Displays the total surface of the form
        App.Console.PrintMessage("Surface of the form    : "+str(sel[0].Shape.Area)+"\n")

# Displays the total Volume of the form
        App.Console.PrintMessage("Volume  of the form    : "+str(sel[0].Shape.Volume)+"\n")

detail()

Lister les PropertiesList

import FreeCADGui
from FreeCAD import Console
o = App.ActiveDocument.ActiveObject
op = o.PropertiesList
for p in op:
    Console.PrintMessage("Property: "+ str(p)+ " Value: " + str(o.getPropertyByName(p))+"\r\n")

Search and data extraction

Examples of research and decoding information on an object.

Each section is independently and is separated by
"############" can be copied directly into the Python
console, or in a macro or use this macro. The description of the
macro in the commentary.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

107 sur 246 09/06/2015 15:05



Displaying it in the "View Report" window (View > Views > View
report)

# -*- coding: utf-8 -*-
from __future__ import unicode_literals

# Exemples de recherche et de decodage d'informations sur un objet
# Chaque section peut etre copiee directement dans la console Python ou dans une macro ou utilisez la macro tel quel
# certaines commandes se repetent seul l'approche est differente
#
# Examples of research and decoding information on an object
# Each section can be copied directly into the Python console, or in a macro or uses this macro
# Certain commands as repeat alone approach is different
#
# rev:29/09/2014

from FreeCAD import Base
import DraftVecUtils, Draft, Part

mydoc = FreeCAD.activeDocument().Name # Name of active Document
App.Console.PrintMessage("Active docu    : "+str(mydoc)+"\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
object_Label = sel[0].Label # Label of the object (modifiable)
App.Console.PrintMessage("object_Label   : "+str(object_Label)+"\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
App.Console.PrintMessage("sel            : "+str(sel[0])+"\n\n") # sel[0] first object selected
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
object_Name  = sel[0].Name # Name of the object (not modifiable)
App.Console.PrintMessage("object_Name    : "+str(object_Name)+"\n\n")
##################################################################################

try:
    SubElement = FreeCADGui.Selection.getSelectionEx() # sub element name with getSelectionEx()
    element_ = SubElement[0].SubElementNames[0] # name of 1 element selected
    App.Console.PrintMessage("elementSelec   : "+str(element_)+"\n\n")
except:
    App.Console.PrintMessage("Oups"+"\n\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
App.Console.PrintMessage("sel            : "+str(sel[0])+"\n\n") # sel[0] first object selected
##################################################################################

SubElement = FreeCADGui.Selection.getSelectionEx() # sub element name with getSelectionEx()
App.Console.PrintMessage("SubElement     : "+str(SubElement[0])+"\n\n") # name of sub element
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
i = 0
for j in enumerate(sel[0].Shape.Edges):                                   # list all Edges
    i += 1
    App.Console.PrintMessage("Edges n : "+str(i)+"\n")
    a = sel[0].Shape.Edges[j[0]].Vertexes[0]
    App.Console.PrintMessage("X1             : "+str(a.Point.x)+"\n") # coordinate XYZ first point
    App.Console.PrintMessage("Y1             : "+str(a.Point.y)+"\n")
    App.Console.PrintMessage("Z1             : "+str(a.Point.z)+"\n")

try:
        a = sel[0].Shape.Edges[j[0]].Vertexes[1]
        App.Console.PrintMessage("X2             : "+str(a.Point.x)+"\n") # coordinate XYZ second point
        App.Console.PrintMessage("Y2             : "+str(a.Point.y)+"\n")
        App.Console.PrintMessage("Z2             : "+str(a.Point.z)+"\n")

except:
        App.Console.PrintMessage("Oups"+"\n")

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

108 sur 246 09/06/2015 15:05



App.Console.PrintMessage("\n")
##################################################################################

try:
    SubElement = FreeCADGui.Selection.getSelectionEx() # sub element name with getSelectionEx()
    subElementName = Gui.Selection.getSelectionEx()[0].SubElementNames[0] # sub element name with getSelectionEx()
    App.Console.PrintMessage("subElementName : "+str(subElementName)+"\n")

    subObjectX = Gui.Selection.getSelectionEx()[0].SubObjects[0].Point.x # sub element coordinate X
    App.Console.PrintMessage("subObject_X    : "+str(subObjectX)+"\n")
    subObjectY = Gui.Selection.getSelectionEx()[0].SubObjects[0].Point.y # sub element coordinate Y
    App.Console.PrintMessage("subObject_Y    : "+str(subObjectY)+"\n")
    subObjectZ = Gui.Selection.getSelectionEx()[0].SubObjects[0].Point.z # sub element coordinate Z
    App.Console.PrintMessage("subObject_Z    : "+str(subObjectZ)+"\n")

    subObjectLength = Gui.Selection.getSelectionEx()[0].SubObjects[0].Length # sub element Length
    App.Console.PrintMessage("subObjectLength: "+str(subObjectLength)+"\n")

    surfaceFace = Gui.Selection.getSelectionEx()[0].SubObjects[0].Area # Area of the 1 face
    App.Console.PrintMessage("surfaceFace    : "+str(surfaceFace)+"\n\n")
except:
    App.Console.PrintMessage("Oups"+"\n\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
surface = sel[0].Shape.Area # Area object complete
App.Console.PrintMessage("surfaceObjet   : "+str(surface)+"\n\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
CenterOfMass = sel[0].Shape.CenterOfMass # Center of Mass of the object
App.Console.PrintMessage("CenterOfMass   : "+str(CenterOfMass)+"\n")
App.Console.PrintMessage("CenterOfMassX  : "+str(CenterOfMass[0])+"\n") # coordinates [0]=X [1]=Y [2]=Z
App.Console.PrintMessage("CenterOfMassY  : "+str(CenterOfMass[1])+"\n")
App.Console.PrintMessage("CenterOfMassZ  : "+str(CenterOfMass[2])+"\n\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
for j in enumerate(sel[0].Shape.Faces):                                   # List alles faces of the object
    App.Console.PrintMessage("Face           : "+str("Face%d" % (j[0]+1))+"\n")
App.Console.PrintMessage("\n\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
volume_ = sel[0].Shape.Volume # Volume of the object
App.Console.PrintMessage("volume_        : "+str(volume_)+"\n\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
boundBox_= sel[0].Shape.BoundBox # BoundBox of the object
App.Console.PrintMessage("boundBox_      : "+str(boundBox_)+"\n")

boundBoxLX = boundBox_.XLength # Length x boundBox rectangle
boundBoxLY = boundBox_.YLength # Length y boundBox rectangle
boundBoxLZ = boundBox_.ZLength # Length z boundBox rectangle
App.Console.PrintMessage("boundBoxLX     : "+str(boundBoxLX)+"\n")
App.Console.PrintMessage("boundBoxLY     : "+str(boundBoxLY)+"\n")
App.Console.PrintMessage("boundBoxLZ     : "+str(boundBoxLZ)+"\n\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
pl = sel[0].Shape.Placement # Placement Vector XYZ and Yaw-Pitch-Roll
App.Console.PrintMessage("Placement      : "+str(pl)+"\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
pl = sel[0].Shape.Placement.Base # Placement Vector XYZ
App.Console.PrintMessage("PlacementBase  : "+str(pl)+"\n\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
Yaw = sel[0].Shape.Placement.Rotation.toEuler()[0] # decode angle Euler Yaw

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

109 sur 246 09/06/2015 15:05



App.Console.PrintMessage("Yaw            : "+str(Yaw)+"\n")
Pitch = sel[0].Shape.Placement.Rotation.toEuler()[1] # decode angle Euler Pitch
App.Console.PrintMessage("Pitch          : "+str(Pitch)+"\n")
Roll = sel[0].Shape.Placement.Rotation.toEuler()[2] # decode angle Euler Yaw
App.Console.PrintMessage("Yaw            : "+str(Roll)+"\n\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
oripl_X = sel[0].Placement.Base[0] # decode Placement X
oripl_Y = sel[0].Placement.Base[1] # decode Placement Y
oripl_Z = sel[0].Placement.Base[2] # decode Placement Z

App.Console.PrintMessage("oripl_X        : "+str(oripl_X)+"\n")
App.Console.PrintMessage("oripl_Y        : "+str(oripl_Y)+"\n")
App.Console.PrintMessage("oripl_Z        : "+str(oripl_Z)+"\n\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
rotation = sel[0].Placement.Rotation # decode Placement Rotation
App.Console.PrintMessage("rotation              : "+str(rotation)+"\n\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
pl = sel[0].Shape.Placement.Rotation # decode Placement Rotation other method
App.Console.PrintMessage("Placement Rot         : "+str(pl)+"\n\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
pl = sel[0].Shape.Placement.Rotation.Angle # decode Placement Rotation Angle
App.Console.PrintMessage("Placement Rot Angle   : "+str(pl)+"\n\n")
##################################################################################

sel = FreeCADGui.Selection.getSelection() # select object with getSelection()
Rot_0 = sel[0].Placement.Rotation.Q[0] # decode Placement Rotation 0
App.Console.PrintMessage("Rot_0         : "+str(Rot_0)+ " rad ,  "+str(180 * Rot_0 / 3.1416)+" deg "+"\n"

Rot_1 = sel[0].Placement.Rotation.Q[1] # decode Placement Rotation 1
App.Console.PrintMessage("Rot_1         : "+str(Rot_1)+ " rad ,  "+str(180 * Rot_1 / 3.1416)+" deg "+"\n"

Rot_2 = sel[0].Placement.Rotation.Q[2] # decode Placement Rotation 2
App.Console.PrintMessage("Rot_2         : "+str(Rot_2)+ " rad ,  "+str(180 * Rot_2 / 3.1416)+" deg "+"\n"

Rot_3 = sel[0].Placement.Rotation.Q[3] # decode Placement Rotation 3
App.Console.PrintMessage("Rot_3         : "+str(Rot_3)+"\n\n")
##################################################################################

Manual search of an element with label

# Extract the coordinate X,Y,Z and Angle giving the label 
App.Console.PrintMessage("Base.x       : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylindre")[0].Placement
App.Console.PrintMessage("Base.y       : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylindre")[0].Placement
App.Console.PrintMessage("Base.z       : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylindre")[0].Placement
App.Console.PrintMessage("Base.Angle   : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylindre")[0].Placement
##################################################################################

PS: Usually the angles are given in Radian to convert :

angle in Degrees to Radians :
Angle in radian = pi * (angle in degree) / 180
Angle in radian = math.radians(angle in degree)

1. 

angle in Radians to Degrees :2. 

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

110 sur 246 09/06/2015 15:05



Angle in degree = 180 * (angle in radian) / pi
Angle in degree = math.degrees(angle in radian)

Cartesian coordinates

This code displays the Cartesian coordinates of the selected item.

Change the value of "numberOfPoints" if you want a different
number of points (precision)

numberOfPoints = 100 # Decomposition number (or precision you can 
selectedEdge = FreeCADGui.Selection.getSelectionEx()[0].SubObjects[0].copy() # select one element
points  = selectedEdge.discretize(numberOfPoints) # discretize the element
i=0
for p in points:                                                             # list and display the coordinates
    i+=1

print i, " X", p.x, " Y", p.y, " Z", p.z

Other method display on "Int" and "Float"

import Part
from FreeCAD import Base

c=Part.makeCylinder(2,10) # create the circle
Part.show(c) # display the shape

# slice accepts two arguments:
#+ the normal of the cross section plane
#+ the distance from the origin to the cross section plane. Here you have to find a value so that the plane intersects you
s=c.slice(Base.Vector(0,1,0),0) # 

# here the result is a single wire
# depending on the source object this can be several wires
s=s[0]

# if you only need the vertexes of the shape you can use
v=[]
for i in s.Vertexes:
    v.append(i.Point)

# but you can also sub-sample the section to have a certain number of points (int) ...
p1=s.discretize(20)
ii=0
for i in p1:
    ii+=1

print i                                              # Vector()
print ii, ": X:", i.x, " Y:", i.y, " Z:", i.z # Vector decode

Draft.makeWire(p1,closed=False,face=False,support=None) # to see the difference accuracy (20)

## uncomment to use
#import Draft
#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True)  # first transform the DWire in Wire         "downgrade"
#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True)  # second split the Wire in single objects   "downgrade"
#
##Draft.upgrade(FreeCADGui.Selection.getSelection(),delete=True) # to attach lines contiguous SELECTED use "upgrade"

# ... or define a sampling distance (float)
p2=s.discretize(0.5)
ii=0

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

111 sur 246 09/06/2015 15:05



for i in p2:
    ii+=1

print i                                              # Vector()
print ii, ": X:", i.x, " Y:", i.y, " Z:", i.z # Vector decode 

Draft.makeWire(p2,closed=False,face=False,support=None) # to see the difference accuracy (0.5)

## uncomment to use
#import Draft
#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True)  # first transform the DWire in Wire         "downgrade"
#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True)  # second split the Wire in single objects   "downgrade"
#
##Draft.upgrade(FreeCADGui.Selection.getSelection(),delete=True) # to attach lines contiguous SELECTED use "upgrade"

Select all objects in the document

import FreeCAD
for obj in FreeCAD.ActiveDocument.Objects:

print obj.Name # display the object Name
    objName = obj.Name
    obj = App.ActiveDocument.getObject(objName)
    Gui.Selection.addSelection(obj) # select the object

Selecting a face of an object

# select one face of the object
import FreeCAD, Draft
App=FreeCAD
nameObject = "Box" # objet
faceSelect = "Face3" # face to selection
loch=App.ActiveDocument.getObject(nameObject) # objet
Gui.Selection.clearSelection() # clear all selection
Gui.Selection.addSelection(loch,faceSelect) # select the face specified
s = Gui.Selection.getSelectionEx()
#Draft.makeFacebinder(s)                       #

Create one object to the position of the Camera

# create one object of the position to camera with "getCameraOrientation()"
# the object is still facing the screen
import Draft

plan = FreeCADGui.ActiveDocument.ActiveView.getCameraOrientation()
plan = str(plan)
###### extract data
a    = ""
for i in plan:

if i in ("0123456789e.- "):
        a+=i
a = a.strip(" ")
a = a.split(" ")
####### extract data

#print a
#print a[0]
#print a[1]
#print a[2]
#print a[3]

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

112 sur 246 09/06/2015 15:05



< précédent: Embedding FreeCAD
suivant: Line drawing function >

xP = float(a[0])
yP = float(a[1])
zP = float(a[2])
qP = float(a[3])

pl = FreeCAD.Placement()
pl.Rotation.Q = (xP,yP,zP,qP) # rotation of object
pl.Base = FreeCAD.Vector(0.0,0.0,0.0) # here coordinates XYZ of Object
rec = Draft.makeRectangle(length=10.0,height=10.0,placement=pl,face=False,support=None) # create rectangle
#rec = Draft.makeCircle(radius=5,placement=pl,face=False,support=None)                   # create circle
print rec.Name

here same code simplified

import Draft
pl = FreeCAD.Placement()
pl.Rotation = FreeCADGui.ActiveDocument.ActiveView.getCameraOrientation()
pl.Base = FreeCAD.Vector(0.0,0.0,0.0)
rec = Draft.makeRectangle(length=10.0,height=10.0,placement=pl,face=False,support=None)

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

113 sur 246 09/06/2015 15:05



Cette page montre comment construire facilement des
fonctionnalités avancées en Python. Dans cet exercice, nous
allons construire un nouvel outil qui trace une ligne. Cet outil
peut alors être lié à une commande FreeCAD, et cette commande
peut être appelée par n'importe quel élément de l'interface,
comme un élément de menu ou un bouton de la barre d'outils.

Script principal

Première chose, nous allons écrire un script contenant toutes nos
fonctionnalités, puis, nous allons l'enregistrer dans un fichier, et
l'importer dans FreeCAD, alors toutes les classes et fonctions que
nous écrirons seront accessibles à partir de FreeCAD.
Alors, lancez votre éditeur de texte favori, et entrez les lignes
suivantes:

import FreeCADGui, Part
from pivy.coin import *

class line:
"this class will create a line after the user clicked 2 points on the screen"
def __init__(self):

self.view = FreeCADGui.ActiveDocument.ActiveView
self.stack = []
self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.getpoint)

def getpoint(self,event_cb):
        event = event_cb.getEvent()

if event.getState() == SoMouseButtonEvent.DOWN:
            pos = event.getPosition()
            point = self.view.getPoint(pos[0],pos[1])

self.stack.append(point)
if len(self.stack) == 2:

                l = Part.Line(self.stack[0],self.stack[1])
                shape = l.toShape()
                Part.show(shape)

self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.callback)

Explications détaillées

import Part, FreeCADGui
from pivy.coin import *

En Python, lorsque vous voulez utiliser les fonctions d'un autre
module, vous avez besoin de l'importer.
Dans notre cas, nous aurons besoin de fonctions du Part
Module, pour la création de la ligne, et du Gui module

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

114 sur 246 09/06/2015 15:05



(FreeCADGui), pour accéder à la vue 3D.
Nous avons également besoin de tout le contenu de la
bibliothèque de pièces, afin que nous puissions utiliser
directement tous les objets comme coin, SoMouseButtonEvent
(évènement souris) etc ..

class line:

Ici, nous définissons notre classe principale.
Mais pourquoi utilisons-nous une classe et non une fonction ? La
raison en est que nous avons besoin que notre outil reste "vivant"
en attendant que l'utilisateur clique sur l'écran.

Une fonction se termine lorsque sa tâche est terminée,
mais un objet, (une classe définit un objet) reste en vie
(actif) jusqu'à ce qu'il soit détruit.

"this class will create a line after the user clicked 2 points on the screen"

En Python, toutes les classes ou fonctions peuvent avoir une
description.
Ceci est particulièrement utile dans FreeCAD, parce que quand
vous appelez cette classe dans l'interpréteur, la description sera
affichée comme une info-bulle.

def __init__(self):

Les classes Python doivent toujours contenir une fonction __
init__, qui est exécutée lorsque la classe est appelée pour créer
un objet.
Donc, nous allons mettre ici tout ce que nous voulons produire
lorsque notre outil de création de ligne commence (appelé).

self.view = FreeCADGui.ActiveDocument.ActiveView

Dans une classe, il est généralement souhaitable d'ajouter self.
devant un nom de variable, de sorte que la variable sera
facilement accessible à toutes les fonctions à l'intérieur et à
l'extérieur de cette classe.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

115 sur 246 09/06/2015 15:05



Ici, nous allons utiliser self.view pour accéder et manipuler la
vue active 3D.

self.stack = []

Ici, nous créons une liste vide qui contiendra les points en 3D
envoyés par la fonction GetPoint.

self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.getpoint)

Ceci est un point important:
Du fait qu'il s'agit d'une scène coin3D (http://www.coin3d.org/),
FreeCAD utilise les mécanismes de rappel de coin, qui permet à
une fonction d'être appelée à chaque fois qu'un évènement se
passe sur la scène.
Dans notre cas, nous créons un appel pour SoMouseButtonEvent
(http://doc.coin3d.org/Coin/group__events.html), et nous le lions à
la fonction GetPoint.
Maintenant, chaque fois qu'un bouton de la souris est enfoncé ou
relâché, la fonction GetPoint sera exécutée.

Notez qu'il existe aussi une alternative à
addEventCallbackPivy() appelée addEventCallback() qui
dispense l'utilisation de pivy. Mais, pivy est un moyen très simple
et efficace d'accéder à n'importe quelle partie de la scène coin, il
est conseillé de l'utiliser autant que possible !

def getpoint(self,event_cb):

Maintenant, nous définissons la fonction GetPoint, qui sera
exécutée quand un bouton de la souris sera pressé dans une vue
3D.
Cette fonction recevra un argument, que nous appellerons
event_cb. A partir de l'appel de cet événement, nous pouvons
accéder à l'objet événement, qui contient plusieurs éléments
d'information (plus d'informations sur cette page
(http://www.freecadweb.org/wiki/index.php?title=Code_snippets
/fr#Observation_des_.C3.A9v.C3.A8nements_de_la_souris_dans_la_vue_3D_via_Python

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

116 sur 246 09/06/2015 15:05



if event.getState() == SoMouseButtonEvent.DOWN:

La fonction GetPoint sera appelée dès qu'un bouton de la souris
est enfoncé ou relâché. Mais, nous ne voulons prendre un point
3D uniquement lorsqu'il est pressé (sinon, nous aurons deux
points 3D très proches l'un de l'autre).
Donc, nous devons vérifier cela avec:

pos = event.getPosition()

Ici, nous avons les coordonnées du curseur de la souris sur
l'écran

point = self.view.getPoint(pos[0],pos[1])

Cette fonction nous donne le vecteur (x, y, z) du point qui se
trouve sur le plan focal, juste sous curseur de notre souris.
Si vous êtes dans la vue caméra, imaginez un rayon provenant de
la caméra, en passant par le curseur de la souris, et en appuyant
sur le plan focal.
C'est notre point dans la vue 3D. Si l'on est en mode orthogonal,
le rayon est parallèle à la direction de la vue.

self.stack.append(point)

Nous ajoutons notre nouveau point sur la pile

if len(self.stack) == 2:

Avons nous tous les points ? si oui, alors nous allons tracer la
ligne !

l = Part.Line(self.stack[0],self.stack[1])

Ici, nous utilisons la fonction line() de Part Module qui crée une
ligne de deux vecteurs FreeCAD.
Tout ce que nous créons et modifions l'intérieur de Part Module,
reste dans le Part Module.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

117 sur 246 09/06/2015 15:05



Donc, jusqu'à présent, nous avons créé une Line Part. Il n'est lié
à aucun objet de notre document actif, c'est pour cela que rien ne
s'affiche sur l'écran.

shape = l.toShape()

Le document FreeCAD ne peut accepter que des formes à partir
de Part Module. Les formes sont le type le plus courant de Part
Module.
Donc, nous devons transformer notre ligne en une forme avant de
l'ajouter au document.

Part.show(shape)

Le Part module a une fonction très pratique show() qui crée un
nouvel objet dans le document et se lie a une forme.
Nous aurions aussi pu créer un nouvel objet dans le premier
document, puis le lier à la forme manuellement.

self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.callback)

Maintenant, nous en avons fini avec notre ligne, nous allons
supprimer le mécanisme de rappel, qui consomme de précieux
cycles de CPU.

Tester et utiliser un script

Maintenant, nous allons enregistrer notre script dans un endroit
où l'interpréteur Python de FreeCAD le trouvera.
Lors de l'importation de modules, l’interpréteur cherchera dans
les endroits suivants:

les chemins d'installation de python,
le répertoire bin FreeCAD,
et tous les répertoires des modules FreeCAD.

Donc, la meilleure solution est de créer un nouveau répertoire
dans le répertoire Mod de FreeCAD , et sauver votre script dans
ce répertoire.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

118 sur 246 09/06/2015 15:05



Par exemple, nous allons créer un répertoire "myscripts", et
sauver notre script comme "exercise.py".

Maintenant, tout est prêt, nous allons commencer par créez un
nouveau document FreeCAD, et, dans l'interpréteur Python,
tapons:

import exercise

Si aucun message d'erreur n'apparaît, cela signifie que notre
script exercise a été chargé.
Nous pouvons maintenant lister son contenu avec:

dir(exercise)

La commande dir() est une commande intégrée dans python, et
lister le contenu d'un module. Nous pouvons voir que notre
classe line() est là qui nous attend.
Maintenant, nous allons le tester:

exercise.line()

Puis, cliquez deux fois dans la vue 3D, et bingo, voici notre ligne !
Pour la faire de nouveau, tapez juste exercise.line(), encore et
encore, et encore ... C'est bien, non?

Enregistrement du script dans
l'interface de FreeCAD

Maintenant, pour que notre outil de création de ligne soit
vraiment cool, il devrait y avoir un bouton sur l'interface, nous
n'aurons donc pas besoin de taper tout ce code à chaque fois.
Le plus simple est de transformer notre nouveau répertoire
myscripts dans un plan de travail FreeCAD. C'est facile, tout ce
qui est nécessaire de faire, est de mettre un fichier appelé
InitGui.py à l'intérieur de votre répertoire myscripts.
Le fichier InitGui.py contiendra les instructions pour créer un
nouveau plan de travail, et s'ajoutera notre nouvel outil.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

119 sur 246 09/06/2015 15:05



Sans oublier, que nous aurons aussi besoin de transformer un peu
notre code exercise, de sorte que l'outil line() soit reconnu
comme une commande FreeCAD officielle.
Commençons par faire un fichier InitGui.py, et écrivons le code
suivant à l'intérieur:

class MyWorkbench (Workbench): 
   MenuText = "MyScripts"

def Initialize(self):
import exercise

       commandslist = ["line"]
self.appendToolbar("My Scripts",commandslist)

Gui.addWorkbench(MyWorkbench())

Actuellement, vous devriez comprendre le script ci-dessus par
vous-même, du moins, je pense:
Nous créons une nouvelle classe que nous appelons
MyWorkbench, nous lui donnons un nom (MenuText), et nous
définissons une fonction Initialize() qui sera exécutée quand le
plan de travail sera chargé dans FreeCAD.
Dans cette fonction, nous chargeons le contenus de notre fichier
'exercise, et ajoutons les commandes FreeCAD trouvées dans
une liste de commandes. Ensuite, nous faisons une barre d'outils
appelée "Mes scripts" et nous attribuons notre liste des
commandes.

Actuellement, bien sûr, nous n'avons qu'un seul outil, puisque
notre liste de commandes ne contient qu'un seul élément. Puis,
une fois que notre plan de travail est prêt, nous l'ajoutons à
l'interface principale.

Mais, cela ne fonctionne toujours pas, car une commande
FreeCAD doit être formatée d'une certaine façon pour travailler.
Nous aurons donc besoin de transformer un peu notre outil
ligne().
Notre nouveau script exercise.py va maintenant ressembler à
ceci:

import FreeCADGui, Part
from pivy.coin import *
class line:
"this class will create a line after the user clicked 2 points on the screen"
def Activated(self):
self.view = FreeCADGui.ActiveDocument.ActiveView
self.stack = []

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

120 sur 246 09/06/2015 15:05



self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.getpoint)
def getpoint(self,event_cb):
   event = event_cb.getEvent()

if event.getState() == SoMouseButtonEvent.DOWN:
     pos = event.getPosition()
     point = self.view.getPoint(pos[0],pos[1])

self.stack.append(point)
if len(self.stack) == 2:

       l = Part.Line(self.stack[0],self.stack[1])
       shape = l.toShape()
       Part.show(shape)

self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.callback)
def GetResources(self): 

return {'Pixmap' : 'path_to_an_icon/line_icon.png', 'MenuText': 'Line', 'ToolTip': 'Creates a line by clicking 2 poin
FreeCADGui.addCommand('line', line())

Qu'avons fait ici ? nous avons transformé notre fonction __ init__
() en une fonction Activated(), parce que lorsque les commandes
sont exécutées dans FreeCAD, il exécute automatiquement la
fonction Activated().
Nous avons également ajouté une fonction GetResources(), qui
informe FreeCAD où se trouve l'icône de l'outil, le nom et
l'info-bulle de l'outil.
Toute image, jpg, png ou svg peut être utilisé comme icône, il
peut être de n'importe quelle taille, mais il est préférable
d'utiliser une taille standard qui est proche de l'aspect final,
comme 16x16, 24x24 ou 32x32.
Puis, nous ajoutons notre class line() comme une commande
officielle de FreeCAD avec la méthode addCommand().

Ça y est, nous avons juste besoin de redémarrer FreeCAD et nous
aurons un plan de travail agréable avec notre nouvel outil ligne
tout neuf !

Vous voulez en savoir plus ?

Si vous avez aimé cet "exercise", pourquoi ne pas essayer
d'améliorer ce petit outil ? Il y a beaucoup de choses à faire,
comme par exemple:

Ajouter des Commentaires utilisateur: jusqu'à présent nous
avons fait un outil très dépouillé, l'utilisateur peut être un
peu perdu lors de son utilisation. Vous pouvez ajouter vos
commentaires, en guidant l'utilisateur. Par exemple, vous
pourriez émettre des messages à la console FreeCAD. "Jetez"

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

121 sur 246 09/06/2015 15:05



< précédent: Code snippets suivant: Dialog creation >

un oeil dans le module FreeCAD.Console
Ajouter la possibilité d'entrer les coordonnées 3D
manuellement . Regardez les fonctions Python input(), par
exemple
Ajouter la possibilité d'ajouter plus de 2 points
Ajouter des événements pour d'autres fonctions: Maintenant
que nous venons d'apprendre les événements de bouton de
souris, si nous souhaitons également faire quelque chose
quand la souris est déplacée, comme par exemple l'affichage
des coordonnées actuelles?
Donnez un nom à l'objet créé et bien d'autres choses

N'hésitez pas de commenter vos idées ou questions sur le forum
(http://forum.freecadweb.org/) !

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

122 sur 246 09/06/2015 15:05



Dans cette page nous allons vous montrer comment construire
une simple boîte de dialogue avec Qt Designer (http://qt-
project.org/doc/qt-4.8/designer-manual.html), Qt Designer, est
l'outil officiel de Qt pour la conception d'interfaces (Gui), puis de
le convertir en code Python, et l'utiliser à l'intérieur de FreeCAD.
Je vais supposer, que pour l'exemple, vous savez déjà comment
modifier et exécuter un script Python, et que vous pouvez
travailler avec des choses simples dans une fenêtre de terminal
tel que se déplacer, etc . . Bien sûr, vous devez également avoir
installé PySide.

Construire une boîte de dialogue

Dans les applications de CAO, bien concevoir une UI (interface
utilisateur) est très important.
Tout ce que l'utilisateur fera, se fera à travers un outil de
l'interface: la lecture des boîtes de dialogue, appuyer sur les
boutons, le choix entre les icônes, etc . .
Il est donc très important de réfléchir attentivement à la
conception de votre boîte de dialogue, comment vous voulez que
l'utilisateur se comporter avec la boîte, et comment sera le flux
de travail de votre action.

Il y a une deux choses à savoir lors de la conception de
l'interface:

Boîtes de dialogue modales ou non-modale
(http://fr.wikipedia.org/wiki/Fenêtre_modale) :

Une boîte de dialogue modale apparaît en face de votre
écran et, arrête l'action de la fenêtre principale, forçant
l'utilisateur à répondre à la boîte de dialogue.
Une boîte de dialogue non modale ne vous empêche pas
de travailler sur la Fenêtre principale, vous pouvez
travailler sur les deux fenêtres.

Dans certains cas, le premier est préférable, dans d'autres cas
non.

Identifier ce qui est nécessaire et ce qui est optionnel:
Assurez-vous que l'utilisateur sait ce qu'il doit faire.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

123 sur 246 09/06/2015 15:05



Prévoyez des étiquettes avec des descriptions
appropriées, des info-bulles d'utilisation, etc . .

Séparez les commandes à partir de paramètres:
Cela se fait habituellement avec des boutons et des
champs de saisie de texte.
L'utilisateur sait que cliquer sur un bouton va produire
une action, tout en changeant une valeur dans un champ
de texte, va changer un paramètre quelque part.
Cependant, aujourd'hui, les utilisateurs savent
généralement bien ce qu'est un bouton, ce qu'est un
champ de saisie, etc . . .

La boîte à outils de l'interface Qt que nous utilisons, est une boîte
à outils state-of-the-art (interface graphique avancée), et nous
n'aurons pas beaucoup d'inquiétudes pour rendre les choses
claires, car elles sont déjà très claires par elles-mêmes.

Donc, maintenant que nous avons bien défini ce que nous ferons,
il est temps d'ouvrir Qt Designer.
Nous allons concevoir très facilement une simple boîte de
dialogue, comme ceci:

Nous allons ensuite utiliser cette boîte de dialogue dans FreeCAD
pour produire une belle surface plane rectangulaire.
Vous ne trouverez peut-être pas très utile de produire de beaux
plans rectangulaires, mais il sera facile de le changer plus tard et
de faire des choses plus complexes.
Lorsque vous l'ouvrez, Qt Designer ressemble à ceci:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

124 sur 246 09/06/2015 15:05



Il est très simple à utiliser. Sur la barre de gauche vous avez des
éléments qui peuvent être glissés sur votre widget (tous les
outils). Sur le côté droit vous avez des panneaux d'affichage de
propriétés de toutes sortes, des propriétés de certains éléments
modifiables.
Donc, commencez par créer un nouveau widget. Sélectionnez
"Dialog without buttons", car nous ne voulons pas de boutons
par défaut Ok/Annuler. Ensuite, faites glisser sur votre widget 3
labels, un pour le titre, un pour l'écriture "Height" (Hauteur) et
l'autre pour l'écriture "Width" (Largeur).

Les labels (étiquettes) sont de simples textes qui apparaissent
sur votre widget, il servent a informer l'utilisateur.
Si vous sélectionnez un label, sur le côté droit apparaîssent
plusieurs propriétés que vous pouvez modifier, comme le style de
police, taille, etc . . .

Ensuite, ajoutez 2 LineEdits , qui sont des champs texte que
l'utilisateur peut remplir, un pour la hauteur et l'autre pour la

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

125 sur 246 09/06/2015 15:05



largeur.

Ici aussi, nous pouvons modifier les propriétés. Par exemple,
pourquoi ne pas définir une valeur par défaut ? Par exemple 1,00
pour chacun d'eux.
De cette façon, lorsque l'utilisateur verra la boîte de dialogue, les
deux valeurs seront déjà remplies et si les valeurs conviennent, il
peut directement appuyer sur le bouton, gain de temps précieux.
Ensuite, ajoutez un PushButton , qui est le bouton, que
l'utilisateur devra appuyer après avoir rempli les 2 champs.

Notez que j'ai choisi ici des contrôles très simples, mais Qt a
beaucoup plus d'options, par exemple, vous pouvez utiliser
spinbox au lieu de LineEdits, etc ..
Regardez tout ce qui est disponible, vous aurez sûrement
d'autres idées.

C'est à peu près tout ce que nous devons faire dans Qt Designer.
Une dernière chose, nous allons renommer tous nos éléments
avec des noms faciles, de sorte qu'il sera plus facile de les
identifier dans nos scripts:

Conversion de notre boîte de dialogue
en code Python avec "pyuic"

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

126 sur 246 09/06/2015 15:05



Maintenant, nous allons sauver notre widget quelque part. Il sera
sauvegardé dans un fichier .Ui, que nous allons facilement
convertir en script Python avec pyuic.
Dans windows, le programme est livré avec pyuic pyqt (à
vérifier), sur Linux, vous aurez probablement besoin de l'installer
séparément à partir de votre gestionnaire de paquets (sur
debian-systèmes basés sur, il fait partie du paquet pyqt4-
dev-tools).
Pour faire la conversion, vous aurez besoin d'ouvrir une fenêtre
de terminal (ou une fenêtre d'invite de commandes), accédez à
l'endroit où vous avez enregistré votre fichier ui :

pyuic.py est l'outil qui convertit les fichiers qt-designer .ui
(Interface Utilisateur) en fichier .py (code Python), la ligne de
commande dans la console DOS est :

pyuic mywidget.ui > mywidget.py

vous pouvez créer un fichier .bat pour automatiser la
commande:
copiez cette ligne dans un fichier texte et sauvez le sous le
nom "compile.bat"

@"C:\Python27\python" "C:\Python27\Lib\site-packages\PyQt4\uic\pyuic.py" -x %1.ui > %1.py

puis tapez à la ligne de commande " compile fichier " sans
extension, le nom "fichier" entré .ui, sera le nom sortant
avec extension .py
ATTENTION: il faut que les fichiers soient présents et
accessibles, vérifiez que les fichiers sont présents et
que les chemins sont justes !
pour cet exemple entièrement automatique et simplifié,
"compile.bat" est au même endroit que le fichier.ui à
convertir en fichier.py

Autres liens de documentation "Python and Qt"
(http://www.qtrac.eu/pyqtbook.html) , sur Développez.com
(http://ogirardot.developpez.com/introduction-pyqt/) et bien
d'autres.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

127 sur 246 09/06/2015 15:05



Sur certains systèmes, le programme est appelé pyuic4 au lieu
de pyuic (attention à la compatibilité). Il sert simplement de
convertisseur de fichier .Ui en un script python .py.

Si nous ouvrons le fichier mywidget.py, son contenu est très facile
à comprendre:

from PySide import QtCore, QtGui

class Ui_Dialog(object):
def setupUi(self, Dialog):

        Dialog.setObjectName("Dialog")
        Dialog.resize(187, 178)

self.title = QtGui.QLabel(Dialog)
self.title.setGeometry(QtCore.QRect(10, 10, 271, 16))
self.title.setObjectName("title")
self.label_width = QtGui.QLabel(Dialog)

        ...

self.retranslateUi(Dialog)
        QtCore.QMetaObject.connectSlotsByName(Dialog)

def retranslateUi(self, Dialog):
        Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None, QtGui.QApplication.UnicodeUTF8

self.title.setText(QtGui.QApplication.translate("Dialog", "Plane-O-Matic", None, QtGui.QApplication
        ...

Comme vous voyez, il a une structure très simple: une classe
nommée Ui_Dialog est créé, qui stocke les éléments de
l'interface de notre widget.
Cette classe dispose de deux méthodes, une pour la mise en place
du widget, et l'autre pour traduire son contenu, qui fait partie du
mécanisme général de Qt pour la traduction des éléments
d'interface.
La méthode de configuration, crée simplement, un par un, les
widgets tels que nous les avons définis dans Qt Designer, et
définit leurs options aussi comme nous avons décidé plus tôt.

Puis, toute l'interface est traduite, et enfin, les "slots" se
connectent (nous en reparlerons plus tard).

Nous pouvons maintenant créer un nouveau widget, et utiliser
cette classe pour créer son interface.
Nous pouvons déjà voir notre widget en action, en mettant notre
fichier mywidget.py dans un endroit où FreeCAD la trouvera
(dans le répertoire bin FreeCAD, ou dans l'un des
sous-répertoires Mod), et, dans l'interpréteur Python de
FreeCAD, faisons:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

128 sur 246 09/06/2015 15:05



from PySide import QtGui
import mywidget
d = QtGui.QWidget()
d.ui = mywidget.Ui_Dialog()
d.ui.setupUi(d)
d.show()

Et notre boîte de dialogue apparaîtra! Notez que notre
interpréteur Python fonctionne toujours, nous avons une boîte de
dialogue non modale.
Donc, pour la fermer, nous pouvons (à part cliquer sur son icône,
bien sûr) faire:

d.hide()

Faire quelque chose avec notre boîte de
dialogue

Maintenant que nous pouvons afficher et masquer notre boîte de
dialogue, nous avons juste besoin d'ajouter la dernière partie,
pour en faire quelque chose !
Si vous explorez un peu Qt Designer, vous découvrirez
rapidement toute une section appelée "signaux et slots".
Fondamentalement, cela fonctionne comme ceci, ce sont les
éléments sur vos widgets (dans la terminologie de Qt, ces
éléments sont eux-mêmes des widgets) qui peuvent envoyer des
signaux.

Ces signaux diffèrent selon le type de widget. Par exemple, un
bouton peut envoyer un signal quand il est pressé et quand il est
relâché.
Ces signaux peuvent être connectés à des créneaux, qui peuvent
être des fonctionnalités spéciales d'autres widgets (par exemple
une boîte de dialogue a un bouton "Fermer" sur lequel vous
pouvez connecter le signal à partir d'un autre bouton "Fermer"),
ou, peuvent être des fonctions personnalisées.
La documentation de référence PyQt
(http://www.riverbankcomputing.co.uk/static/Docs/PyQt4
/html/classes.html) répertorie tous les widgets Qt, ce qu'ils
peuvent faire, ce qu'ils signalent, ce qu'ils peuvent envoyer, etc . .

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

129 sur 246 09/06/2015 15:05



.

Ce que nous allons faire ici, c'est créer une nouvelle fonction qui
permettra de créer une surface plane basée sur la hauteur et la
largeur, et, relier cette fonction au bouton "Create!".
Donc, nous allons commencer par importer nos modules
FreeCAD, en mettant la ligne suivante en haut du script, où nous
importons déjà QtCore et QtGui:

import FreeCAD, Part

Ensuite, nous allons ajouter une nouvelle fonction à notre classe
Ui_Dialog:

def createPlane(self):
try:

# first we check if valid numbers have been entered
        w = float(self.width.text())
        h = float(self.height.text())

except ValueError:
print "Error! Width and Height values must be valid numbers!"

else:
# create a face from 4 points

        p1 = FreeCAD.Vector(0,0,0)
        p2 = FreeCAD.Vector(w,0,0)
        p3 = FreeCAD.Vector(w,h,0)
        p4 = FreeCAD.Vector(0,h,0)
        pointslist = [p1,p2,p3,p4,p1]
        mywire = Part.makePolygon(pointslist)
        myface = Part.Face(mywire)
        Part.show(myface)

self.hide()

Puis, nous avons besoin d'informer Qt pour qu'il se connecte sur
le bouton de la fonction, en plaçant la ligne suivante juste avant
QtCore.QMetaObject.connectSlotsByName(Dialog):

QtCore.QObject.connect(self.create,QtCore.SIGNAL("pressed()"),self.createPlane)

Il s'agit, comme vous le voyez, de relier le signal du bouton
enfoncé de l'objet a créer ("Create!" Bouton), à un
emplacement nommé createPlane, dont nous venons de définir.
Ça y est ! Maintenant, la touche finale, nous pouvons ajouter une
petite fonction, pour créer la boîte de dialogue, elle sera plus
facile a appeler.
En dehors de la classe Ui_Dialog class, nous allons ajouter le
code suivant:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

130 sur 246 09/06/2015 15:05



class plane():
def __init__(self):

self.d = QtGui.QWidget()
self.ui = Ui_Dialog()
self.ui.setupUi(self.d)
self.d.show()

(Rappel sur Python : la méthode __init__ est une classe qui
s'exécute automatiquement chaque fois qu'un nouvel objet est
créé ! )

Puis, à partir de FreeCAD, nous avons seulement besoin de faire:

import mywidget
myDialog = mywidget.plane()

Voilà, c'est tout ...
Maintenant, vous pouvez essayer toutes sortes de choses, comme
par exemple l'insertion de votre widget dans l'interface FreeCAD
(voir la page Code snippets), ou, faire des outils personnalisés
beaucoup plus avancés, en utilisant d'autres éléments dans votre
widget.

Le script complet

Ceci est le script de référence complet:

# -*- coding: utf-8 -*-

# Form implementation generated from reading ui file 'mywidget.ui'
#
# Created: Mon Jun  1 19:09:10 2009
#      by: PyQt4 UI code generator 4.4.4
# Modified for PySide 16:02:2015 
# WARNING! All changes made in this file will be lost!

from PySide import QtCore, QtGui
import FreeCAD, Part 

class Ui_Dialog(object):
def setupUi(self, Dialog):

       Dialog.setObjectName("Dialog")
       Dialog.resize(187, 178)

self.title = QtGui.QLabel(Dialog)
self.title.setGeometry(QtCore.QRect(10, 10, 271, 16))
self.title.setObjectName("title")
self.label_width = QtGui.QLabel(Dialog)
self.label_width.setGeometry(QtCore.QRect(10, 50, 57, 16))
self.label_width.setObjectName("label_width")
self.label_height = QtGui.QLabel(Dialog)
self.label_height.setGeometry(QtCore.QRect(10, 90, 57, 16))
self.label_height.setObjectName("label_height")
self.width = QtGui.QLineEdit(Dialog)
self.width.setGeometry(QtCore.QRect(60, 40, 111, 26))

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

131 sur 246 09/06/2015 15:05



self.width.setObjectName("width")
self.height = QtGui.QLineEdit(Dialog)
self.height.setGeometry(QtCore.QRect(60, 80, 111, 26))
self.height.setObjectName("height")
self.create = QtGui.QPushButton(Dialog)
self.create.setGeometry(QtCore.QRect(50, 140, 83, 26))
self.create.setObjectName("create")

self.retranslateUi(Dialog)
       QtCore.QObject.connect(self.create,QtCore.SIGNAL("pressed()"),self.createPlane)
       QtCore.QMetaObject.connectSlotsByName(Dialog)

def retranslateUi(self, Dialog):
       Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None, QtGui.QApplication.UnicodeUTF8

self.title.setText(QtGui.QApplication.translate("Dialog", "Plane-O-Matic", None, QtGui.QApplication
self.label_width.setText(QtGui.QApplication.translate("Dialog", "Width", None, QtGui.QApplication.
self.label_height.setText(QtGui.QApplication.translate("Dialog", "Height", None, QtGui.QApplication
self.create.setText(QtGui.QApplication.translate("Dialog", "Create!", None, QtGui.QApplication.UnicodeUTF8

def createPlane(self):
try:

# first we check if valid numbers have been entered
           w = float(self.width.text())
           h = float(self.height.text())

except ValueError:
print "Error! Width and Height values must be valid numbers!"

else:
# create a face from 4 points

           p1 = FreeCAD.Vector(0,0,0)
           p2 = FreeCAD.Vector(w,0,0)
           p3 = FreeCAD.Vector(w,h,0)
           p4 = FreeCAD.Vector(0,h,0)
           pointslist = [p1,p2,p3,p4,p1]
           mywire = Part.makePolygon(pointslist)
           myface = Part.Face(mywire)
           Part.show(myface)

class plane():
def __init__(self):

self.d = QtGui.QWidget()
self.ui = Ui_Dialog()
self.ui.setupUi(self.d)
self.d.show()

Création d'une boîte de dialogue avec
ses boutons

Méthode 1

Un exemple d'une boîte de dialogue complète avec ses
connections.

# -*- coding: utf-8 -*-
# Create by flachyjoe

from PySide import QtCore, QtGui

try:
    _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:

def _fromUtf8(s):
return s

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

132 sur 246 09/06/2015 15:05



try:
    _encoding = QtGui.QApplication.UnicodeUTF8

def _translate(context, text, disambig):
return QtGui.QApplication.translate(context, text, disambig, _encoding)

except AttributeError:
def _translate(context, text, disambig):

return QtGui.QApplication.translate(context, text, disambig)

class Ui_MainWindow(object):

def __init__(self, MainWindow):
self.window = MainWindow

        MainWindow.setObjectName(_fromUtf8("MainWindow"))
        MainWindow.resize(400, 300)

self.centralWidget = QtGui.QWidget(MainWindow)
self.centralWidget.setObjectName(_fromUtf8("centralWidget"))

self.pushButton = QtGui.QPushButton(self.centralWidget)
self.pushButton.setGeometry(QtCore.QRect(30, 170, 93, 28))
self.pushButton.setObjectName(_fromUtf8("pushButton"))
self.pushButton.clicked.connect(self.on_pushButton_clicked) #connection pushButton

self.lineEdit = QtGui.QLineEdit(self.centralWidget)
self.lineEdit.setGeometry(QtCore.QRect(30, 40, 211, 22))
self.lineEdit.setObjectName(_fromUtf8("lineEdit"))
self.lineEdit.returnPressed.connect(self.on_lineEdit_clicked) #connection lineEdit

self.checkBox = QtGui.QCheckBox(self.centralWidget)
self.checkBox.setGeometry(QtCore.QRect(30, 90, 81, 20))
self.checkBox.setChecked(True)
self.checkBox.setObjectName(_fromUtf8("checkBoxON"))
self.checkBox.clicked.connect(self.on_checkBox_clicked) #connection checkBox

self.radioButton = QtGui.QRadioButton(self.centralWidget)
self.radioButton.setGeometry(QtCore.QRect(30, 130, 95, 20))
self.radioButton.setObjectName(_fromUtf8("radioButton"))
self.radioButton.clicked.connect(self.on_radioButton_clicked) #connection radioButton

        MainWindow.setCentralWidget(self.centralWidget)

self.menuBar = QtGui.QMenuBar(MainWindow)
self.menuBar.setGeometry(QtCore.QRect(0, 0, 400, 26))
self.menuBar.setObjectName(_fromUtf8("menuBar"))

        MainWindow.setMenuBar(self.menuBar)

self.mainToolBar = QtGui.QToolBar(MainWindow)
self.mainToolBar.setObjectName(_fromUtf8("mainToolBar"))

        MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.mainToolBar)

self.statusBar = QtGui.QStatusBar(MainWindow)
self.statusBar.setObjectName(_fromUtf8("statusBar"))

        MainWindow.setStatusBar(self.statusBar)

self.retranslateUi(MainWindow)

def retranslateUi(self, MainWindow):
        MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow", None))

self.pushButton.setText(_translate("MainWindow", "OK", None))
self.lineEdit.setText(_translate("MainWindow", "tyty", None))
self.checkBox.setText(_translate("MainWindow", "CheckBox", None))
self.radioButton.setText(_translate("MainWindow", "RadioButton", None))

def on_checkBox_clicked(self):
if self.checkBox.checkState()==0:

            App.Console.PrintMessage(str(self.checkBox.checkState())+"  CheckBox KO\r\n")
else:     

            App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox OK\r\n")
#        App.Console.PrintMessage(str(self.lineEdit.setText("tititi"))+" LineEdit\r\n") #write text to the lineEdit window
#        str(self.lineEdit.setText("tititi")) #écrit le texte dans la fenêtre lineEdit
        App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit\r\n")

def on_radioButton_clicked(self):
if self.radioButton.isChecked():

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

133 sur 246 09/06/2015 15:05



             App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio OK\r\n")
else:

             App.Console.PrintMessage(str(self.radioButton.isChecked())+"  Radio KO\r\n")

def on_lineEdit_clicked(self):
#        if self.lineEdit.textChanged():

    App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit Display\r\n")

def on_pushButton_clicked(self):
        App.Console.PrintMessage("Terminé\r\n")

self.window.hide()

MainWindow = QtGui.QMainWindow()
ui = Ui_MainWindow(MainWindow)
MainWindow.show()

Ici la même fenêtre mais avec un icône sur chaque bouton.

# -*- coding: utf-8 -*-

from PySide import QtCore, QtGui

try:
    _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:

def _fromUtf8(s):
return s

try:
    _encoding = QtGui.QApplication.UnicodeUTF8

def _translate(context, text, disambig):
return QtGui.QApplication.translate(context, text, disambig, _encoding)

except AttributeError:
def _translate(context, text, disambig):

return QtGui.QApplication.translate(context, text, disambig)

class Ui_MainWindow(object):

def __init__(self, MainWindow):
self.window = MainWindow

#        path = FreeCAD.ConfigGet("UserAppData")
        path = FreeCAD.ConfigGet("AppHomePath")

        MainWindow.setObjectName(_fromUtf8("MainWindow"))
        MainWindow.resize(400, 300)

self.centralWidget = QtGui.QWidget(MainWindow)
self.centralWidget.setObjectName(_fromUtf8("centralWidget"))

self.pushButton = QtGui.QPushButton(self.centralWidget)
self.pushButton.setGeometry(QtCore.QRect(30, 170, 93, 28))
self.pushButton.setObjectName(_fromUtf8("pushButton"))
self.pushButton.clicked.connect(self.on_pushButton_clicked) #connection pushButton

self.lineEdit = QtGui.QLineEdit(self.centralWidget)
self.lineEdit.setGeometry(QtCore.QRect(30, 40, 211, 22))
self.lineEdit.setObjectName(_fromUtf8("lineEdit"))
self.lineEdit.returnPressed.connect(self.on_lineEdit_clicked) #connection lineEdit

self.checkBox = QtGui.QCheckBox(self.centralWidget)
self.checkBox.setGeometry(QtCore.QRect(30, 90, 100, 20))
self.checkBox.setChecked(True)
self.checkBox.setObjectName(_fromUtf8("checkBoxON"))
self.checkBox.clicked.connect(self.on_checkBox_clicked) #connection checkBox

self.radioButton = QtGui.QRadioButton(self.centralWidget)
self.radioButton.setGeometry(QtCore.QRect(30, 130, 95, 20))
self.radioButton.setObjectName(_fromUtf8("radioButton"))
self.radioButton.clicked.connect(self.on_radioButton_clicked) #connection radioButton

        MainWindow.setCentralWidget(self.centralWidget)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

134 sur 246 09/06/2015 15:05



self.menuBar = QtGui.QMenuBar(MainWindow)
self.menuBar.setGeometry(QtCore.QRect(0, 0, 400, 26))
self.menuBar.setObjectName(_fromUtf8("menuBar"))

        MainWindow.setMenuBar(self.menuBar)

self.mainToolBar = QtGui.QToolBar(MainWindow)
self.mainToolBar.setObjectName(_fromUtf8("mainToolBar"))

        MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.mainToolBar)

self.statusBar = QtGui.QStatusBar(MainWindow)
self.statusBar.setObjectName(_fromUtf8("statusBar"))

        MainWindow.setStatusBar(self.statusBar)

self.retranslateUi(MainWindow)

# Affiche un icône sur le bouton PushButton
# self.image_01 = "C:\Program Files\FreeCAD0.13\icone01.png" # adapt the icon name
self.image_01 = path+"icone01.png" # adapt the name of the icon

        icon01 = QtGui.QIcon()
        icon01.addPixmap(QtGui.QPixmap(self.image_01),QtGui.QIcon.Normal, QtGui.QIcon.Off)

self.pushButton.setIcon(icon01)
self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direction of the button

# Affiche un icône sur le bouton RadioButton 
# self.image_02 = "C:\Program Files\FreeCAD0.13\icone02.png" # adapt the name of the icon
self.image_02 = path+"icone02.png" # adapter le nom de l'icône

        icon02 = QtGui.QIcon()
        icon02.addPixmap(QtGui.QPixmap(self.image_02),QtGui.QIcon.Normal, QtGui.QIcon.Off)

self.radioButton.setIcon(icon02)
# self.radioButton.setLayoutDirection(QtCore.Qt.RightToLeft) #  This command reverses the direction of the button

# Affiche un icône sur le bouton CheckBox 
# self.image_03 = "C:\Program Files\FreeCAD0.13\icone03.png" # the name of the icon
self.image_03 = path+"icone03.png" # adapter le nom de l'icône

        icon03 = QtGui.QIcon()
        icon03.addPixmap(QtGui.QPixmap(self.image_03),QtGui.QIcon.Normal, QtGui.QIcon.Off)

self.checkBox.setIcon(icon03)
# self.checkBox.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direction of the button

def retranslateUi(self, MainWindow):
        MainWindow.setWindowTitle(_translate("MainWindow", "FreeCAD", None))

self.pushButton.setText(_translate("MainWindow", "OK", None))
self.lineEdit.setText(_translate("MainWindow", "tyty", None))
self.checkBox.setText(_translate("MainWindow", "CheckBox", None))
self.radioButton.setText(_translate("MainWindow", "RadioButton", None))

def on_checkBox_clicked(self):
if self.checkBox.checkState()==0:

            App.Console.PrintMessage(str(self.checkBox.checkState())+"  CheckBox KO\r\n")
else:     

            App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox OK\r\n")
# App.Console.PrintMessage(str(self.lineEdit.setText("tititi"))+" LineEdit\r\n") # write text to the lineEdit w
# str(self.lineEdit.setText("tititi")) #écrit le texte dans la fenêtre lineEdit

        App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit\r\n")

def on_radioButton_clicked(self):
if self.radioButton.isChecked():

             App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio OK\r\n")
else:

             App.Console.PrintMessage(str(self.radioButton.isChecked())+"  Radio KO\r\n")

def on_lineEdit_clicked(self):
# if self.lineEdit.textChanged():

          App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit Display\r\n")

def on_pushButton_clicked(self):
        App.Console.PrintMessage("Terminé\r\n")

self.window.hide()

MainWindow = QtGui.QMainWindow()
ui = Ui_MainWindow(MainWindow)
MainWindow.show()

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

135 sur 246 09/06/2015 15:05



ici le code pour afficher l'icône sur le pushButton, modifiez le
nom pour un autre bouton, (radioButton, checkBox) ainsi que
le chemin de l'icône.

# Affiche un icône sur le bouton PushButton
# self.image_01 = "C:\Program Files\FreeCAD0.13\icone01.png" # the name of the icon
self.image_01 = path+"icone01.png" # the name of the icon

        icon01 = QtGui.QIcon()
        icon01.addPixmap(QtGui.QPixmap(self.image_01),QtGui.QIcon.Normal, QtGui.QIcon.Off)

self.pushButton.setIcon(icon01)
self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direction of the button

La commande UserAppData donne le chemin utilisateur
AppHomePath donne le chemin d'installation de FreeCAD

#        path = FreeCAD.ConfigGet("UserAppData")
        path = FreeCAD.ConfigGet("AppHomePath")

Cette commande inverse le sens horizontal du bouton, droite à
gauche

self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direction of the button

Méthode 2

Une autre méthode pour afficher une fenêtre, ici en créant un
fichier QtForm.py qui renferme l'entête du programme (module
appelé avec import QtForm), et d'un deuxième module qui
renferme le code de la fenêtre tous ces accessoires, et votre code
(le module appelant).

Cette méthode nécessite 2 fichiers distincts, mais permet de
raccourcir votre programme, en utilisant le fichier QtForm.py en
import. Il faut alors distribuer les deux fichiers ensemble, ils sont
indissociables.

Le fichier QtForm.py

# -*- coding: utf-8 -*-
# Create by flachyjoe
from PySide import QtCore, QtGui

try:
    _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:

def _fromUtf8(s):

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

136 sur 246 09/06/2015 15:05



return s

try:
    _encoding = QtGui.QApplication.UnicodeUTF8

def _translate(context, text, disambig):
return QtGui.QApplication.translate(context, text, disambig, _encoding)

except AttributeError:
def _translate(context, text, disambig):

return QtGui.QApplication.translate(context, text, disambig)

class Form(object):
def __init__(self, title, width, height):

self.window = QtGui.QMainWindow()
self.title=title
self.window.setObjectName(_fromUtf8(title))
self.window.setWindowTitle(_translate(self.title, self.title, None))
self.window.resize(width, height)

def show(self):
self.createUI()
self.retranslateUI()
self.window.show()

def setText(self, control, text):
      control.setText(_translate(self.title, text, None))

Le fichier appelant, qui contient la fenêtre et votre code.

Le fichier mon_fichier.py

Les connections sont à faire, un bon exercice.

# -*- coding: utf-8 -*-
# Create by flachyjoe
from PySide import QtCore, QtGui
import QtForm

class myForm(QtForm.Form):
def createUI(self):

self.centralWidget = QtGui.QWidget(self.window)
self.window.setCentralWidget(self.centralWidget)

self.pushButton = QtGui.QPushButton(self.centralWidget)
self.pushButton.setGeometry(QtCore.QRect(30, 170, 93, 28))
self.pushButton.clicked.connect(self.on_pushButton_clicked)

self.lineEdit = QtGui.QLineEdit(self.centralWidget)
self.lineEdit.setGeometry(QtCore.QRect(30, 40, 211, 22))

self.checkBox = QtGui.QCheckBox(self.centralWidget)
self.checkBox.setGeometry(QtCore.QRect(30, 90, 81, 20))
self.checkBox.setChecked(True)

self.radioButton = QtGui.QRadioButton(self.centralWidget)
self.radioButton.setGeometry(QtCore.QRect(30, 130, 95, 20))

def retranslateUI(self):
self.setText(self.pushButton, "Fermer")
self.setText(self.lineEdit, "essai de texte")
self.setText(self.checkBox, "CheckBox")
self.setText(self.radioButton, "RadioButton")

def on_pushButton_clicked(self):
self.window.hide()

myWindow=myForm("Fenêtre de test",400,300)
myWindow.show()

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

137 sur 246 09/06/2015 15:05



Quelques commandes utiles

# Here the code to display the icon on the '''pushButton''', 
# change the name to another button, ('''radioButton, checkBox''') as well as the path to the icon,

# Displays an icon on the button PushButton
# self.image_01 = "C:\Program Files\FreeCAD0.13\icone01.png" # he name of the icon
self.image_01 = path+"icone01.png" # the name of the icon

       icon01 = QtGui.QIcon()
       icon01.addPixmap(QtGui.QPixmap(self.image_01),QtGui.QIcon.Normal, QtGui.QIcon.Off)

self.pushButton.setIcon(icon01)
self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direction of the button

# path = FreeCAD.ConfigGet("UserAppData") # gives the user path
  path = FreeCAD.ConfigGet("AppHomePath") # gives the installation path of FreeCAD

# This command reverses the horizontal button, right to left
self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the horizontal button

# Displays an info button
self.pushButton.setToolTip(_translate("MainWindow", "Quitter la fonction", None)) # Displays an info button

# This function gives a color button
self.pushButton.setStyleSheet("background-color: red") # This function gives a color button

# This function gives a color to the text of the button
self.pushButton.setStyleSheet("color : #ff0000") # This function gives a color to the text of the button

# combinaison des deux, bouton et texte
self.pushButton.setStyleSheet("color : #ff0000; background-color : #0000ff;" ) #  combination of the two, button, and text

# replace the icon in the main window
MainWindow.setWindowIcon(QtGui.QIcon('C:\Program Files\FreeCAD0.13\View-C3P.png'))

# connects a lineEdit on execute
self.lineEdit.returnPressed.connect(self.execute) # connects a lineEdit on "def execute" after validation on enter
# self.lineEdit.textChanged.connect(self.execute) # connects a lineEdit on "def execute" with each keystroke on the keyboa

# display text in a lineEdit
self.lineEdit.setText(str(val_X)) # Displays the value in the lineEdit (convert to string)

# extract the string contained in a lineEdit
 val_X = self.lineEdit.text() # extract the (string) string contained in lineEdit
 val_X = float(val_X0) # converted the string to an floating
 val_X = int(val_X0) # convert the string to an integer

# This code allows you to change the font and its attributes
       font = QtGui.QFont()
       font.setFamily("Times New Roman")
       font.setPointSize(10)
       font.setWeight(10)
       font.setBold(True) # same result with tags "<b>your text</b>" (in quotes)

self.label_6.setFont(font)
self.label_6.setObjectName("label_6")
self.label_6.setStyleSheet("color : #ff0000") # This function gives a color to the text
self.label_6.setText(_translate("MainWindow", "Select a view", None))

En utilisant les caractères accentués, dans le cas ou vous obtenez
les erreurs suivantes :

plusieurs méthodes sont possibles.

UnicodeDecodeError: 'utf8' codec can't decode bytes in

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

138 sur 246 09/06/2015 15:05



< précédent: Line drawing function suivant: Licence >

position 0-2: invalid data

# conversion from a lineEdit
App.activeDocument().CopyRight.Text = str(unicode(self.lineEdit_20.text() , 'ISO-8859-1').encode('UTF-8')
DESIGNED_BY = unicode(self.lineEdit_01.text(), 'ISO-8859-1').encode('UTF-8')

ou avec la procédure

def utf8(unio):
return unicode(unio).encode('UTF8')

UnicodeEncodeError: 'ascii' codec can't encode character
u'\xe9' in position 9: ordinal not in range(128)

# conversion
a = u"Nom de l'élément : "
f.write('''a.encode('iso-8859-1')'''+str(element_)+"\n")

ou avec la procédure

def iso8859(encoder):
return unicode(encoder).encode('iso-8859-1')

ou

iso8859(unichr(176))

ou

unichr(ord(176))

ou

uniteSs = "mm"+iso8859(unichr(178))
print unicode(uniteSs, 'iso8859')

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

139 sur 246 09/06/2015 15:05



Développer une application
pour FreeCAD

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

140 sur 246 09/06/2015 15:05



Déclaration du fondateur

Je sais que la discussion sur le « droit » de licence pour l'open
source a occupé une partie importante de la bande passante
Internet alors voici la raison pour laquelle, à mon avis, FreeCAD
doit être sous licence LGPL.

J'ai choisi les licences LGPL (http://fr.wikipedia.org
/wiki/Licence_publique_g%C3%A9n%C3%A9rale_limit
%C3%A9e_GNU) et GPL (http://fr.wikipedia.org
/wiki/Licence_publique_g%C3%A9n%C3%A9rale_GNU) pour le
projet, je sais qu’il y a des pros et des anti LGPL et je vous
donnerai quelques raisons de cette décision.

FreeCAD est le mélange d'une bibliothèque et d'une application,
de sorte que le GPL serait un peu fort pour cela. Il permettrait
d'éviter l'écriture de modules commerciaux pour FreeCAD car
elle empêcherait la liaison avec les librairies de base FreeCAD.
Vous pouvez vous demander pourquoi des modules
commerciaux ? Linux aurait-il autant de succès si les
bibliothèques C GNU étaient sous licences GPL, et empêchaient
donc les liaisons avec des applications non GPL ? Et bien que
j'aime la liberté de Linux, je veux aussi être en mesure d'utiliser
les très bon pilotes graphique NVIDIA 3D. Je comprends et
j'accepte les raisons pour lesquels NVIDIA ne souhaite pas
donner les codes des pilotes. Nous travaillons TOUS pour des
entreprises, et nous avons besoin d’argent, ou au moins de
nourriture... Pour moi, une coexistence de l'open source et les
logiciels à code source propriétaire n'est pas une mauvaise chose,
quand il obéit à des règles de la licence LGPL. Je voudrais voir
quelqu'un écrire un processus d’import / export CATIA pour
FreeCAD et de le distribuer gratuitement ou pour de l'argent. Je
n'aime pas forcer à donner plus que ce qu'il ne veut. Ce ne serait
pas bon ni pour lui ni pour FreeCAD.

Néanmoins, cette décision est prise seulement pour le système de
base de FreeCAD. Chaque auteur d'un module d'application peut
prendre sa propre décision.

Licences utilisées

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

141 sur 246 09/06/2015 15:05



Voici les trois licences en vertu des quels FreeCAD est publié :

FreeCAD uses two different licenses, one for the application
itself, and one for the documentation:

Licence publique générale limitée GNU (LGPL2+)
(http://fr.wikipedia.org/wiki/Licence_publique_g%C3%A9n
%C3%A9rale_limit%C3%A9e_GNU)

Pour les bibliothèques de base telles qu'elles sont énoncées
dans le .h et le .cpp dans src/App src/Gui src/Base et la
plupart des modules dans src/Mod ainsi que pour l'exécutable
comme indiqué dans le .h et le .cpp dans src/main. Les icônes
et les autres parties graphiques sont également LGPL.

Licence publique générale GNU (GPL2+)
(http://fr.wikipedia.org/wiki/Licence_publique_g%C3%A9n
%C3%A9rale_GNU)

Pour les scripts Python qui construisent les binaires comme
indiqué dans les fichiers .py dans src/Tools.

Open Publication Licence
La documentation sur http://free-cad.sourceforge.net/ ne
saurait pas être décrite d'une autre façon par l'auteur.

Voir le fichier droit d'auteur FreeCAD pour debian (http://free-
cad.git.sourceforge.net/git/gitweb.cgi?p=free-cad/free-
cad;a=blob;f=package/debian/copyright;
h=a97cf019d020edba596f2d0f614c9b09ce546b0f;hb=HEAD) (en
anglais) pour plus de détails sur les licences utilisées dans
FreeCAD.

Effet des licences

Les utilisateurs privés

Les utilisateurs particuliers peuvent utiliser FreeCAD
gratuitement et peuvent en faire tout ce qu'ils veulent...

Les utilisateurs professionnels

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

142 sur 246 09/06/2015 15:05



Ils peuvent utiliser FreeCAD librement, pour tout type de travail
privé ou professionnel. Ils peuvent personnaliser l'application
comme ils le souhaitent. Ils peuvent écrire des extensions de
source ouverte ou fermée à FreeCAD. Ils sont toujours maître de
leurs données, ils ne sont pas obligés de mettre à jour FreeCAD,
changer leur utilisation de FreeCAD. L’utilisation de FreeCAD ne
les lie à aucun type de contrat ou obligation.

Développeurs open source

Ils peuvent utiliser FreeCAD comme les bases de modules
d'extension propres à des fins spéciales. Ils peuvent choisir soit la
licence GPL soit la LGPL pour permettre l'utilisation de leur
travail dans des logiciels propriétaires ou non.

Les développeurs professionnels

Les développeurs professionnels peuvent utiliser FreeCAD
comme les bases de leurs propres modules d'extension à des fins
spéciales et ne sont pas obligés de faire leurs modules open
source. Ils peuvent utiliser tous les modules en LGPL. Ils sont
autorisés à distribuer FreeCAD avec leur logiciel propriétaire. Ils
obtiendront le soutien de(s) l'auteur(s) aussi longtemps que cela
n'est pas à sens unique. Si vous voulez vendre votre module, vous
avez besoin d'une licence Coin3D, sinon vous êtes obligés par
cette bibliothèque de le rendre open source.

OpenCasCade License side effects (for
FreeCAD version 0.13 and older)

The following is no more applicable since version 0.14, since both
FreeCAD and OpenCasCade are now fully LGPL.

Up to Version 0.13 FreeCAD is delivered as GPL2+, although the
source itself is under LGPL2+. Thats because of linkage of
Coin3D (GPL2) and PyQt(GPL). Starting with 0.14 we will be
completely GPL free. PyQt will be replaced by PySide, and

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

143 sur 246 09/06/2015 15:05



Coin3D was re-licensed under BSD. One problem, we still have to
face, license-wise, the OCTPL (Open CASCADE Technology Public
License) (http://www.opencascade.org/getocc/license/). Its a
License mostly LGPL similar, with certain changes. On of the
originators, Roman Lygin, elaborated on the License on his Blog
(http://opencascade.blogspot.de/2008/12/license-to-kill-license-
to-use.html). The home-brew OCTPL license leads to all kind of
side effects for FreeCAD, which where widely discussed on
different forums and mailing lists, e.g. on OpenCasCade forum
itself (http://www.opencascade.org/org/forum/thread_15859
/?forum=3). I will link here some articles for the biggest
problems.

GPL2/GPL3/OCTLP incompatibility

We first discovered the problem by a discussion on the FSF
(http://www.fsf.org/) high priority project discussion list
(https://groups.google.com/forum/#!topic/polignu/XRergtwsm80).
It was about a library we look at, which was licensed with GPL3.
Since we linked back then with Coin3D, with GPL2 only, we was
not able to adopt that lib. Also the OCTPL is considered GPL
incompatible (http://www.opencascade.org/occt/faq/). This Libre
Graphics World article "LibreDWG drama: the end or the new
beginning?" (http://libregraphicsworld.org/blog/entry/libredwg-
drama-the-end-or-the-new-beginning) shows up the drama of
LibreDWG project not acceptably in FreeCAD or LibreCAD.

Debian

The incompatibility of the OCTPL was discussed on the debian
legal list (http://lists.debian.org/debian-legal/2009
/10/msg00000.html) and lead to a bug report on the FreeCAD
package (http://bugs.debian.org/cgi-bin
/bugreport.cgi?bug=617613) which prevent (ignor-tag) the
transition from debian-testing to the main distribution. But its
also mentioned thats a FreeCAD, which is free of GPL code and
libs, would be acceptably. With a re-licensed Coin3D V4 and a
substituted PyQt we will hopefully reach GPL free with the 0.14
release.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

144 sur 246 09/06/2015 15:05



< précédent: Dialog creation suivant: Tracker >

Fedora/RedHat non-free

In the Fedora project OpenCasCade is listed "non-free". This
means basically it won't make it into Fedora or RedHat. This
means also FreeCAD won't make it into Fedora/RedHat until OCC
is changing its license. Here the links to the license evaluation:

Discussion on the Fedora-legal-list
(http://lists.fedoraproject.org/pipermail/legal/2011-September
/001713.html)
License review entry in the RedHat bug tracker
(https://bugzilla.redhat.com/show_bug.cgi?id=458974#c10)

The main problem they have AFIK is that the OCC license
demand non discriminatory support fees if you want to do paid
support. It has nothing to do with "free" or OpenSource, its all
about RedHat's business model!

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

145 sur 246 09/06/2015 15:05



L'adresse de notre bug tracker est la suivante :

http://www.freecadweb.org/tracker

There you can report bugs, submit feature requests, patches, or
request to merge your branch if you developed something using
git. The tracker is divided into modules, so please be specific and
file your request in the appropriate subsection. In cas of doubt,
leave it in the "FreeCAD" section.

Signaler les bugs

Si vous pensez que vous pourriez avoir trouvé un bogue
(dysfonctionnement ou erreur), vous êtes invité de le signaler.

Mais, avant de rapporter un bug, s'il vous plaît vérifiez les
éléments suivants :

Assurez-vous que votre bug est vraiment un bug, qu'il devrait
faire quelque chose, mais il ne fonctionne pas.
Si vous n'êtes pas sûr, n'hésitez pas à expliquer votre
problème sur le forum (http://forum.freecadweb.org/) et
demandez ce qu'il faut faire.
Avant de soumettre quoi que ce soit, lisez les questions
fréquemment posées (en), effectuez une recherche sur le
forum (http://forum.freecadweb.org/), et assurez-vous que le
même bug n'a pas déjà été signalé auparavant, en faisant une
recherche sur bug tracker (http://www.freecadweb.org
/tracker/main_page.php) de FreeCAD.
Décrivez aussi clairement que possible le problème, et
comment il peut être reproduit. Si nous ne pouvons pas
vérifier le bug, nous ne pourrons pas être en mesure de le
réparer.
Inscrivez les informations suivantes : Votre système
d'exploitation, sa version, s'il est de 32 ou 64 bits, et, la
version de FreeCAD vous utilisez.
S'il vous plaît déposer un rapport distinct pour chaque bug.
Si vous êtes sur un système Linux, et que votre bug provoque
un plantage dans FreeCAD, vous pouvez essayer de tracer le
débogage :

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

146 sur 246 09/06/2015 15:05



à partir d'un terminal exécuter gdb FreeCAD (en
supposant que le paquet gdb soit installé), puis, à
l'intérieur de gdb faire run.
ensuite exécuter FreeCAD.
Après que l'accident se soit reproduit, tapez bt , pour
obtenir le backtrace complet.
Inclure le backtrace dans votre rapport de bogue.

Demande de fonctionnalités

Si vous désirez une fonctionnalité particulière, qui n'est pas
encore implémentée dans FreeCAD, ce n'est pas un bug, mais
une demande de fonctionnalité.

Vous pouvez également soumettre une proposition sur mantis
bug tracker (http://www.mantisbt.org/)  même,
(envoyez-la comme demande de fonctionnalité au lieu d'un
bug), mais gardez bien à l'esprit, qu'il n'y a aucune garantie que
votre souhait soit exaucé.

Soumettre un correctif (patch)

Dans le cas, où vous avez programmé une correction d'un bug
(patch), une extension ou autre chose qui peut être d'utilité
publique dans FreeCAD, créer un patch à l'aide de l'outil
Subversion diff tool et de le soumettre sur mantis bug tracker
(http://www.mantisbt.org/) et envoyez-le comme
patch.

Requesting merge

Si vous avez créé une branche git contenant les modifications que
vous aimeriez voir fusionné dans le code FreeCAD, vous pouvez y
demander que votre branche soit examinée et fusionnée si les
développeurs FreeCAD sont OK avec elle. Vous devez d'abord
publier votre branche dans un dépôt git publique (github,
bitbucket, sourceforge ...) et donner ensuite l'URL de votre

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

147 sur 246 09/06/2015 15:05



< précédent: Licence suivant: CompileOnWindows >

branche dans votre demande de fusion.

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

148 sur 246 09/06/2015 15:05



Cet article explique pas à pas comment compiler FreeCAD dans
Windows.

See also Compile on Windows with Visual Studio 2013

Prérequis

Required programs

Git (http://git-scm.com/) There are a number of alternatives
such as GitCola, Tortoise Git, and others.
CMake (http://www.cmake.org/cmake/resources
/software.html) version 2.x.x or Cmake 3.x.x
Python >2.5 (This is only required if NOT using the Libpack.
The Libpack comes with a minimal Python(2.7.x) suitable for
compiling and running FreeCAD)

Source Code

Using Git (Preferred)

To create a local tracking branch and download the source code
you need to open a terminal(command prompt) and cd to the
directory you want the source, then type:

git clone git://git.code.sf.net/p/free-cad/code free-cad-code

Compiler

On Windows, the default compiler is M$ Visual Studio, be it the
Express or Full 2008, 2012, or 2013 versions. You will also need
to install the Windows Platform SDK to get several required
libraries (e.g. Windows.h), though they may not be required with
M$ compilers (either full or express).

Note

Though it may be possible to use Cygwin or MinGW gcc it's not
tested or ported so far.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

149 sur 246 09/06/2015 15:05



Third Party Libraries

You will need all of the Third Party Libraries to successfully
compile FreeCAD. If you use the M$ compilers it is recommended
to install a FreeCAD LibPack (http://sourceforge.net/projects/free-
cad/files/FreeCAD%20LibPack/), which provides all of the
required libraries to build FreeCAD in Windows. You will need
the Libpack for your architecture and compiler. FreeCAD
currently supplies Libpack Version11 for x32 and x64, for VS9
2008, VS11 2012, and VS12 2013.

Optional programs

NSIS (http://sourceforge.net/projects/nsis/) Windows installer
(note: formerly, WiX (http://wixtoolset.org/) installer was used
- now under transition to NSIS) - if you want to make msi
installer

System Path Configuration

Inside your system path be sure to set the correct paths to the
following programs:

git (not tortoiseGit, but git.exe) This is necessary for Cmake
to properly update the "About FreeCAD" information in the
version.h file which allows FreeCAD to report the proper
version in About FreeCAD from the help menu.
Optionally you can include the Libpack in your system path.
This is useful if you plan to build multiple
configurations/versions of FreeCAD, you will need to copy
less files as explained later in the build process.

To add to your system path:

Start menu -> Right click on Computer -> Properties ->
Advanced system settings
Advanced tab -> Environment Variables...
Add the PATH/TO/GIT to the PATH

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

150 sur 246 09/06/2015 15:05



It should be separated from the others with a semicolon `;`

Configuration with CMake

The switch to CMake

Warning

Since FreeCAD version 0.9 we have stopped providing .vcproj
files.

Currently, FreeCAD uses the CMake build system to generate
build and make files that can be used between different operating
systems and compilers. If you want build former versions of
FreeCAD (0.8 and older) see Building older versions later in this
article.

We switched because it became more and more painful to
maintain project files for 30+ build targets and x compilers.
CMake gives us the possibility to support alternative IDEs, like
Code::Blocks, Qt Creator and Eclipse CDT. The main compiler is
still M$ VC9 Express, though. But we plan for the future a build
process on Windows without proprietary compiler software.

CMake

The first step to build FreeCAD with CMake is to configure the
environment. There are two ways to do it:

Using the LibPack
Installing all the needed libraries and let CMake find them

The following process will assume you are using the LipPack. The
second option may be discussed in Options for the Build Process.

Configure CMake using GUI

Open the CMake GUI

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

151 sur 246 09/06/2015 15:05



Specify the source folder
Specify the build folder
Click Configure
Specify the generator according to the IDE that you'll use.

This will begin configuration and should fail because the location
of FREECAD_LIBPACK_DIR is unset.

Expand the FREECAD category and set
FREECAD_LIBPACK_DIR to the correct location
Check FREECAD_USE_EXTERNAL_PIVY
Optionally Check FREECAD_USE_FREETYPE this is
required to use the Draft WB's Shape String functionality
Click Configure again
There should be no errors
Click Generate
Close CMake
Copy libpack\bin folder into the new build folder CMake
created

Options for the Build Process

The CMake build system gives us a lot more flexibility over the
build process. That means we can switch on and off some
features or modules. It's in a way like the Linux kernel build. You
have a lot of switches to determine the build process.

Here is the description of some of these switches. They will most
likely change a lot in the future because we want to increase the
build flexibility a lot more.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

152 sur 246 09/06/2015 15:05



Link table

Variable name Description Default

FREECAD_LIBPACK_USE

Switch the
usage of the
FreeCAD
LibPack on or
off

On Win32
on,
otherwise
off

FREECAD_LIBPACK_DIR
Directory where
the LibPack is

FreeCAD
SOURCE
dir

FREECAD_BUILD_GUI
Build FreeCAD
with all Gui
related modules

ON

FREECAD_BUILD_CAM
Build the CAM
module,
experimental!

OFF

FREECAD_BUILD_INSTALLER

Create the
project files for
the Windows
installer.

OFF

FREECAD_BUILD_DOXYGEN_DOCU

Create the
project files for
source code
documentation.

OFF

FREECAD_MAINTAINERS_BUILD

Switch on stuff
needed only
when you do a
Release build.

OFF

If you are building with Qt Creator, jump to Building with Qt
Creator, otherwise proceed to Building with Visual Studio 9 2008.

Building FreeCAD

Depending on your current setup, the process for building
FreeCAD will be slightly different. This is due to the differences

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

153 sur 246 09/06/2015 15:05



[afficher]

[afficher]

[afficher]

[afficher]

in available software and software versions for each operating
system.

The following procedure will work for compiling on Windows
Vista/7/8, for XP an alternate VS tool set is required for VS 2012
and 2013, which has not been tested successfully with the
current Libpacks. To target XP(both x32 and x64) it is
recommended to use VS2008 and Libpack
FreeCADLibs_11.0_x86_VC9.7z

Building with Visual Studio 12 2013

Building with Visual Studio 9 2008

Building with Qt Creator

Command line build

Building older versions

Using LibPack

To make it easier to get FreeCAD compiled, we provide a
collection of all needed libraries. It's called the LibPack. You can
find it on the download page (http://sourceforge.net/project
/showfiles.php?group_id=49159) on sourceforge.

You need to set the following environment variables:

FREECADLIB = "D:\Wherever\LIBPACK"

QTDIR = "%FREECADLIB%"

Add "%FREECADLIB%\bin" and "%FREECADLIB%\dll" to the
system PATH variable. Keep in mind that you have to replace
"%FREECADLIB%" with the path name, since Windows does not

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

154 sur 246 09/06/2015 15:05



recursively replace environment variables.

Directory setup in Visual Studio

Some search path of Visual Studio need to be set. To change
them, use the menu Tools→Options→Directory

Includes

Add the following search path to the include path search list:

 %FREECADLIB%\include
 %FREECADLIB%\include\Python
 %FREECADLIB%\include\boost
 %FREECADLIB%\include\xercesc
 %FREECADLIB%\include\OpenCascade
 %FREECADLIB%\include\OpenCV
 %FREECADLIB%\include\Coin
 %FREECADLIB%\include\SoQt
 %FREECADLIB%\include\QT
 %FREECADLIB%\include\QT\Qt3Support
 %FREECADLIB%\include\QT\QtCore
 %FREECADLIB%\include\QT\QtGui
 %FREECADLIB%\include\QT\QtNetwork
 %FREECADLIB%\include\QT\QtOpenGL
 %FREECADLIB%\include\QT\QtSvg
 %FREECADLIB%\include\QT\QtUiTools
 %FREECADLIB%\include\QT\QtXml
 %FREECADLIB%\include\Gts
 %FREECADLIB%\include\zlib

Libs

Add the following search path to the lib path search list:

 %FREECADLIB%\lib

Executables

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

155 sur 246 09/06/2015 15:05



Add the following search path to the executable path search list:

 %FREECADLIB%\bin
TortoiseSVN binary installation directory, usually
"C:\Programm Files\TortoiseSVN\bin", this is needed for a
distribution build when SubWVRev.exe is used to extract the
version number from Subversion.

Python needed

During the compilation some Python scripts get executed. So the
Python interpreter has to function on the OS. Use a command box
to check it. If the Python library is not properly installed you will
get an error message like Cannot find python.exe. If you use the
LibPack you can also use the python.exe in the bin directory.

Special for VC8

When building the project with VC8, you have to change the link
information for the WildMagic library, since you need a different
version for VC6 and VC8. Both versions are supplied in
LIBPACK/dll. In the project properties for AppMesh change the
library name for the wm.dll to the VC8 version. Take care to
change it in Debug and Release configuration.

Compile

After you conform to all prerequisites the compilation is -
hopefully - only a mouse click in VC

After Compiling

To get FreeCAD up and running from the compiler environment
you need to copy a few files from the LibPack to the bin folder
where FreeCAD.exe is installed after a successful build:

python.exe and python_d.exe from LIBPACK/bin
python25.dll and python25_d.dll from LIBPACK/bin
python25.zip from LIBPACK/bin

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

156 sur 246 09/06/2015 15:05



make a copy of Python25.zip and rename it to Python25_d.zip
QtCore4.dll from LIBPACK/bin
QtGui4.dll from LIBPACK/bin
boost_signals-vc80-mt-1_34_1.dll from LIBPACK/bin
boost_program_options-vc80-mt-1_34_1.dll from LIBPACK/bin
xerces-c_2_8.dll from LIBPACK/bin
zlib1.dll from LIBPACK/bin
coin2.dll from LIBPACK/bin
soqt1.dll from LIBPACK/bin
QtOpenGL4.dll from LIBPACK/bin
QtNetwork4.dll from LIBPACK/bin
QtSvg4.dll from LIBPACK/bin
QtXml4.dll from LIBPACK/bin

When using a LibPack with a Python version older than 2.5 you
have to copy two further files:

zlib.pyd and zlib_d.pyd from LIBPACK/bin/lib. This is needed
by python to open the zipped python library.
_sre.pyd and _sre_d.pyd from LIBPACK/bin/lib. This is needed
by python for the built in help system.

If you don't get it running due to a Python error it is very likely
that one of the zlib*.pyd files is missing.

Additional stuff

If you whant to build the source code documentation you need
DoxyGen (http://www.stack.nl/~dimitri/doxygen/).

To create an intstaller package you need WIX
(http://wix.sourceforge.net/).

During the compilation some Python scripts get executed. So the
Python interpreter has to work properly.

For more details have also a look to README.Linux in your
sources.

First of all you should build the Qt plugin that provides all custom

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

157 sur 246 09/06/2015 15:05



< précédent: Tracker suivant: CompileOnUnix >

widgets of FreeCAD we need for the Qt Designer. The sources are
located under

//src/Tools/plugins/widget//.

So far we don't provide a makefile -- but calling

qmake plugin.pro

creates it. Once that's done, calling make will create the library

//libFreeCAD_widgets.so//.

To make this library known to your Qt Designer you have to copy
the file to

//$QTDIR/plugin/designer//.

References

Template:Reflist

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

158 sur 246 09/06/2015 15:05



On recent linux distributions, FreeCAD is generally easy to build,
since all dependencies are usually provided by the package
manager. It basically involves 3 steps:

Getting the FreeCAD source code1. 
Getting the dependencies (packages FreeCAD depends upon)2. 
Compiling with "cmake . && make"3. 

Below, you'll find detailed explanations of the whole process and
particularities you might encounter. If you find anything wrong or
out-of-date in the text below (Linux distributions change often),
or if you use a distribution which is not listed, please help us
correcting it.

Getting the source

Before you can compile FreeCAD, you need the source code.
There are 3 ways to get it:

Git

The quickest and best way to get the code is to clone the
read-only git repository (you need the git (http://git-scm.com/)
package installed):

git clone git://git.code.sf.net/p/free-cad/code free-cad-code

This will place a copy of the latest version of the FreeCAD source
code in a new directory called "free-cad-code". The first time you
try connecting to the free-cad.git.sourceforge.net host, you will
receive a message asking to authenticate the sourceforge SSH
key, which is normally safe to accept (you can check their SSH
keys on the sourceforge website if you are not sure)

Github

There is an always up to date FreeCAD repository on Github:
github.com/FreeCAD/FreeCAD_sf_master (https://github.com
/FreeCAD/FreeCAD_sf_master)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

159 sur 246 09/06/2015 15:05



[afficher]

[afficher]

[afficher]

[afficher]

[afficher]

[afficher]

Source package

Alternatively you can download a source package, but they could
be already quite old so it's always better to get the latest sources
via git or github.

Official FreeCAD source packages (distribution-independent):
https://sourceforge.net/projects/free-cad/files
/FreeCAD%20Source/

Getting the dependencies

To compile FreeCAD under Linux you have to install all libraries
mentioned in Third Party Libraries first. Please note that the
names and availability of the libraries will depend on your
distribution. Note that if you don't use the most recent version of
your distribution, some of the packages below might be missing
from your repositories. In that case, look in the Older and
non-conventional distributions section below.

Skip to Compile FreeCAD

Debian and Ubuntu

Fedora

Gentoo

OpenSUSE

Arch Linux

Older and non-conventional distributions

Below is additional help for a couple of libraries that might not be
present in your distribution repositories

Eigen 3

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

160 sur 246 09/06/2015 15:05



La bibliothèque Eigen3 est maintenant requise par le module
Sketcher. Sous Ubuntu, cette bibliothèque n'est disponible dans
les dépôts qu'à partir d'Ubuntu 11.10. Pour les versions
antérieures d'Ubuntu, vous pouvez soit la télécharger ici
(http://packages.ubuntu.com/oneiric/libeigen3-dev) et l'installer
manuellement, ou ajouter le dépôt FreeCAD Daily Builds PPA
(https://launchpad.net/~freecad-maintainers/+archive/freecad-
daily) à vos sources de logiciels avant de l'installer par l'un des
moyens listés ci-dessous.

OpenCASCADE community edition (OCE)

Un fork tiré d'OpenCasCade, OpenCASCADE Community edition
(http://github.com/tpaviot/oce) est beaucoup plus facile à
compiler. FreeCAD peut utiliser l'une ou l'autre des versions
installées sur votre système, soit la version « officielle » ou la
community edition. Le site Web du projet OCE contient des
instructions de compilation détaillées.

OpenCASCADE official version

Note: You are advised to use the OpenCasCade community
edition above, which is easier to build, but this one works too.
Not all Linux distributions have an official OpenCASCADE
package in their repositories. You have to check for yourself if
one is available for your distribution. At least from Debian Lenny
and Ubuntu Intrepid an official .deb package is provided. For
older Debian or Ubuntu releases you may get unofficial packages
from here (http://lyre.mit.edu/~powell/opencascade). To build
your own private .deb packages follow these steps:

wget http://lyre.mit.edu/~powell/opencascade/opencascade_6.2.0.orig.tar.gz
wget http://lyre.mit.edu/~powell/opencascade/opencascade_6.2.0-7.dsc
wget http://lyre.mit.edu/~powell/opencascade/opencascade_6.2.0-7.diff.gz

dpkg-source -x opencascade_6.2.0-7.dsc

# Install OCC build-deps
sudo apt-get install build-essential devscripts debhelper autoconf automake libtool bison libx11-dev tcl8.4-dev tk8.4-dev 

#Build Opencascade packages. This takes hours and requires 
# at least 8 GB of free disk space
cd opencascade-6.2.0 ; debuild

# Install the resulting library debs

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

161 sur 246 09/06/2015 15:05



sudo dpkg -i libopencascade6.2-0_6.2.0-7_i386.deb
libopencascade6.2-dev_6.2.0-7_i386.deb

En outre, vous pouvez télécharger et compiler la dernière version
disponible de opencascade.org (http://www.opencascade.org):

Installez le paquet normalement, mais sachez que l'installateur
est un programme java qui nécessite l'édition officielle java
runtime de Sun (nom du paquet : sun-java6-jre), pas le paquet
java open-source (gij) distribué avec Ubuntu. Installez-le au
besoin :

sudo apt-get remove gij
sudo apt-get install sun-java6-jre

Prenez garde, si vous utilisez gij java à d'autres applications
telles qu'une extension de navigateur, elles ne fonctionneront
plus. Si l'installateur ne fonctionne pas, essayez :

java -cp path_to_file_setup.jar <-Dtemp.dir=path_to_tmp_directory> run

Une fois le paquet installé, allez dans le répertoire "ros" à
l'intérieur du répertoire opencascade, et faites

./configure --with-tcl=/usr/lib/tcl8.4 --with-tk=/usr/lib/tk8.4

Maintenant vous pouvez compiler. Retournez au dossier ros et
faites :

make

Cela prendra beaucoup de temps, peut-être plusieurs heures.

Quand c'est terminé, installez en faisant simplement

sudo make install

Les fichiers de bibliothèque seront copiés dans /usr/local/lib ce
qui est normal, puisqu'ils seront trouvés automatiquement par
n'importe quel programme. En outre, vous pouvez aussi faire

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

162 sur 246 09/06/2015 15:05



sudo checkinstall

Ce qui fera la même chose que make install, mais créera une
entrée dans votre système de gestion de paquets afin de le
désinstaller plus facilement éventuellement. Maintenant nettoyez
les considérable fichiers de compilation temporaires en faisant

make clean

Erreur possible Nº 1 : Si vous utilisez OCC version 6.2, il est fort
possible que le compilateur stoppera tout juste après le début de
l'opération "make". Si cela survient, éditez le script "configure",
retracez la déclaration CXXFLAGS="$CXXFLAGS ", et
remplacez-la par CXXFLAGS="$CXXFLAGS -ffriend-injection
-fpermissive". Puis recommencez l'étape configure.

Erreur possible Nº 2 : Il est possible que plusieurs modules
(WOKSH, WOKLibs, TKWOKTcl, TKViewerTest et TKDraw) se
complaignent qu'ils ne trouvent pas les entêtes tcl/tk. Dans ce
cas, puisque l'option n'est pas offerte par le script configure, vous
devrez éditer nauellement le makefile de chacun de ces modules :
Allez dans adm/make et dans chacun des dossiers des modules
fautifs. Éditez le Makefile, et retracez les lignes
CSF_TclLibs_INCLUDES = -I/usr/include et
CSF_TclTkLibs_INCLUDES = -I/usr/include et ajoutez /tcl8.4 et
/tk8.4 afin qu'elles se lisent comme suit : CSF_TclLibs_INCLUDES
= -I/usr/include/tcl8.4 et CSF_TclTkLibs_INCLUDES = -I/usr
/include/tk8.4

SoQt

La bibliothèque SoQt doit être compilée par rapport à Qt4, ce qui
est le cas de la plupart des distributions récentes. Mais lors de
l'écriture de cet article, il n'y avait des paquets SoQt4 disponibles
que pour Debian, mais pas pour toutes les versions d'Ubuntu.
Pour compiler les paquets, suivez les étapes suivantes :

wget http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt_1.4.1.orig.tar.gz
wget http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt_1.4.1-6.dsc
wget http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt_1.4.1-6.diff.gz

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

163 sur 246 09/06/2015 15:05



dpkg-source -x soqt_1.4.1-6.dsc
sudo apt-get install doxygen devscripts fakeroot debhelper libqt3-mt-dev qt3-dev-tools libqt4-opengl-dev
cd soqt-1.4.1
debuild
sudo dpkg -i libsoqt4-20_1.4.1-6_i386.deb libsoqt4-dev_1.4.1-6_i386.deb libsoqt-dev-common_1.4.1-6_i386.deb

Si votre système est en 64 bits, vous devrez probablement
changer i386 par amd64.

Pivy

Pivy n'est pas nécessaire pour compiler FreeCAD ou l'exécuter,
mais il est requis par le module 2D Drafting qui ne fonctionnera
pas autrement. Si vous ne comptez pas utiliser ce module, vous
n'avez pas besoin de pivy. Au moment d'écrire ces lignes, Pivy est
très jeune et ne se trouve possiblement pas encore dans les
dépôts de votre distribution. Si vous ne trouvez pas Pivy dans les
dépôts de paquets de votre distribution, vous pouvez prendre des
paquets debian/ubuntu sur la page de téléchargement de
FreeCAD :

http://sourceforge.net/projects/free-cad/files/FreeCAD%20Linux/
or compile pivy yourself:

Pivy compilation instructions

Compiler FreeCAD

Utiliser cMake

cMake est un nouveau système de compilation dont l'avantage
est d'être commun à plusieurs systèmes d'exploitation (Linux,
Windows, MacOSX, etc). FreeCAD utilise désormais cMake
comme système de compilation principal. La compilation avec
cMake est généralement très simple et se déroule en deux
étapes. À la première étape, cMake vérifie que tous les
programmes et bibliothèques nécessaires sont présents sur votre
système, et configure tout ce qui est nécessaire pour la
compilation subséquente. Quelques alternatives vous sont
détaillées ci-dessous, mais FreeCAD est livré avec des options par
défaut sensées. La seconde étape est la compilation proprement

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

164 sur 246 09/06/2015 15:05



dite, qui produit l'exécutable FreeCAD.

Puisque FreeCAD est une application lourde, la compilation peut
prendre un certain temps (environ 10 minutes sur un PC rapide,
30 minutes sur un PC lent).

In-source building

FreeCAD can be built in-source, which means that all the files
resulting from the compilation stay in the same folder as the
source code. This is fine if you are just looking at FreeCAD, and
want to be able to remove it easily by just deleting that folder.
But in case you are planning to compile it often, you are advised
to make an out-of-source build, which offers many more
advantages. The following commands will compile freecad:

$ cd freecad (the folder where you cloned the freecad source)

If you want to use your system's copy of Pivy, which you most
commonly will, then set the compiler flag to use the correct pivy
(via FREECAD_USE_EXTERNAL_PIVY=1). Also, set the build type
to Debug if you want a debug build or Release if not. A Release
build will run much faster than a Debug build. Sketcher becomes
very slow with complex sketches if your FreeCAD is a Debug
build. (NOTE: the "." and space after the cmake flags are
CRITICAL!):

For a Debug build

$ cmake -DFREECAD_USE_EXTERNAL_PIVY=1 -DCMAKE_BUILD_TYPE=Debug .
$ make

Or for a Release build

$ cmake -DFREECAD_USE_EXTERNAL_PIVY=1 -DCMAKE_BUILD_TYPE=Release .
$ make

Your FreeCAD executable will then reside in the "bin" folder, and
you can launch it with:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

165 sur 246 09/06/2015 15:05



$ ./bin/FreeCAD

Compilation hors-source

Si vous comptez suivre l'évolution rapide de FreeCAD, il est
beaucoup plus pratique de le compiler dans un dossier séparé de
la source. Chaque fois que vous mettez à jour le code source,
cMake distinguera intelligemment quels fichiers ont changé, et
ne compilera que ce qui est requis. Les compilation hors-source
sont particulièrement pratiques avec le système Git, puisque vous
pouvez facilement essayer d'autres branches sans embrouiller le
système de compilation. Pour compiler hors-source, créez un
dossier de compilation distinct du dossier source freecad, et
depuis le dossier de compilation, pointez cMake vers le dossier
source :

mkdir freecad-build
cd freecad-build
cmake ../freecad (or whatever the path is to your FreeCAD source folder)
make

Votre exécutable résidera dans le dossier "bin".

Options de configuration

Il existe un certain nombre de modules expérimentaux ou
inachevés que vous pourriez vouloir compiler afin de travailler
sur ceux-ci. Pour ce faire, vous devez régler les options
appropriées lors de l'étape de configuration. Faites-le soit en
ligne de commande, en passant les options -D <var>:<type>=
<value> à cMake ou en utilisant une des interfaces graphiques
disponibles pour cMake (par ex. pour Debian, les paquets cmake-
qt-gui ou cmake-curses-gui).

À titre d'exemple, pour configurer en ligne de commande la
compilation du module Assembly, faites :

cmake -D FREECAD_BUILD_ASSEMBLY:BOOL=ON ''path-to-freecad-root''

Les options possibles sont listées dans le fichier CmakeLists.txt

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

166 sur 246 09/06/2015 15:05



situé à la racine du dossier source FreeCAD.

Greffon Qt designer

Si vous voulez faire du développement Qt pour FreeCAD, vous
aurez besoin du greffon Qt designer qui fournit tous les widgets
personnalisés de FreeCAD. Allez dans

freecad/src/Tools/plugins/widget

Pour l'instant nous ne fournissons pas de makefile -- mais appeler

qmake plugin.pro

le génère. Une fois que c'est fait,

make

créera la bibliothèque libFreeCAD_widgets.so. Pour faire en sorte
que cette bibliothèque soit reconnue par Qt Designer, vous devez
copier le fichier vers $QTDIR/plugin/designer

Doxygen

Si vous vous sentez assez audacieux pour vous plonger dans le
code, vous pourriez tirer avantage à construire et consulter la
documentation source de FreeCAD générée par Doxygen.

Construire un paquet Debian

Si vous envisagez de construire un paquet Debian voici les
sources que vous devez installer en premier :

dh-make
devscripts

#optional, used for checking if packages are standard-compliant
lintian

Pour construire un paquet ouvrez une console, puis il suffit d'aller

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

167 sur 246 09/06/2015 15:05



dans le répertoire FreeCAD et l’appeler

debuild

Once the package is built, you can use lintian to check if the
package contains errors

#replace by the name of the package you just created
lintian your-fresh-new-freecad-package.deb

Dépannage

Note sur les systèmes 64 bits

Pour la compilation de FreeCAD pour 64 bits, il y a un problème
connu avec le paquet OpenCASCADE 64 bits. Afin que FreeCAD
s'exécute correctement, vous pourriez devoir exécuter le script
./configure avec le réglage additionnel define _OCC64 :

./configure CXXFLAGS="-D_OCC64"

Sous les systèmes basés sur Debian, cette solution n'est pas
requise avec l'utilisation du paquet précompilé OpenCASCADE,
puisque celui-ci est déja compilé avec ce réglage. Maintenant il
ne reste plus qu'à compiler FreeCAD tel que décrit ci-dessus.

Fedora 13

To build & install FreeCAD on Fedora 13, a few tips and tricks
are needed:

Install a bunch of required packages, most are available from
the Fedora 13 repositories
Download and build xerces
Download and build OpenCascade. Need to point it to xmu:

./configure --with-xmu-include=/usr/include/X11/Xmu --with-xmu-library=/usr/lib

Download and build Pivy. You have to remove 2 references to

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

168 sur 246 09/06/2015 15:05



[afficher]

[afficher]

[afficher]

[afficher]

[afficher]

non existent "SoQtSpaceball.h" from pivy/interfaces/soqt.i
Commenting out those two lines allow the build & install to
work.
Configure Freecad. You will need to point it to a few things:

./configure --with-qt4-include=/usr/include --with-qt4-bin=/usr/lib/qt4/bin --with-occ-lib=/usr/local/lib 

make - hits a problem where the build is breaking because
the ldflags for soqt are set to "-LNONE" which made libtool
barf. My hackish workaround was to modify /usr/lib/Coin2
/conf/soqt-default.cfg so that the ldflags are "" instead of
"-LNONE". After this -> success !
make install

Automatic build scripts

Here is all what you need for a complete build of FreeCAD. It's a
one-script-approach and works on a fresh installed distro. The
commands will ask for root password (for installation of
packages) and sometime to acknowledge a fingerprint for an
external repository server or https-subversion repository. These
scripts should run on 32 and 64 bit versions. They are written for
different versions, but are also likely to run on a later version
with or without major changes.

If you have such a script for your preferred distro, please send it!
We will incorporate it into this article.

Ubuntu 13.x

Ubuntu 14.x

OpenSUSE 12.2

Debian Squeeze

Fedora 21

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

169 sur 246 09/06/2015 15:05



< précédent: CompileOnWindows suivant: CompileOnMac >

Updating the source code

FreeCAD development happens fast, everyday or so there are bug
fixes or new features. The cmake systems allows you to
intelligently update the source code, and only recompile what has
changed, making subsequent compilations very fast. Updating
the source code with git or subversion is very easy:

#Replace with the location where you cloned the source code the first time
cd freecad
#If you are using git
git pull

Move into the appropriate build directory and run cmake again
(as cmake updates the version number data for the Help menu,
...about FreeCAD), however you do not need to add the path to
source code after "cmake", just a space and a dot:

#Replace with the location of the build directory
cd ../freecad-build
cmake .
make

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

170 sur 246 09/06/2015 15:05



This page explains how to compile the latest FreeCAD source
code on Mac OS X.

Prerequisites

First of all, you will need to install the following software.

Xcode Development Tools

Unless you want to use the Xcode IDE for FreeCAD development,
you will only need to install the Command Line Tools. To do this
on 10.9 and later, open Terminal, run the following command, and
then click Install in the dialog that comes up.

xcode-select --install

For other versions of OS X, you can get the package from the
Apple developer downloads page (https://developer.apple.com
/downloads/index.action?q=xcode) (sign in with the same Apple
ID you use for other Apple services). Specifically, you will need to
download Development Tools 3.2 for OS X 10.6, and Command
Line Tools 4.8 for OS X 10.8.

Package Manager

You will want to use a package manager to install prerequisite
software, this page gives instructions for two of the common
package managers in use for OS X: Homebrew (http://brew.sh/)
and MacPorts (https://www.macports.org/). It's easiest to pick one
package manager for your system, and not have multiple package
managers installed concurrently.

Homebrew

To install Homebrew, enter the following in Terminal:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

171 sur 246 09/06/2015 15:05



MacPorts

To install MacPorts, follow the instructions from their website
(https://www.macports.org/install.php)

CMake

FreeCAD uses CMake (http://www.cmake.org/) to build the
source. Homebrew and MacPorts can install the command line
version of CMake, or if you prefer using a GUI application, install
the latest version from http://www.cmake.org/download.

For the command line version of CMake, from a terminal use
either Homebrew:

brew install cmake

or MacPorts:

sudo port install cmake

Installing the Dependencies

All of the needed libraries can be installed using either
Homebrew or MacPorts.

Homebrew Dependencies

brew tap homebrew/science
brew tap sanelson/freecad
brew install boost eigen freetype oce python qt pyside pyside-tools xerces-c
brew install --without-framework --without-soqt sanelson/freecad/coin
brew install --HEAD pivy

MacPorts Dependencies

sudo port install boost eigen3 freetype oce py27-pyside-tools xercesc Coin

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

172 sur 246 09/06/2015 15:05



Getting the source

In this guide, the source and build folders are created in /Users
/username/FreeCAD, but you can of course use whatever folder
you want.

mkdir ~/FreeCAD
cd ~/FreeCAD

To get the FreeCAD source code, run:

git clone git://git.code.sf.net/p/free-cad/code FreeCAD-git

Alternatively, you can use the github mirror: https://github.com
/FreeCAD/FreeCAD_sf_master.git

Building FreeCAD

First, create a new folder for the build:

mkdir ~/FreeCAD/build

Now you will need to run CMake to generate the build files.
Several options will need to be given to CMake, which can be
accomplished either with the CMake GUI application, or via the
command line.

CMake Options

These instructions are valid for FreeCAD from 25 March 2015,
previously several options needed to be manually specified, see
the history for this page.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

173 sur 246 09/06/2015 15:05



Name Value Notes

BUILD_ROBOT
0
(unchecked)

As of
12/19/2014,
the robot
module fails
to build
using newer
versions of
clang (OS X
10.9 and
later)

CMAKE_BUILD_TYPE Release

FREECAD_USE_EXTERNAL_PIVY 1 (checked)
Homebrew
only

FREETYPE_INCLUDE_DIR_freetype2

/usr/local
/include
/freetype2
for
Homebrew,
/opt/local
/include
/freetype2
for MacPorts

Only CMake
version
older than
3.1.0

CMake GUI

Open the CMake app, and fill in the source and build folder fields.
In this case, it would be /Users/username/FreeCAD
/FreeCAD-git for the source, and /Users/username/FreeCAD
/build for the build folder.

Next, click the Configure button to populate the list of
configuration options. This will display a dialog asking you to
specify what generator to use. Leave it at the default Unix
Makefiles. Configuring will fail the first time because there are
some options that need to be changed. Note: You will need to

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

174 sur 246 09/06/2015 15:05



check the Advanced checkbox to get all of the options.

Set options from the table above, then click Configure again and
then Generate.

CMake command line

Open a terminal, cd in to the build directory that was created
above. Run cmake with options from the table above, following
the formula -D(Name)="(Value)", and the path to your FreeCAD
source directory as the final argument.

$cd ~/FreeCAD/build
$cmake -DBUILD_ROBOT="0" ...options continue... -DPYTHON_LIBRARY="/some/path/" ../FreeCAD-git

Make

Finally, from a terminal run make to compile FreeCAD.

cd ~/FreeCAD/build
make –j3

The -j option specifies how many make processes to run at once.
One plus the number of CPU cores is usually a good number to
use. However, if compiling fails for some reason, it is useful to
rerun make without the -j option, so that you can see exactly
where the error occurred.

If make finishes without any errors, you can now launch
FreeCAD, either from Terminal with ./bin/FreeCAD, or by double
clicking the executable in Finder.

Updating

FreeCAD development happens fast; everyday or so there are bug
fixes or new features. To get these changes, run:

cd ~/FreeCAD/FreeCAD-git
git pull

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

175 sur 246 09/06/2015 15:05



< précédent: CompileOnUnix suivant: Third Party Libraries >

And then repeat the compile step above.

Troubleshooting

Fortran

"No CMAKE_Fortran_COMPILER could be found." during
configuration - Older versions of FreeCAD will need a fortran
compiler installed. With Homebrew, do "brew install gcc" and try
configuring again, for Macports, do "sudo port install gcc49" and
give cmake the path to Fortran ie
-DCMAKE_Fortran_COMPILER=/opt/local/bin/gfortran-mp-4.9 .
Or, preferably use a more current version of FreeCAD source!

OpenGL

See OpenGL on MacOS

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

176 sur 246 09/06/2015 15:05



Vue d'ensemble

Ce sont des bibliothèques, qui ne sont pas modifiées dans le
projet FreeCAD. elles sont inchangées, et, essentiellements
utilisées comme bibliothèques de liens dynamiques (*.So
(http://fr.wikipedia.org
/wiki/Bibliothèque_logicielle#Unix.2C_GNU.2FLinux_et_BSD
ou *.Dll (http://fr.wikipedia.org
/wiki/Dynamic_Link_Library)). S'il y a un changement
nécessaire, ou une classe wrapper est nécessaire, le code du
package, ou le code de la bibliothèque ont changés et doivent
être déplacés vers le package de base de FreeCAD. Les
bibliothèques utilisées sont les suivantes :

Pensez à utiliser LibPack au lieu de télécharger et d'installer
toutes sorte de trucs.

Liens

Link table

Nom de la
Lib

Version
nécessaire

Lien pour l'obtenir

Python >= 2.5.x http://www.python.org/

OpenCasCade >= 5.2 http://www.opencascade.org

Qt >= 4.1.x http://www.qtsoftware.com

Coin3D >= 2.x http://www.coin3d.org

ODE >= 0.10.x http://www.ode.org

SoQt >= 1.2 http://www.coin3d.org

Xerces-C++
>= 2.7.x <
3.0

http://xml.apache.org/xerces-c/

GTS >= 0.7.x http://gts.sourceforge.net/

Zlib >= 1.x.x http://www.zlib.net/

Boost >= 1.33.x http://www.boost.org/

Eigen3 >= 3.0.1
http://eigen.tuxfamily.org
/index.php?title=Main_Page

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

177 sur 246 09/06/2015 15:05



Details

Python

Version: 2.5 ou plus

License: Python 2.5 licence

Vous pouvez utiliser le source ou binaire à partir de Python
(http://www.python.org/) ou utiliser alternativement ActiveState
Python à partir de activestate (http://www.activestate.com/) s'il
est difficile d'obtenir des libs de débogage à partir d'ActiveState.

Description

Python, est le langage de script principal, et, est utilisé dans
toute l'application. Par exemple :

Mettre en œuvre des scripts de test pour tester :
des pertes de mémoire.
d'assurer de nouvelles fonctionnalités après
modifications.
poster, construire des contrôles.
des tests de contrôles de tests.

Macros et enregistrements de macros.
Mettre en œuvre une logique d'application, pour les paquets
(packages) standards.
La mise en œuvre des boîtes à outils complètes.
Le chargement dynamique des paquets (packages).
Les règles d'application pour la conception (connaissances
techniques).
Créer par exemple des groupes de travail et PDM sur
Internet.
Et ainsi de suite ...

Le chargement de packages dynamiques pour Python est utilisé,
en particulier, au moment de l'exécution, pour le chargement de
fonctionnalités supplémentaires, et, établit le nécessaires pour
les tâches réelles. Pour voir Python de plus près : Pourquoi
Python direz vous ? vous pouvez le demander ici

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

178 sur 246 09/06/2015 15:05



(http://www.python.org/). Il y a plusieurs raisons : Jusqu'à
présent, dans ma vie professionnelle, j'ai utilisé les langages de
script différents :

Perl
Tcl/Tk
VB
Java

Python est plus orienté OO (object-oriented), le code n'est pas
plus mauvais que Perl et Tcl, pareil pour Perl et VB. Java n'est pas
un langage destiné au script, et, difficile (voire impossible) à
intégrer. Python, est bien documenté, facile à intégrer, et, facile à
étendre. Il est également bien fait ses preuves, et, est fort prisé
dans la communauté open source.

Credits

Grâce à Guido van Rossum (http://fr.wikipedia.org
/wiki/Guido_van_Rossum) et beaucoup de gens, ont fait que
Python ait un tel succès !

OpenCasCade

Version: 5.2 ou plus

License : OCTPL

OCC (http://www.opencascade.org/) est un noyau complet
CAD. A l'origine, il a été développé en France par Matra
Datavision, pour la Strim (Styler) et Euclide applications
quantiques, et, plus tard fait pour l'Open Source. C'est une
bibliothèque vraiment énorme, et, faire en premier lieu une
application de CAO libre est possible, en fournissant certains
paquets, qui seraient difficiles, ou impossibles à mettre en œuvre
dans un projet Open Source :

Un noyau géométrique complet conforme à STEP.
Un modèle topologique de données et toutes les fonctions
nécessaires pour travailler sur les (coupes, fusion, extrusion,

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

179 sur 246 09/06/2015 15:05



etc ...)
Import-standard/exportation des processeurs comme STEP
(http://fr.wikipedia.org/wiki/STEP-NC), IGES
(http://fr.wikipedia.org
/wiki/Initial_Graphics_Exchange_Specification), VRML
(http://fr.wikipedia.org
/wiki/Virtual_Reality_Markup_Language).
Visionneuse 2D et 3D avec le soutien de la sélection.
Une structure de document, et, données de projet, avec le
soutien de, sauvegarde et restauration, de liaison externe des
documents, de recalcul de l'historique du dessin
(modélisation paramétrique) et d'un centre de chargement de
nouveaux types de données, comme un module d'extension
dynamique.

Pour en savoir plus sur OpenCascade jeter un coup oeil à la page
OpenCascade ou sur OpenCascade (http://www.opencascade.org).

Qt

Version: 4.1.x or higher

Licence : GPL v2.0/v3.0 ou commerciale (à partir de la version
4.5 aussi sur v2.1 LPGL)

Je ne pense pas que j'ai besoin de dire beaucoup de choses sur
Qt. C'est un des outils les plus souvent utilisés, dans l'interface
graphique des projets Open Source. Pour moi, le point le plus
important d'utiliser Qt est le Qt Designer et la possibilité de
charger les boîtes de dialogue entières comme, une ressource
(XML), et, d'intégrer des widgets spécialisés.

Dans une application CAX, l'interaction avec l'utilisateur, et, les
boîtes de dialogue, sont de loin la plus grande partie du code, et,
un bon concepteur de boîtes de dialogues, est très important
pour ajouter facilement de nouvelles fonctionnalités à FreeCAD.

Vous trouverez de plus amples informations, et une très bonne
documentation en ligne sur Qt (http://www.qtsoftware.com)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

180 sur 246 09/06/2015 15:05



Coin3D

Version: 2.0 ou plus

License: GPL v2.0 ou Commercial

Coin (http://www.coin3d.org/) est une bibliothèque graphique 3D
de haut niveau, avec une interface de programmation C++. Coin
utilise une structure de données scenegraph, pour rendre des
graphiques en temps réel, il est adapté à toutes sortes
d'applications de visualisation scientifique, et, d'ingénierie.

Coin est portable sur un large éventail de plates-formes : tous les
systèmes UNIX (http://fr.wikipedia.org/wiki/Unix) / Linux
(http://fr.wikipedia.org/wiki/Linux) / BSD (http://fr.wikipedia.org
/wiki/Berkeley_Software_Distribution), tous les systèmes
d'exploitation Microsoft Windows, et Mac OS X.

Coin est construit sur le standard industriel OpenGL
(http://fr.wikipedia.org/wiki/OpenGL) avec les bibliothèques de
rendu immédiat, et, ajoute les abstractions de primitives de haut
niveau, fournit une interactivité 3D, augmente considérablement
la commodité et la productivité du programmeur, contient de
nombreuses fonctions d'optimisations complexes, pour obtenir un
rendu rapide, et, de plus est transparent pour le programmeur
d'applications.

Coin est basé sur l'API SGI Open Inventor. Pour ceux qui ne
sont pas familier avec lui, dans la communauté scientifique et
d'ingénierie, Open Inventor est depuis longtemps, devenu de
facto, la bibliothèque graphique standard pour la visualisation 3D
et pour les logiciels de simulation visuelle. Sur une période de
plus de 10 ans, il a prouvé, qu'il en vaut la peine, sa maturité
contribue à son succès, en tant que fondation majeure dans des
milliers d'applications d'ingénierie de grande envergure à travers
le monde.

Nous allons utiliser OpenInventor en tant que visualiseur 3D dans
FreeCAD parce que les visualiseurs OpenCascade (AIS et
Graphics3D) ont leurs limites, à cause de grands flux de données,

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

181 sur 246 09/06/2015 15:05



et, quand il y a des rendus d'ingénierie à grande échelle. D'autres
choses, comme les textures ou le rendu volumétrique ne sont pas
bien pris en charge, et ainsi de suite ....

Depuis la version 2.0 Coin utilise un modèle de licence différente.
Ce n'est plus LGPL (http://fr.wikipedia.org
/wiki/Licence_publique_générale_limitée_GNU). Pour l'Open
source, ils utilisent le GPL (http://fr.wikipedia.org
/wiki/Licence_publique_générale_GNU), et, une licence
commerciale pour le source fermé. Cela signifie que si vous
voulez vendre votre ouvrage basé sur FreeCAD (modules
d'extension), vous devez acheter une licence Coin !

SoQt

Version: 1.2.0 ou plus

License: GPL v2.0 ou commercial

SoQt est l'inventeur de la liaison avec la boîte à outils Qt Gui.
Malheureusement, il n'est plus LGPL, et, nous devons donc le
supprimer du code de FreeCAD, et, le lier comme une
bibliothèque. Il a le même type de licence que Coin. Et vous
devez le compiler avec votre version de Qt.

Xerces-C++

Version: 2.7.0 ou plus

License: Apache Software License Version 2.0

Xerces-C++ (http://xerces.apache.org/xerces-c/) est un analyseur
de validation XML, écrit dans un sous-ensemble portable de C++.
Avec Xerces-C++, il est facile de donner à votre application la
capacité de lire et écrire des données au format XML
(http://fr.wikipedia.org/wiki/Extensible_Markup_Language). Une
bibliothèque partagée est prévue pour l'analyse, la génération, la
manipulation et la validation des documents XML
(http://fr.wikipedia.org/wiki/Extensible_Markup_Language).

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

182 sur 246 09/06/2015 15:05



Xerces-C++, est fidèle à la recommandation XML 1.0 et de
nombreuses normes connexes (voir Caractéristiques ci-dessous).

L'analyseur fournit, de hautes performances, la modularité et
l'évolutivité. Code source, les échantillons et documentation de
l'API (http://fr.wikipedia.org/wiki/Interface_de_programmation)
sont fournis avec l'analyseur. Pour la portabilité, nous avons pris
soin de faire une utilisation minimale de modèles, pas de RTTI
(http://fr.wikipedia.org/wiki/Run-time_type_information), et
l'utilisation minimale de #ifdef.

L'analyseur est utilisé, pour sauvegarder, et, restaurer les
paramètres dans FreeCAD.

Zlib

Version: 1.x.x

License: zlib Licence

zlib est conçu pour comprimer des données de toute sorte, il est
libre, et légalement utilisé, il n'est pas couvert par des brevets, il
compresse sans perte de données, et pour une utilisation sur
pratiquement n'importe quel matériel informatique et système
d'exploitation. Le format des données zlib est lui-même portable
sur toutes les plateformes. Contrairement à la méthode de
compression LZW (http://fr.wikipedia.org/wiki/Lempel-
Ziv-Welch) utilisée sous Unix compress(1) et dans le format
d'image GIF (http://fr.wikipedia.org
/wiki/Graphics_Interchange_Format), la méthode de compression
utilisée actuellement dans zlib, ne "gonfle" jamais les données.
(LZW peut doubler ou dans les cas extrêmes, tripler la taille du
fichier). L'empreinte mémoire de la librairie zlib, est également
indépendante des données entrées et peut être, si nécessaire,
réduite à un certain taux de compression.

Boost

Version: 1.33.x

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

183 sur 246 09/06/2015 15:05



License: Boost Software License - Version 1.0

Les bibliothèques Boost C++ sont une collection évaluées par
des pairs, les bibliothèques, sont open source, et, étendent les
fonctionnalités de C++. Les bibliothèques sont sous licence
Boost Software License, Boost est conçu, pour être utilisé avec
des projets open source et fermés. Beaucoup de programmeurs
Boost sont sur le C++ standard committee, et plusieurs
bibliothèques Boost ont été acceptées, pour leurs incorporations
dans le Technical Report 1 of C++0x.

Les bibliothèques Boost sont en C++, et, destinées à un large
éventail de programmeurs et un vaste domaine d'applications.
Les bibliothèques sont conçues à des fins générales, comme pour
SmartPtr, à des applications comme OS et FileSystem, et a des
bibliothèques principalement destinées aux développeurs de
bibliothèques et d'autres utilisateurs avancés en C++, comme la
bibliothèque MPL (http://fr.wikipedia.org
/wiki/Mozilla_Public_License).

Afin d'assurer l'efficacité et la flexibilité, Boost fait un usage
intensif de modèles (templates). Boost a été une source de
travail, et, de recherches approfondies dans la programmation
générique, et, méta-données en C++.

Allez voir sur : boost (http://www.boost.org/) pour plus de détails.

LibPack

LibPack est un package pratique, avec toutes les bibliothèques
décrites ci-dessus, en un seul paquet. Il est actuellement
disponible pour la plate-forme Windows, sur la page de
téléchargement ! Si vous travaillez sous Linux, vous n'avez pas
besoin d'un LibPack, à la place, utilisez les dépôts (package
repositories) de votre distribution Linux.

FreeCADLibs7.x Changelog

Utilisation de QT 4.5.x et Coin 3.1.x
Eigen ajout de template lib pour Robot

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

184 sur 246 09/06/2015 15:05



< précédent: CompileOnMac suivant: Third Party Tools >

SMESH expérimental

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

185 sur 246 09/06/2015 15:05



Page d'outils

Pour chaque développement de logiciels sérieux, vous avez
besoin d'outils sérieux. Voici une liste d'outils, que nous utilisons
pour développer FreeCAD :

Outils indépendants de la plate-forme

Qt-Toolkit

Qt-toolkit est un outil de conception d'interfaces utilisateur,
indépendamment de la plate forme utilisée. Elle est contenue
dans le LibPack de FreeCAD, mais peut aussi être téléchargé à
l'adresse Qt project (http://qt-project.org/downloads).

InkScape

Excellent programme de dessin vectoriel. Adhère à la norme SVG
(http://fr.wikipedia.org/wiki/Scalable_Vector_Graphics), et, est
utilisé pour dessiner les icônes et les images. Pour le télécharger,
allez sur inkscape (http://inkscape.org/?lang=fr&css=css
/base.css).

Doxygen

Un très bon outil, stable, il génère de la documentation à partir
de fichiers sources .h et .cpp .

Gimp

Pas grand chose à dire sur le célèbre Gnu Image Manipulation
Program. Outre, qu'il peut gérer les fichiers .Xpm, qui est un
moyen très pratique pour créer les icônes dans le programme
Qt-Toolkit. Le format .XPM est fondamentalement C-Code, qui
peut être compilé, dans un programme comme Qt-Toolkit.

Téléchargez la dernière version de GIMP ici
(http://www.gimp.org/)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

186 sur 246 09/06/2015 15:05



Outils pour Windows

Visual Studio 8 Express

Bien que VC8 pour le développement en C++, n'est pas vraiment
un pas en avant depuis VisualStudio 6 (plutôt un grand pas en
arrière), soit un système de développement libre sur Windows.
Pour les applications natives Win32, vous devez télécharger le
PlatformSDK de M$ (http://www.microsoft.com/en-us
/download/details.aspx?id=6510), l'édition Express est difficile
à trouver.

Mais vous pouvez essayer ce lien Visual Studio Express
(http://msdn.microsoft.com/vstudio/express/visualc/default.aspx).

CamStudio

CamStudio est un outil Open Source pour créer des
enregistrements vidéos d'écran (Webcasts). C'est un très bon
outil, pour créer des tutoriels vidéos (avec ou sans son), en
enregistrant toutes vos opérations et mouvements de souris, qui
se passent sur votre écran . Une vidéo est bien moins ennuyeuse,
que l'écriture d'une documentation.

Vous pouvez aller voir le site de camstudio (http://camstudio.org/)
pour plus de détails.

Tortoise SVN

Il s'agit d'un très bon outil. Il rend l'utilisation de Subversion
(notre système de contrôle de versions sur sf.net) en un réel
plaisir. Vous pouvez penser à l'intégration de l'explorateur, de
gérer facilement des révisions, de consulter les différences, de
résoudre les conflits, assurer les branches, et ainsi de suite .... La
boîte de dialogue en elle-même est une œuvre d'art. Elle vous
donne un aperçu sur vos fichiers modifiés et vous permet de les
valider ou non. Il est alors facile de rassembler les modifications

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

187 sur 246 09/06/2015 15:05



< précédent: Third Party Libraries
suivant: Start up and Configuration >

apportées aux unités logiques et de leurs donner un message
clair de validation.

Vous trouverez sur tortoisesvn.tigris.org
(http://tortoisesvn.tigris.org/).

StarUML

StarUML est un programme Open Source. Il a beaucoup de
caractéristiques des grands, y compris l'engeniering inverse du
code source C++ ....

Téléchargez le ici : staruml.sourceforge.net
(http://staruml.sourceforge.net/en/)

Outils pour Linux

A venir.

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

188 sur 246 09/06/2015 15:05



Cette page montre, les différentes façons de lancer FreeCAD, et,
ses configurations les plus importantes.

Démarrer FreeCAD en ligne de
commande

FreeCAD peut être lancé normalement, en double-cliquant sur
son icône qui est sur le bureau, ou, en le sélectionnant dans le
menu de démarrage, mais, il peut également être lancé
directement à partir de la ligne de commande. Cela vous permet
de changer les options de démarrage par défaut SOEM.

Les options disponibles en ligne de commande

Les options en ligne de commande sont l'objet de fréquents
changements, il est donc sage de vérifier les options de votre
version courante en tapant :

FreeCAD --help

Les réponses disponibles, sont dans les paramètres :

Usage:
FreeCAD [options] File1 File2 .....
Allowed options:  

Generic options:
 -v [ --version ]      print version string
 -h [ --help ]         print help message
 -c [ --console ]      start in console mode
 --response-file arg   can be specified with '@name', too

Configuration:
 -l [ --write-log ] arg    write a log file to default location(Run FreeCAD --h to see default location)
 --log-file arg            Unlike to --write-log this allows to log to an arbitrary file
 -u [ --user-cfg] arg      User config file to load/save user settings
 -s [ --system-cfg] arg    System config file to load/save system settings
 -t [ --run-test ] arg     test level
 -M [ --module-path ] arg  additional module paths
 -P [ --python-path ] arg  additional python paths 

EX: (Windows)

"C:\Program Files\FreeCAD 0.14\bin\FreeCAD.exe" -M "N:\FreeCAD\Mod\Draft" -M "N:\FreeCAD\Mod\Part" -M "N:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

189 sur 246 09/06/2015 15:05



"Response" fichiers de configurations

Vous pouvez lire certaines options de FreeCAD à partir d'un
fichier de configuration. Ce fichier doit être dans le répertoire
/bin et doit être nommé FreeCAD.cfg. Notez, que les options
spécifiées en ligne de commande, remplacent le fichier de
configuration !

Certains systèmes d'exploitation ont une limite assez courte de la
longueur de la chaîne, en ligne de commande. La façon courante
de contourner ces limitations, est l'utilisation des fichiers de
Response. Un fichier de Response n'est qu'un fichier de
configuration, qui utilise la même syntaxe qu'a la ligne de
commande. Si la ligne de commande spécifie un nom de fichier
de Response à utiliser, il est chargé analysé, et s'ajoute à la ligne
de commande :

FreeCAD @ResponseFile.txt 

ou :

FreeCAD --response-file=ResponseFile.txt

Options cachées

Il y a des options qui sont invisibles à l'utilisateur. Ces options
sont par exemple, les paramètres X-Window analysés par le
système Windows:

-display display, définit l'affichage X (valeur par défaut est
$DISPLAY).
-geometry geometry, la géométrie fixe de la première
fenêtre client qui est affichée.
-fn or -font font, définit la police de l'application. La police
doit être spécifié en utilisant la X logical font description.
-bg or -background color, définit la couleur de fond par
défaut et une palette d'applications (tons clairs et foncés sont

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

190 sur 246 09/06/2015 15:05



calculés).
-fg or -foreground color, définit la couleur de premier plan
par défaut.
-btn or -button color, définit la couleur des boutons par
défaut.
-name name, définit le nom de l'application.
-title title, définit le titre de l'application.
-visual TrueColor, force l'application à utiliser un visuel
TrueColor sur un affichage 8-bits.
-ncols count, limite le nombre de couleurs allouées dans le
cube de couleur sur un écran 8-bits, si l'application utilise la
spécification de couleur QApplication::ManyColor. Si le
nombre est 216, puis un cube 6x6x6 couleurs est utilisé (soit
6 niveaux de rouge, 6 de vert, et 6 de bleu); pour d'autres
valeurs, un cube à peu près proportionnel à un cube 2x3x1
couleurs est utilisé.
-cmap, provoque l'installation d'une carte de couleurs
privées à l'application, sur un affichage 8-bits.

Démarrer FreeCAD sans interface
utilisateur

Normalement, FreeCAD démarre en mode graphique (GUI), mais
vous pouvez aussi le forcer à démarrer en mode console en
tapant :

FreeCAD -c

En ligne de commande. En mode console, aucune interface
utilisateur, ne sera affichée, et l'invite vous sera présenté avec un
interpréteur Python.

A partir de ce prompt Python, vous avez les mêmes
fonctionnalités que l'interpréteur Python qui fonctionne au sein
de l'interface graphique de FreeCAD, et, un accès normal à tous
les modules et plugins de FreeCAD, à l'exception du module
FreeCADGui. Notez que les modules qui dépendent de
FreeCADGui peuvent également être inaccessibles.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

191 sur 246 09/06/2015 15:05



Exécuter FreeCAD comme un module
Python

FreeCAD peut également être utilisé et exécuté en tant que
module Python à l'intérieur d'autres applications, qui utilisent
Python, ou, à partir d'un shell Python externe. Pour cela,
l'application hôte Python doit savoir où résident vos libs
FreeCAD. La meilleure façon de l'obtenir, c'est d'annexer
temporairement le chemin des libs de FreeCAD à la variable
sys.path. Le code suivant tapé à partir de n'importe quel shell
Python va importer FreeCAD, et vous permettre de l'exécuter de
la même manière que dans le mode console :

import sys
sys.path.append("path/to/FreeCAD/lib") # change this by your own FreeCAD lib path
import FreeCAD

Une fois que FreeCAD est chargé, c'est à vous de le faire
interagir avec votre application hôte de toutes les manières que
vous pouvez imaginer !

Ensemble de configuration

A chaque démarrage, FreeCAD examine ses environs, ainsi que
les paramètres en ligne de commande. Il construit un ensemble
de configurations qui détiennent le cœur des informations
d'exécution. Ces informations sont ensuite utilisées pour
déterminer l’emplacement, où enregistrer les données des
utilisateurs ou des fichiers journaux. Il est également très
important après analyse post-mortem. Par conséquent, il est
enregistré dans le fichier journal (log file).

Informations correspondantes à l'utilisateur

L'appel se fait de la manière suivants :

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

192 sur 246 09/06/2015 15:05



path = FreeCAD.ConfigGet("UserAppData")

User config entries

Config nom var Synopsis Exemple M$
Exemple Posix

(Linux)

UserAppData

Chemin où
FreeCAD
met les
données
utilisateur
de
l'application.

C:\Documents and
Settings\username
\Application
Data\FreeCAD

/home/username
/.FreeCAD

UserParameter

Chemin où
FreeCAD
met les
fichier
utilisateur
de
l'application.

C:\Documents and
Settings\username
\Application
Data\FreeCAD
\user.cfg

/home/username
/.FreeCAD
/user.cfg

SystemParameter

Fichier où
sont les
données de
l'application.

C:\Documents and
Settings\username
\Application
Data\FreeCAD
\system.cfg

/home/username
/.FreeCAD
/system.cfg

UserHomePath

Chemin
racine de
l'utilisateur
courant.

C:\Documents and
Settings\username\My
Documents

/home/username

Arguments en ligne de commande

User config entries

Config nom var Synopsis Exemple

LoggingFile
1 si
l'enregistrement est
activé

1

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

193 sur 246 09/06/2015 15:05



LoggingFileName
Nom où est placé le
fichier journal

C:\Documents and
Settings\username
\Application
Data\FreeCAD
\FreeCAD.log

RunMode

Cela indique
comment la boucle
principale
travaillera. "Script"
signifie que le script
donné est appelé
puis quitté. "Cmd"
est destiné à
l’interpréteur en
ligne de commande.
"Internal" exécute
un script interne.
"Gui" entre dans la
boucle d'évènement
Gui. "Module"
charge un module
Python donné.

"Cmd"

FileName
Dépend du
RunMode

ScriptFileName
Dépend du
RunMode

Verbose
Niveau de
commentaire de
FreeCAD

"" or "strict"

OpenFileCount

Donne le nombre de
dossiers ouverts par
les arguments en
ligne de commande

"12"

AdditionalModulePaths

Contient les
chemins, des
modules
supplémentaires

"extraModules/"

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

194 sur 246 09/06/2015 15:05



donnés dans la ligne
de commande

Systèmes liés

L'appel se fait de la manière suivants :

path = FreeCAD.ConfigGet("AppHomePath")

User config entries

Config var name Synopsis Exemple M$
Exemple

Posix
(Linux)

AppHomePath
Chemin où
est installé
FreeCAD

c:/Progam
Files/FreeCAD_0.7

/user/local
/FreeCAD_0.7

PythonSearchPath

Donne une
liste de
chemins que
les modules
Python
recherchent.
S'effectue
au
démarrage,
et peut
changer en
cours
d'exécution

Certaines bibliothèques, ont besoin d'appeler les variables
d'environnement système. Parfois, il y a des problèmes avec une
installation de FreeCAD, c'est parce que certaines variables
d'environnements sont absentes ou mal réglées. Par conséquent,
certaines variables importantes se reproduisent dans la
configuration et enregistrées dans le fichier journal (log file).

Variables d’environnement relatifs à Python :

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

195 sur 246 09/06/2015 15:05



PYTHONPATH
PYTHONHOME
TCL_LIBRARY
TCLLIBPATH

Variables d’environnement relatifs à OpenCascade :

CSF_MDTVFontDirectory
CSF_MDTVTexturesDirectory
CSF_UnitsDefinition
CSF_UnitsLexicon
CSF_StandardDefaults
CSF_PluginDefaults
CSF_LANGUAGE
CSF_SHMessage
CSF_XCAFDefaults
CSF_GraphicShr
CSF_IGESDefaults
CSF_STEPDefaults

Variables d’environnement relatifs au Système :

PATH

Construire des informations connexes

Le tableau ci-dessous montre les informations générées par la
version disponible. La plupart viennent du dépôt de Subversion.
Cette astuce est nécessaire pour reconstruire exactement une
version !

User config entries

Config var name Synopsis Exemple

BuildVersionMajor

Numéro de
version majeure
de la
construction.
Définie dans
src/Build

0

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

196 sur 246 09/06/2015 15:05



/Version.h.in

BuildVersionMinor

Numéro de
version mineure
de la
construction.
Définie dans
src/Build
/Version.h.in

7

BuildRevision

Nombre SVN
révision du
référentiel du src
dans la
construction.
Généré par SVN

356

BuildRevisionRange
Gamme de
changements
différentes

123-356

BuildRepositoryURL Repository URL

https://free-
cad.svn.sourceforge.net
/svnroot/free-
cad/trunk/src

BuildRevisionDate

Date de la
révision
susmentionnée
ci-dessus

2007/02/03 22:21:18

BuildScrClean

Indicates if the
source was
changed ager
checkout

Src modified

BuildScrMixed Src not mixed

Image de marque liée

Ces entrées de configuration sont liées au mécanisme de l'image
de marque de FreeCAD. Voir Branding pour plus de

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

197 sur 246 09/06/2015 15:05



renseignements.

User config entries

Config nom var Synopsis Exemple

ExeName

Nom du fichier
exécutable de
compilation. Ce nom
peut être différent de
FreeCAD si un
main.cpp différent est
utilisé.

FreeCAD.exe

ExeVersion
La version présente au
moment de la
compilation

V0.7

AppIcon

L'icône qui est utilisé
pour l'exécutable,
affichée dans
application
MainWindow

"FCIcon"

ConsoleBanner
Bannière qui est invité
en mode console

SplashPicture
Nom de l'icône utilisée
pour l'écran de
démarrage

"FreeCADSplasher"

SplashAlignment
Alignement du texte
dans la boîte de
dialogue Splash

Left"

SplashTextColor
Couleur du texte
splasher

"#000000"

StartWorkbench

Nom du Workbech qui
commence
automatiquement
après le démarrage

"Part design"

HiddenDockWindow

Liste des dockwindows
(séparés par un point-
virgule) qui seront

"Property editor"

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

198 sur 246 09/06/2015 15:05



< précédent: Third Party Tools suivant: FreeCAD Build Tool >

désactivés

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

199 sur 246 09/06/2015 15:05



L'outil de construction de FreeCAD ou fcbt est un script
python situé à :

 trunc/src/Tools/fcbt.py

Il peut être utilisé, pour simplifier certaines tâches fréquemment
utilisées dans la construction (compilation), la distribution, et,
l'extension de FreeCAD.

Utilisation

Quand Python (http://fr.wikipedia.org/wiki/Python_(langage)) est
correctement installé, fcbt peut être invoqué par la commande :

 python fbct.py

Il affiche un menu, où vous pouvez sélectionner la tâche, que
vous souhaitez utiliser pour :

FreeCAD Build Tool
 Usage:
    fcbt <command name> [command parameter]
 possible commands are:
  - DistSrc         (DS)   Build a source Distr. of the current source tree
  - DistBin         (DB)   Build a binary Distr. of the current source tree
  - DistSetup       (DI)   Build a Setup Distr. of the current source tree
  - DistSetup       (DUI)  Build a User Setup Distr. of the current source tree
  - DistAll         (DA)   Run all three above modules
  - NextBuildNumber (NBN)  Increase the Build Number of this Version
  - CreateModule    (CM)   Insert a new FreeCAD Module in the module directory

 For help on the modules type:
   fcbt <command name> ?

À l'invite de commande, entrez la commande abrégée que vous
voulez appeler. Par exemple, tapez «CM» pour la création d'un
module.

DistSrc

La commande "DS" Crée le source de la distribution de l'arbre
source de courant.

DistBin

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

200 sur 246 09/06/2015 15:05



< précédent: Start up and Configuration
suivant: Module Creation >

La commande "DB" Créer une distribution binaire de l'arbre
source de courant.

DistSetup

La commande "DI" crée une distribution d'installation de l'arbre
source de courant.

DistSetup

La commande "DUI" crée une distribution de configuration
utilisateur de l'arbre source de courant.

DistAll

La commande "DA" exécute la séquence "DS", "DB" et "DI".

NextBuildNumber

La commande "NBN" incrémente le numéro de compilation pour
créer une nouvelle version de FreeCAD.

CreateModule

La commande "CM" crée un nouveau module de l'application.

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

201 sur 246 09/06/2015 15:05



Ajouter de nouveaux modules et boîtes à outils dans FreeCAD
est très facile. Nous appelons module, toute extension de
FreeCAD, tandis qu'un plan de travail (workbench) est une
configuration spéciale GUI (http://fr.wikipedia.org
/wiki/Interface_graphique), habituellement, les groupes de
barres d'outils et de menus. Vous créez un nouveau module qui
contient son propre plan de travail (sa barre d'outils et ses
commandes).

Les modules peuvent être programmés en C++
(http://fr.wikipedia.org/wiki/C%2B%2B) ou en Python
(http://fr.wikipedia.org/wiki/Python_(langage)), ou un mélange
des deux, mais les fichiers de module d'initialisation, doivent être
en Python. La mise en place d'un nouveau module, avec les
fichiers d'initialisation est facile, et, peut être effectuée, soit
manuellement, soit avec l'outil build de FreeCAD.

Utilisation des outils de FreeCAD

La création d'un nouveau module dans FreeCAD est assez
simple. Dans l'arborescence de développement de FreeCAD, il
existe l'outil FreeCAD Build Tool (fcbt) qui, fait les choses les plus
importantes pour vous.
Il s'agit d'un script Python (http://fr.wikipedia.org
/wiki/Python_(langage)) situé à :

 trunk/src/Tools/fcbt.py

Lorsque votre interpréteur Python (http://fr.wikipedia.org
/wiki/Python_(langage)) est correctement installé, vous pouvez
exécuter le script en ligne de commande avec :

 python fcbt.py

Le menu suivant s'afficher :

 FreeCAD Build Tool
 Usage:
    fcbt <command name> [command parameter] 

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

202 sur 246 09/06/2015 15:05



 possible commands are:
  - DistSrc         (DS)   Build a source Distr. of the current source tree
  - DistBin         (DB)   Build a binary Distr. of the current source tree
  - DistSetup       (DI)   Build a Setup Distr. of the current source tree
  - DistSetup       (DUI)  Build a User Setup Distr. of the current source tree
  - DistAll         (DA)   Run all three above modules
  - BuildDoc        (BD)   Create the documentation (source docs)
  - NextBuildNumber (NBN)  Increase the Build Number of this Version
  - CreateModule    (CM)   Insert a new FreeCAD Module in the module directory

 For help on the modules type:
   fcbt <command name> ?

À l'invite de comande, entrez CM pour commencer la création
d'un module :

 Insert command: ''CM''

Vous êtes maintenant invité à spécifier un nom pour votre
nouveau module.
Appelons le TestMod par exemple :

 Please enter a name for your application: ''TestMod''

Après avoir validé, fcbt commence à copier, tous les fichiers
nécessaires pour votre module dans un nouveau dossier, à :

 trunk/src/Mod/TestMod/

Puis, tous les fichiers sont modifiés avec votre nouveau nom de
module. La seule chose que vous devez faire maintenant, est
d'ajouter les deux nouveaux projets, "appTestMod" et
"appTestModGui", à votre espace de travail (sous Windows) ou
à vos objectifs Makefile (unix). C'est tout !

Mise en place d'un nouveau module
manuellement

Vous avez besoin de deux choses, pour créer un nouveau module :

Un nouveau dossier dans le dossier Mod de FreeCAD (soit
dans Installationd_Path/FreeCAD/Mod ou dans
UserPath/.FreeCAD/Mod). Vous pouvez le nommer comme

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

203 sur 246 09/06/2015 15:05



vous le souhaitez.
Dans ce dossier, il y a un fichier InitGui.py. Ce fichier sera
automatiquement exécuté au démarrage de FreeCAD (par ex,
mettre un print("Bonjour tout le monde") à l'intérieur)

En outre, vous pouvez également ajouter un fichier Init.py. La
différence est, que le fichier InitGui.py n'est chargé que lorsque
FreeCAD fonctionne en mode graphique (InitGUI), et, le fichier
Init.py est toujours chargé. Mais si nous faisons un plan de
travail (workbench), nous allons le mettre en InitGui.py, parce
les outils, sont utilisés uniquement en mode GUI, bien sûr.

Création de nouveaux outils

Une des premières choses que vous voudrez faire, est de définir
un plan de travail dans le fichier InitGui.py.
Voici un petit code que vous pouvez utiliser :

class MyWorkbench ( Workbench ):
"My workbench object"

 Icon = """
 /* XPM */
 static const char *test_icon[]={
 "16 16 2 1",
 "a c #000000",
 ". c None",
 "................",
 "................",
 "..############..",
 "..############..",
 "..############..",
 "......####......",
 "......####......",
 "......####......",
 "......####......",
 "......####......",
 "......####......",
 "......####......",
 "......####......",
 "......####......",
 "................",
 "................"};
 """
 MenuText = "My Workbench"
 ToolTip = "This is my extraordinary workbench"

def GetClassName(self):
return "Gui::PythonWorkbench"

def Initialize(self):
import myModule1, myModule2
self.appendToolbar("My Tools", ["MyCommand1","MyCommand2"])
self.appendMenu("My Tools", ["MyCommand1","MyCommand2"])

 Log ("Loading MyModule... done\n")

def Activated(self):
# do something here if needed...

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

204 sur 246 09/06/2015 15:05



 Msg ("MyWorkbench.Activated()\n")

def Deactivated(self):
# do something here if needed...

 Msg ("MyWorkbench.Deactivated()\n")

 FreeCADGui.addWorkbench(MyWorkbench)

L'atelier (boîte à outils) doit disposer de toutes ces définissions
(attributs) :

Icon L'attribut Icon est une image XPM
(http://fr.wikipedia.org/wiki/X_PixMap) (La plupart des
logiciels tel que GIMP (http://www.gimp.org/) permet de
convertir une image en format xpm, qui, est un simple fichier
texte. Vous pouvez ensuite coller le contenu ici).
MenuText est le nom établi tel qu'il apparaîtra dans la liste
établis (boîte à outils).
Tooltip (Info-bulle) s'affiche lorsque vous le survolez avec la
souris.
Initialize() est exécuté au chargement de FreeCAD, et doit
créer tous les menus, et, barres d'outils que le plan de travail
(workbench) va utiliser. Si vous faites votre module en C++,
vous pouvez aussi définir vos menus et barres d'outils à
l'intérieur du module C++, et pas dans le fichier InitGui.py.
L'important est, qu'il soit créé maintenant, et pas lorsque le
module est activé.
Activated() est exécuté, lorsque l'utilisateur bascule sur
votre plan de travail (module).
Deactivated() est exécuté, lorsque l'utilisateur bascule de
vôtre atelier (module), à un autre atelier (module) ou, quitte
FreeCAD

Creation de commandes FreeCAD en
Python

Habituellement, vous définissez tous vos outils (appelés
commandes dans FreeCAD), dans un autre module, puis importez
ce module, avant de créer les barres d'outils et de menus.
Il s'agit ici d'un code minimum, que vous pouvez utiliser pour
définir une commande :

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

205 sur 246 09/06/2015 15:05



import FreeCAD,FreeCADGui

class MyTool:
"My tool object"

def GetResources(self):
return {"MenuText": "My Command",

"Accel": "Ctrl+M",
"ToolTip": "My extraordinary command",
"Pixmap"  : """

 /* XPM */
 static const char *test_icon[]={
 "16 16 2 1",
 "a c #000000",
 ". c None",
 "................",
 "................",
 "..############..",
 "..############..",
 "..############..",
 "......####......",
 "......####......",
 "......####......",
 "......####......",
 "......####......",
 "......####......",
 "......####......",
 "......####......",
 "......####......",
 "................",
 "................"};
 """}

def IsActive(self):
if FreeCAD.ActiveDocument == None:

return False
else:

return True

def Activated(self):
# do something here...

 FreeCADGui.addCommand('MyCommand1',MyTool())

La méthode GetResources() doit retourner un dictionnaire
avec les attributs visuels de votre outil. Accel, définit une
touche de raccourci, mais, n'est pas obligatoire.
IsActive() définit si la commande est active, ou grisée dans
les menus, et, barres d'outils.
La méthode Activated() est exécutée lorsque la commande
est appelée par un bouton de la barre d'outils, ou dans le
menu, ou même par le script.

Création d'une commande FreeCAD en
C++

Bientôt documentée.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

206 sur 246 09/06/2015 15:05



< précédent: FreeCAD Build Tool suivant: Debugging >Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

207 sur 246 09/06/2015 15:05



Premiers tests

Avant de passer à la douloureuse phase de débogage, utilisez le
framework de tests, pour vérifier, si les tests standards
fonctionnent correctement. Si ce n'est pas le cas, c'est peut-être
dû a une installation défectueuse.

Ligne de commande

Le débogage de FreeCAD est supporté par quelques mécanismes
internes. La version en ligne de commande de FreeCAD fournit
des options d'aide au débogage :

-v
Avec l'option "v", FreeCAD donne une sortie plus verbeuse
(plus documentée).

-l
Avec l'option "l", FreeCAD écrit des informations
supplémentaires dans un fichier .log.

These are the currently recognized options in FreeCAD 0.15:

Generic options:

 -v [ --version ]      Prints version string
 -h [ --help ]         Prints help message
 -c [ --console ]      Starts in console mode
 --response-file arg   Can be specified with '@name', too

Configuration:

 -l [ --write-log ]       Writes a log file to:
                          /home/graphos/.FreeCAD/FreeCAD.log
 --log-file arg           Unlike to --write-log this allows to log to an 
                          arbitrary file
 -u [ --user-cfg ] arg    User config file to load/save user settings
 -s [ --system-cfg ] arg  Systen config file to load/save system settings
 -t [ --run-test ] arg    Test level
 -M [ --module-path ] arg Additional module paths
 -P [ --python-path ] arg Additional python paths

Generating a Backtrace

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

208 sur 246 09/06/2015 15:05



If you are running a version of FreeCAD from the bleeding edge
of the development curve, it may "crash". You can help solve such
problems by providing the developers with a "backtrace". To do
this, you need to be running a "debug build" of the software.
"Debug build" is a parameter that is set at compile time, so you'll
either need to compile FreeCAD yourself, or obtain a
pre-compiled "debug" version.

For Linux

Prerequisites:

software package gdb installed
a debug build of FreeCAD
a FreeCAD model that causes a crash

Steps: Enter the following in your terminal window:

$ cd FreeCAD/bin
$ gdb FreeCAD

GNUdebugger will output some initializing information. The
(gdb) shows GNUDebugger is running in the terminal, now input:

(gdb) handle SIG33 noprint nostop
(gdb) run

FreeCAD will now start up. Perform the steps that cause
FreeCAD to crash or freeze, then enter in the terminal window:

(gdb) bt

This will generate a lengthy listing of exactly what the program
was doing when it crashed or froze. Include this with your
problem report.

Python Debugging

Here is an example of using winpdb inside FreeCAD:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

209 sur 246 09/06/2015 15:05



< précédent: Module Creation suivant: Testing >

Run winpdb and set the password (e.g. test)1. 
Create a Python file with this content2. 

import rpdb2
 rpdb2.start_embedded_debugger("test")
import FreeCAD
import Part
import Draft
print "hello"
print "hello"
import Draft
 points=[FreeCAD.Vector(-3.0,-1.0,0.0),FreeCAD.Vector(-2.0,0.0,0.0)]
 Draft.makeWire(points,closed=False,face=False,support=None)

Start FreeCAD and load the above file into FreeCAD1. 
Press F6 to execute it2. 
Now FreeCAD will become unresponsive because the Python
debugger is waiting

3. 

Switch to the Windpdb GUI and click on "Attach". After a few
seconds an item "<Input>" appears where you have to
double-click

4. 

Now the currently executed script appears in Winpdb.5. 
Set a break at the last line and press F56. 
Now press F7 to step into the Python code of Draft.makeWire7. 

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

210 sur 246 09/06/2015 15:05



FreeCAD est livré avec un vaste cadre de test. Les tests de bases
sont basés, sur un ensemble de scripts Python, qui sont situées
dans le module test (....FreeCAD.../Mod/Test).

Introduction

This is the list of test apps as of 0.15 Git 4207:

TestAPP.All

Add test function

BaseTests

Add test function

UnitTests

Add test function

Document

Add test function

UnicodeTests

Add test function

MeshTestsApp

Add test function

TestSketcherApp

Add test function

TestPartApp

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

211 sur 246 09/06/2015 15:05



< précédent: Debugging suivant: Branding >

Add test function

TestPartDesignApp

Add test function

Workbench

Add test function

Menu

Add test function

Menu.MenuDeleteCases

Add test function

Menu.MenuCreateCases

Add test function

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

212 sur 246 09/06/2015 15:05



Cet article décrit l'image de marque de FreeCAD. Branding,
est le moyen de lancer votre propre application, sur les bases de
FreeCAD.

Cela ne concerne que votre propre exécutable, ou, votre écran de
démarrage (splash screen) ou jusqu'à ce que le programme
complet soit retravaillé (refonte totale).

Grâce aux bases très souples de l'architecture de FreeCAD, il est
très facile de l'utiliser, comme fondation pour votre programme
personnalisé, ou pour une utilisation spécifique.

Generalités

La plupart des marques (branding) se font dans MainCmd.cpp,
ou, MainGui.cpp. Ces projets génèrent les fichiers exécutables
de FreeCAD.

Pour faire votre propre marque (branding), il suffit de copier
Main (les projets principaux) ou MainGui (les projets
graphiques GUI), et donner à l'exécutable un nom qui vous est
propre, pour notre exemple, FooApp.exe. Les paramètres les
plus importants pour un nouveau look, ne peuvent être fait qu'en
un seul endroit, dans la fonction main().

Voici la section de code qui contrôle la marque (branding) :

int main( int argc, char ** argv )
{
   // Name and Version of the Application
   App::Application::Config()["ExeName"] = "FooApp";
   App::Application::Config()["ExeVersion"] = "0.7";

   // set the banner (for loging and console)
   App::Application::Config()["CopyrightInfo"] = sBanner;
   App::Application::Config()["AppIcon"] = "FooAppIcon";
   App::Application::Config()["SplashScreen"] = "FooAppSplasher";
   App::Application::Config()["StartWorkbench"] = "Part design";
   App::Application::Config()["HiddenDockWindow"] = "Property editor";
   App::Application::Config()["SplashAlignment" ] = "Bottom|Left";
   App::Application::Config()["SplashTextColor" ] = "#000000"; // black

   // Inits the Application 
   App::Application::Config()["RunMode"] = "Gui";
   App::Application::init(argc,argv);

   Gui::BitmapFactory().addXPM("FooAppSplasher", ( const char** ) splash_screen);

   Gui::Application::initApplication();
   Gui::Application::runApplication();
   App::Application::destruct();

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

213 sur 246 09/06/2015 15:05



return 0;
}

La première entrée, ::Config définit le nom du programme ici,
"FooApp.exe". Ce n'est pas le nom de l'exécutable qui peut être
modifié en le renommant, ou par les paramètres du compilateur,
mais le nom qui est affiché dans la barre des tâches sur les
fenêtres, ou dans la liste des programmes sur les systèmes Unix.

Les lignes suivantes définissent les entrées de configuration de
votre application "FooApp", une description de la configuration,
et de ses entrées, que vous trouverez dans Start up and
Configuration.

Images

Image resources are compiled into FreeCAD using Qt's resource
system (http://qt-project.org/doc/qt-4.8/resources.html).
Therefore you have to write a .qrc file, an XML-based file format
that lists image files on the disk but also any other kind of
resource files. To load the compiled resources inside the
application you have to add a line

 Q_INIT_RESOURCE(FooApp);

into the main() function. Alternatively, if you have an image in
XPM format you can directly include it into your main.cpp and
add the following line to register it:

 Gui::BitmapFactory().addXPM("FooAppSplasher", ( const char** ) splash_screen);

Branding XML

In FreeCAD there is also a method supported without writing a
customized main() function. For this method you must write a file
name called branding.xml and put it into the installation
directory of FreeCAD. Here is an example with all supported
tags:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

214 sur 246 09/06/2015 15:05



< précédent: Testing suivant: Localisation >

<?xml version="1.0" encoding="utf-8"?>
<Branding>

<Application>FooApp</Application>
<WindowTitle>Foo App in title bar</WindowTitle>
<BuildVersionMajor>1</BuildVersionMajor>
<BuildVersionMinor>0</BuildVersionMinor>
<BuildRevision>1234</BuildRevision>
<BuildRevisionDate>2014/1/1</BuildRevisionDate>
<CopyrightInfo>(c) My copyright</CopyrightInfo>
<MaintainerUrl>Foo App URL</MaintainerUrl>
<ProgramLogo>Path to logo (appears in bottom right corner)</ProgramLogo>
<WindowIcon>Path to icon file</WindowIcon>
<ProgramIcons>Path to program icons</ProgramIcons>
<SplashScreen>splashscreen.png</SplashScreen>
<SplashAlignment>Bottom|Left</SplashAlignment>
<SplashTextColor>#ffffff</SplashTextColor>
<SplashInfoColor>#c8c8c8</SplashInfoColor>
<StartWorkbench>PartDesignWorkbench</StartWorkbench>

</Branding>

All of the listed tags are optional.

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

215 sur 246 09/06/2015 15:05



Localisation en général, est le processus de fourniture d'un
logiciel avec une interface utilisateur (GUI) en plusieurs langues.
Dans FreeCAD vous pouvez définir la langue d'interface
utilisateur sous l'application Edition → Préférences → Général
→ Onglet Général → général → Langue → Changer la langue.
FreeCAD utilise Qt (http://fr.wikipedia.org/wiki/Qt) pour activer le
support de plusieurs langues. Sur les systèmes Unix/Linux,
FreeCAD utilise les paramètres régionaux actuels de votre
système par défaut.

Aider à la traduction de FreeCAD

Une des choses les plus très importantes que vous pouvez faire
pour FreeCAD, si vous n'êtes pas programmeur, est de porter
votre aide, pour traduire le programme dans votre langue. Pour
ce faire, c'est maintenant très facile, avec la collaboration de
Crowdin (http://crowdin.net)  et l'utilisation de son système
de traduction en ligne.

Comment traduire ?

Aller à la page du projet de traduction de FreeCAD
(http://crowdin.net/project/freecad) sur crowdin ;
Connectez-vous en créant un nouveau profil, ou, en utilisant
un compte tiers, comme votre adresse GMail;
Cliquez sur la langue à laquelle vous souhaitez travailler ;
Commencez la traduction en cliquant sur le bouton Traduire
à côté des fichiers. Par exemple, FreeCAD.ts contient les
chaînes de texte pour l'interface principale de FreeCAD .
Vous pouvez opter pour les traductions existantes, ou vous
pouvez créer une nouvelle langue.

PS : Si vous prenez une part active dans la traduction de FreeCAD, et, que vous voulez être informé avant le lancement de

il est donc temps de revoir votre traduction, dans ce cas, s'il vous plaît abonnez vous sur : la page dédiée

Traduire avec Qt Linguist (ancienne méthode)

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

216 sur 246 09/06/2015 15:05



[afficher]The following information doesn't need to be used
anymore and will likely become obsolete.

It is being kept here so that programmers may familiarize
themselves with how it works.

Préparer vos propres modules ou
applications pour la traduction

Prérequis

Pour localiser les modules d'applications dont vous avez besoin
pour Qt, vous pouvez les télécharger à partir du site Web de
Trolltech (http://www.trolltech.com/products/qt/downloads), mais
ils sont également contenues dans le LibPack :

qmake 
Génère les fichiers du projet

lupdate 
ou mises à jour des textes originaux dans votre projet, par
l'analyse du code source.

Qt-Linguist 
Le Qt-Linguist est très facile à utiliser et vous permet de
faire votre traduction avec d'intéressantes fonctionnalités
comme, un livre d'expressions pour les phrases communes.

Configuration d'un projet

Pour commencer la localisation de votre projet, visitez le
GUI-Part du module et tapez à la ligne de commande :

qmake -project

Ici, le scan de votre répertoire "projet", contenant les fichiers
textes, un fichier de projet est créé, comme dans l'exemple
suivant :

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

217 sur 246 09/06/2015 15:05



 ######################################################################
 # Automatically generated by qmake (1.06c) Do 2. Nov 14:44:21 2006
 ######################################################################

 TEMPLATE = app
 DEPENDPATH += .\Icons
 INCLUDEPATH += .

 # Input
 HEADERS += ViewProvider.h Workbench.h
 SOURCES += AppMyModGui.cpp \
            Command.cpp \
            ViewProvider.cpp \
            Workbench.cpp
 TRANSLATIONS += MyMod_de.ts

Vous devez ajouter ces fichiers manuellement. La section
TRANSLATIONS contient une liste de fichiers traduits pour chaque
langue. Dans les exemples ci dessous, MyMod_de.ts est la
traduction allemande (de).

Maintenant, exécutez lupdate pour extraire les chaines dans
votre (GUI). Exécuter lupdate pendant un changement de code,
est sans danger, car il ne supprime jamais de chaine de votre
traduction. Mais ajoute seulement les nouvelles chaines
traduites.

Maintenant, vous devez ajouter les fichiers .ts à votre projet
VisualStudio. Précisez l'usage suivant pour leurs méthodes de
constructions :

python ..\..\..\Tools\qembed.py "$(InputDir)\$(InputName).ts"
"$(InputDir)\$(InputName).h" "$(InputName)"

PS: Entrez ceci en ligne de commande, (le saut de ligne n'est là
que pour la clarté).

En compilant le fichier .ts de l'exemple ci dessous, l'entête du
fichier MyMod_de.h est créé. Le meilleur endroit pour l'inclure
n'est pas dans le App<Modul>Gui.cpp. Dans notre exemple, le
mieux serait, AppMyModGui.cpp .
Puis ajoutez la ligne:

new Gui::LanguageProducer("Deutsch", <Modul>_de_h_data, <Modul>_de_h_len);

pour publier votre traduction dans l'application.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

218 sur 246 09/06/2015 15:05



Mise en place des fichiers Python pour la
traduction

Pour faciliter la localisation des fichiers .py vous pouvez utiliser
l'outil "pylupdate4" qui accepte un ou plusieurs fichiers .py.
Avec l'option -ts, vous pouvez préparer ou mettre à jour un ou
plusieurs fichiers .ts. Par exemple, pour préparer un fichier .ts
pour le français, il suffit d'entrer à la ligne de commande :

pylupdate4 *.py -ts YourModule_fr.ts 

L'outil pylupdate va scanner vos fichiers fonctions .py pour
translate() ou tr() et créer un fichier YourModule_fr.ts.
Ce fichier peut être traduit avec QLinguist et un fichier
YourModule_fr.qm produit à partir de QLinguist
ou avec la commande :

lrelease YourModule_fr.ts

Méfiez-vous de l'outil pylupdate4 car il n'est pas très bon pour
reconnaître la fonction translate(), il a besoin d'avoir une forme
très spécifique (voir les fichiers Draft module comme exemple). A
l'intérieur de votre dossier, vous pouvez alors configurer un
traducteur comme celui-ci, (après avoir chargé votre
QApplication mais, AVANT la création de n'importe quel widget
qt) :

translator = QtCore.QTranslator()
translator.load("YourModule_"+languages[ln])
QtGui.QApplication.installTranslator(translator)

Optionnellement, vous pouvez également créer le fichier XML
Draft.qrc avec ce contenu :

  
<RCC>
<qresource prefix="/translations" > 
<file>Draft_fr.qm</file> 
</qresource> 
</RCC> 

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

219 sur 246 09/06/2015 15:05



et démarrez pyrcc4 Draft.qrc -o, qrc_Draft.py crée une gros
fichier Python, contenant toutes les ressources. D'ailleurs, cette
approche fonctionne aussi pour mettre les fichiers icônes dans un
fichier ressources.

Traduire le wiki

Ce wiki est l'hôte d'un très grand contenu. Le mis à jour, et,
d'intéressantes informations sont rassemblées dans le manuel .

Ainsi, la première étape consiste à vérifier si la traduction
manuelle a déjà été démarréé pour votre langue (regardez dans
la barre latérale gauche, sous "manual").

Plugin de traduction

When the Wiki moved away from SourceForge, Yorik installed a
Translation plugin (http://www.mediawiki.org
/wiki/Help:Extension:Translate) which allows to ease translations
between pages. For example, the page title can now be
translated. Other advantages of the Translation plugin are that it
keeps track of translations, notifies if the original page has been
updated, and maintains translations in sync with the original
English page.

The tool is documented in Extension:Translate
(http://www.mediawiki.org/wiki/Help:Extension:Translate), and is
part of a Language Extension Bundle (http://www.mediawiki.org
/wiki/MediaWiki_Language_Extension_Bundle).

To quickly get started on preparing a page for translation and
activating the plugin, please read the Page translation example
(http://www.mediawiki.org/wiki/Help:Extension:Translate
/Page_translation_example).

To see an example of how the Translation tool works once the
translation plugin is activated on a page, you can visit the Main
Page. You will see a new language menu bar at the bottom. It is
automatically generated. Click for instance on the German link, it

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

220 sur 246 09/06/2015 15:05



[afficher]

will get you to Main Page/de. Right under the title, you can read
"This page is a translated version of a page Main Page and the
translation is xx% complete." (xx being the actual percentage of
translation). Click on the "translated version" link to start
translation, or to update or correct the existing translation.

You will notice that you cannot directly edit a page anymore once
it's been marked as a translation. You have to go through the
translation utility.

When adding new content, the English page should be created
first, then translated into another language. If someone wants to
change/add content in a page, he should do the English one first.

It is recommended to have basic knowledge of wiki style
formatting and general guidelines of the FreeCAD wiki, because
you will have to deal with some tags while translating. You can
find this information on WikiPages.

The sidebar (navigation menu on the left) is also translatable.
Please follow dedicated instructions on Localisation Sidebar
page.

REMARK: The first time you switch a page to the new
translation system, it looses all its old 'manual'
translations. To recover the translation, you need to open
an earlier version from the history, and copy/paste
manually the paragraphs to the new translation system.

Remark: to be able to translate in the wiki, you must of course
gain wiki edit permission.

If you are unsure how to proceed, don't hesitate to ask for help in
the forum (http://forum.freecadweb.org).

Old translation instructions

These instructions are for historical background only,
while the pages are being passed to the new translation plugin.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

221 sur 246 09/06/2015 15:05



< précédent: Branding suivant: Extra python modules >Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

222 sur 246 09/06/2015 15:05



Cette page contient plusieurs modules python supplémentaires
ou d'autres bouts de code qui peuvent être téléchargés
gratuitement sur Internet, et ajouter des fonctionnalités à votre
installation de FreeCAD.

PySide (précédemment PyQt4)

page officielle (PySide): http://qt-project.org/wiki/PySide
licence: LGPL
option, plusieurs modules sont nécessaires et d'autres
modules peuvent être ajoutés : Draft, Arch, Ship, Plot,
OpenSCAD, Spreadsheet

PySide (auparavant PyQt) est requise par tous les modules de
FreeCAD et pour accéder à l'interface Qt de FreeCAD. Il est déjà
livré dans dans les versions FreeCAD, et est généralement
installé automatiquement par FreeCAD sur Linux, l'installation
peut se faire à partir des dépôts officiels. Si ces modules (Draft,
Arch, etc) sont activés après l'installation de FreeCAD, cela
signifie que PySide (auparavant PyQt) est déjà installé, et vous
n'avez pas besoin de faire quoi que ce soit de plus.

Remarque : PyQt4 va devenir progressivement obsolète dans
FreeCAD, après la version 0.13, la préférence ira sur PySide
(http://qt-project.org/wiki/PySide), qui fait exactement le même
travail, mais dispose d'une licence (LGPL) plus compatible avec
FreeCAD.

Installation

Linux

La façon la plus simple d'installer PySide est de l'installer par le
biais du gestionnaire de paquets de votre distribution. Sur les
systèmes Debian / Ubuntu, le nom du package est généralement
python-PySide, tandis que sur les systèmes basés sur RPM il est
nommé Pyside. Les dépendances nécessaires (Qt et SIP) seront
pris en charge automatiquement.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

223 sur 246 09/06/2015 15:05



Windows

Le programme peut être téléchargé à partir PySide Downloads
(http://qt-project.org
/wiki/Category:LanguageBindings::PySide::Downloads). Vous
aurez besoin d'installer les bibliothèques Qt et SIP avant
d'installer PySide (à documenter).

MacOSX

PyQt pour Mac doit être installé via homebrew ou port. Pour plus
d'informations voir
CompileOnMac/fr#Dépendances_de_l'installation
Dépendances_de_l'installation.

Utilisation

Une fois installé, vous pouvez vérifier le bon fonctionne de
l'installation, en tapant dans la console Python de FreeCAD :

import PySide

Pour accéder à l'interface de FreeCAD, tapez :

from PySide import QtCore,QtGui
FreeCADWindow = FreeCADGui.getMainWindow()

Maintenant, vous pouvez commencer l'exploration de l'interface
avec la commande dir(). Vous pouvez ajouter de nouveaux
éléments, comme un widget personnalisé, avec des commandes
comme :

FreeCADWindow.addDockWidget(QtCore.Qt.RghtDockWidgetArea,my_custom_widget)

Travailler avec Unicode :

text = text.encode('utf-8')

Travailler avec QFileDialog et OpenFileName :

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

224 sur 246 09/06/2015 15:05



path = FreeCAD.ConfigGet("AppHomePath")
#path = FreeCAD.ConfigGet("UserAppData")
OpenName, Filter = PySide.QtGui.QFileDialog.getOpenFileName(None, "Read a txt file", path, "*.txt")

Travailler avec QFileDialog et SaveFileName :

path = FreeCAD.ConfigGet("AppHomePath")
#path = FreeCAD.ConfigGet("UserAppData")
SaveName, Filter = PySide.QtGui.QFileDialog.getSaveFileName(None, "Save a file txt", path, "*.txt")

Exemple de transition de PyQt4 vers PySide

PS: ces exemples d'erreurs ont été trouvées dans la transition de
PyQt4 à PySide et ces corrections ont été faites, d'autres
solutions sont certainement disponibles avec les exemples
ci-dessus

try:
import PyQt4                                        # PyQt4
from PyQt4 import QtGui ,QtCore                     # PyQt4
from PyQt4.QtGui import QComboBox                   # PyQt4
from PyQt4.QtGui import QMessageBox                 # PyQt4
from PyQt4.QtGui import QTableWidget, QApplication  # PyQt4
from PyQt4.QtGui import *                           # PyQt4
from PyQt4.QtCore import *                          # PyQt4

except Exception:
import PySide                                       # PySide
from PySide import QtGui ,QtCore                    # PySide
from PySide.QtGui import QComboBox                  # PySide
from PySide.QtGui import QMessageBox                # PySide
from PySide.QtGui import QTableWidget, QApplication # PySide
from PySide.QtGui import *                          # PySide
from PySide.QtCore import *                         # PySide

Pour accéder à l'interface FreeCAD, tapez: Vous pouvez ajouter
de nouveaux éléments, comme un widget personnalisé, avec des
commandes comme :

myNewFreeCADWidget = QtGui.QDockWidget() # create a new dockwidget
myNewFreeCADWidget.ui = Ui_MainWindow() # myWidget_Ui()             # load the Ui script
myNewFreeCADWidget.ui.setupUi(myNewFreeCADWidget) # setup the ui
try:
    app = QtGui.qApp # PyQt4 # the active qt window, = the freecad window since we are inside
    FCmw = app.activeWindow() # PyQt4 # the active qt window, = the freecad window since we are inside
    FCmw.addDockWidget(QtCore.Qt.RightDockWidgetArea,myNewFreeCADWidget) # add the widget to the main window
except Exception:
    FCmw = FreeCADGui.getMainWindow() # PySide # the active qt window, = the freecad window since we are insid
    FCmw.addDockWidget(QtCore.Qt.RightDockWidgetArea,myNewFreeCADWidget) # add the widget to the main window

Travailler avec Unicode :

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

225 sur 246 09/06/2015 15:05



try:
    text = unicode(text, 'ISO-8859-1').encode('UTF-8') # PyQt4
except Exception:
    text = text.encode('utf-8') # PySide

Travailler avec QFileDialog et OpenFileName :

OpenName = ""
try:
    OpenName = QFileDialog.getOpenFileName(None,QString.fromLocal8Bit("Lire un fichier FCInfo ou txt"),path
except Exception:
    OpenName, Filter = PySide.QtGui.QFileDialog.getOpenFileName(None, "Lire un fichier FCInfo ou txt", path

Travailler avec QFileDialog et SaveFileName :

SaveName = ""
try:
    SaveName = QFileDialog.getSaveFileName(None,QString.fromLocal8Bit("Sauver un fichier FCInfo"),path,"*.FCInfo"
except Exception:
    SaveName, Filter = PySide.QtGui.QFileDialog.getSaveFileName(None, "Sauver un fichier FCInfo", path, "*.FCInfo"

Travailler avec MessageBox:

def errorDialog(msg):
    diag = QtGui.QMessageBox(QtGui.QMessageBox.Critical,u"Error Message",msg )

try:
        diag.setWindowFlags(PyQt4.QtCore.Qt.WindowStaysOnTopHint) # PyQt4 # this function sets the window before

except Exception:    
        diag.setWindowFlags(PySide.QtCore.Qt.WindowStaysOnTopHint)# PySide # this function sets the window before
#    diag.setWindowModality(QtCore.Qt.ApplicationModal)       # function has been disabled to promote "WindowStaysOnTopHin
    diag.exec_()

Travailler avec setProperty (PyQt4) et setValue (PySide)

self.doubleSpinBox.setProperty("value", 10.0) # PyQt4

remplacer par :

self.doubleSpinBox.setValue(10.0) # PySide

Travailler avec setToolTip

self.doubleSpinBox.setToolTip(_translate("MainWindow", "Coordinate placement Axis Y", None)) # PyQt4

remplacer par :

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

226 sur 246 09/06/2015 15:05



self.doubleSpinBox.setToolTip(_fromUtf8("Coordinate placement Axis Y")) # PySide

ou

self.doubleSpinBox.setToolTip(u"Coordinate placement Axis Y.")# PySide

Documentation

Plus de tutoriels sur PyQt4 (y compris sur la façon de construire
des interfaces avec Qt Designer pour utiliser avec python) :

API PyQt4 (http://www.riverbankcomputing.co.uk/static
/Docs/PyQt4/html/classes.html) - La référence officielle sur
l'API de PyQt4

Introduction PyQt4 (http://www.rkblog.rk.edu.pl
/w/p/introduction-pyqt4/)- une simple introduction.

un tutoriel (http://www.zetcode.com/tutorials/pyqt4/) -
vraiment complet.

Pivy

homepage: https://bitbucket.org/Coin3D/coin/wiki/Home
license: BSD
option, utilisé par tous les modules de FreeCAD: Draft, Arch

Pivy a besoin de plusieurs modules pour accéder à la vue 3D de
FreeCAD. Pour les fenêtres, pivy est déjà fourni dans
l'installateur de FreeCAD pour Linux, il est généralement installé
automatiquement lorsque vous installez FreeCAD partir d'un
référentiel officiel. Sur MacOSX, malheureusement, vous aurez
besoin de compiler Pivy vous même.

Installation

Prérequis

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

227 sur 246 09/06/2015 15:05



Je crois, qu'avant de compiler Pivy (http://pivy.coin3d.org/)
vous devez avoir Coin (http://www.coin3d.org/) et SoQt
(http://www.coin3d.org/lib/soqt/releases/1.5.0) d'installés.

J'ai trouvé que pour la compilation sur Mac, il suffisait d'installer
le Coin3 binary package (http://www.coin3d.org
/lib/plonesoftwarecenter_view).
La tentative d'installation de Coin sur MacPorts était
problématique : j'ai essayé d'ajouter un grand nombre de paquets
X Windows, et, finalement, tout c'est terminé avec une erreur de
script !

Pour Fedora, j'ai trouvé un RPM avec Coin3.

SoQt, compilé à partir des sources (http://www.coin3d.org
/lib/soqt/releases/1.5.0) fonctionne très bien sur Mac et Linux.

Debian & Ubuntu

Depuis Debian Squeeze et Ubuntu Lucid, Pivy est disponible
directement à partir des dépôts officiels, et, nous permet
d'économiser beaucoup de tracas.
En attendant, vous pouvez soit télécharger l'un des packages
que nous avons fait (pour Debian et Ubuntu karmic), disponibles
sur les pages de téléchargements , ou, vous pouvez le compiler
vous-même.

La meilleure façon de compiler facilement Pivy, est de prendre le
debian source package pour Pivy, et, faire un package avec
debuild.
C'est le même code source que sur le site officiel de Pivy, mais,
les gens de Debian ont ajoutés plusieurs bug-fixing. Il compile
également très bien sur : Ubuntu Karmic
(http://packages.debian.org/squeeze/python-pivy) ...
télécharger .orig.gz et .diff.gz, décompressez le tout, puis
appliquez .diff à la source :
allez dans le dossier source de Pivy décompressé, et appliquez le
patch .diff :

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

228 sur 246 09/06/2015 15:05



patch -p1 < ../pivy_0.5.0~svn765-2.diff

alors

debuild

pour avoir Pivy, correctement compilé, avec un package
officiellement installable. Ensuite, il suffit d'installer le package
avec gdebi.

Autres distributions Linux

D'abord, téléchargez les dernières sources du project's repository
(http://pivy.coin3d.org/mercurial/) :

hg clone http://hg.sim.no/Pivy/default Pivy

En Mars 2012, la dernière version était la pivy-0.5.

Ensuite, vous avez besoin d'un outil appelé SWIG pour générer le
code C++ pour les Python bindings. Pivy-0.5 rapports qui a été
testé seulement avec SWIG 1.3.31, 1.3.33, 1.3.35 et 1.3.40.
Ainsi, vous pouvez télécharger une archive source pour l'une de
ces anciennes versions de SWIG (http://www.swig.org).
Puis, décompressez-le, et, faites en ligne de commande (en tant
que root) :

./configure
make
make install (or checkinstall if you use it)

Il faut quelques secondes pour la compilation.

Alternativement, vous pouvez essayer avec une compilation plus
récent SWIG. En Mars 2012, la version référentielle typique était
2.0.4.
Pivy a un problème de compilation avec les versions inférieures
2.0.4 de SWIG sur Mac OS (voir ci-dessous), mais semble
compiler correctement sur Fedora Core 15.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

229 sur 246 09/06/2015 15:05



Après cela, allez dans le source Pivy et tapez :

python setup.py build

pour créer les fichiers sources. Notez que cette génération de
fichiers peut produire des milliers de mises en garde, mais
j'espère qu'il n'y aura pas d'erreurs.

Ceci est probablement obsolète, mais vous risquez de rencontrer
une erreur de compilation, ou, un "const char*" ne peut pas être
converti en un "char*".
Pour corriger cela, il vous suffit d'écrire une "const", dans les
lignes appropriées, avant la génération. Il y a six lignes à
corriger.

Après cela, installez (en tant que root) :

python setup.py install (or checkinstall python setup.py install)

Ça y est, pivy est installé.

Mac OS

Ces instructions peuvent ne pas être complètes. Quelque chose
plus ou moins comme cela a fonctionné pour OS 10.7 de Mars
2012. J'utilise MacPorts (http://www.macports.org/) pour les
dépôts, mais d'autres options devraient également fonctionner.

En ce qui concerne linux, téléchargez les dernières sources :

hg clone http://hg.sim.no/Pivy/default Pivy

Si vous n'avez pas hg, vous pouvez l'obtenir à partir MacPorts
(http://www.macports.org/) :

port install mercurial

Puis, comme ci-dessus vous avez besoin SWIG
(http://www.swig.org/).

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

230 sur 246 09/06/2015 15:05



Faites :

port install swig

J'ai trouvé que j'avais besoin aussi de faire :

port install swig-python

En Mars 2012, MacPorts SWIG est la version 2.0.4. Comme il
est indiqué ci-dessus pour Linux, il vaudrait mieux télécharger
une version plus ancienne. SWIG 2.0.4 semble avoir un bug qui
empêche la compilation de Pivy.
Regardez le premier message dans ce : digest
(https://sourceforge.net/mailarchive
/message.php?msg_id=28114815)

Cela peut être corrigé, en modifiant les 2 emplacements source et
déréférencer : *arg4, *arg5 à la place de arg4, arg5.
Maintenant nous pouvons compiler Pivy:

python setup.py build
sudo python setup.py install

Windows

En supposant que vous utilisiez Visual Studio 2005 ou une
version ultérieure, vous devrez ouvrir une invite de commande
avec Visual Studio 2005 Command prompt dans le menu
Outils.
Si l'interpréteur Python n'est pas encore dans le chemin système
(PATH), faites :

set PATH=path_to_python_2.5;%PATH%

Pour que Pivy soit fonctionnel, vous devriez télécharger les
dernières sources à partir du référentiel du projet :

svn co https://svn.coin3d.org/repos/Pivy/trunk Pivy

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

231 sur 246 09/06/2015 15:05



Ensuite, vous avez besoin d'un outil appelé SWIG
(http://www.swig.org/) pour générer le code C++ pour les
Python bindings. Il est recommandé d'utiliser la version 1.3.25
de SWIG, pas la dernière version, parceque, Pivy ne fonctionne
pas correctement avec la version 1.3.25. Télécharger le binaire
pour la version 1.3.25 de Swig (http://www.swig.org).
Puis décompressez-le et à partir de la ligne de commande,
ajoutez le chemin (path) du système

set PATH=path_to_swig_1.3.25;%PATH%

et définir le chemin approprié à COINDIR :

set COINDIR=path_to_coin

Sous Windows, le fichier de configuration Pivy attend SoWin au
lieu de SoQt par défaut. Je n'ai pas trouvé de façon évidente pour
compiler avec SoQt, alors, j'ai modifié le fichier setup.py
directement.
A la ligne 200 il suffit de retirer la partie sowin : ('gui._sowin',
'sowin-config', 'pivy.gui.') (ne pas enlever la parenthèse
fermante ! ).

Après cela, allez dans le source de pivy et tapez :

python setup.py build

qui crée les fichiers source. Vous pouvez rencontrer une erreur
de compilation, cause, plusieurs fichiers d'en-tête n'ont pas
été trouvés.
Dans ce cas, réglez la variable INCLUDE comme ceci :

set INCLUDE=%INCLUDE%;path_to_coin_include_dir

et si les en-têtes soqt, ne sont pas au même endroit que les
en-têtes Coin, faites aussi ceci :

set INCLUDE=%INCLUDE%;path_to_soqt_include_dir

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

232 sur 246 09/06/2015 15:05



et finalement, pour les en-têtes Qt faites :

set INCLUDE=%INCLUDE%;path_to_qt4\include\Qt

Si vous utilisez Express Edition of Visual Studio, vous pouvez
obtenir une exception Python keyerror.
Dans ce cas, vous devez modifier de petites choses dans
msvccompiler.py, qui se trouve, dans votre installation Python.

Aller à la ligne 122 et remplacez la ligne :

vsbase = r"Software\Microsoft\VisualStudio\%0.1f" % version

par

vsbase = r"Software\Microsoft\VCExpress\%0.1f" % version

Puis réessayez.
Si vous obtenez une deuxième erreur comme :

error: Python was built with Visual Studio 2003;...

vous devez également remplacer la ligne 128 comme ceci :

self.set_macro("FrameworkSDKDir", net, "sdkinstallrootv1.1")

par

self.set_macro("FrameworkSDKDir", net, "sdkinstallrootv2.0")

Réessayez encore une fois.
Si vous obtenez de nouveau une erreur comme :

error: Python was built with Visual Studio version 8.0, and extensions need to be built with the same version of the 

alors vous devriez vérifier les variables d'environnement
DISTUTILS_USE_SDK et MSSDK avec :

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

233 sur 246 09/06/2015 15:05



echo %DISTUTILS_USE_SDK%
echo %MSSDK%

Si ce n'est pas toujours pas arrangé, il suffit de définir à 1 :

set DISTUTILS_USE_SDK=1
set MSSDK=1

Maintenant, vous pouvez rencontrer une erreur de compilation,
ou un const char* ne peut pas être converti en un char*.
Pour corriger cela il vous suffit d'écrire un const avant, dans les
lignes appropriées, il y a six lignes à corriger.
Après copiez le répertoire généré par Pivy dans un endroit où
l'interpréteur Python de FreeCAD peut le trouver.

Utilisation

Pour vérifier si pivy est correctement installé :

import pivy

Pour avoir accès à Pivy à partir de la scénographique de
FreeCAD, procédez comme ceci:

from pivy import coin
App.newDocument() # Open a document and a view 
view = Gui.ActiveDocument.ActiveView
FCSceneGraph = view.getSceneGraph() # returns a pivy Python object that holds a SoSeparator, the main "container" of the C
FCSceneGraph.addChild(coin.SoCube()) # add a box to scene

Vous pouvez maintenant explorer la FCSceneGraph avec la
commande dir().

Documentation

Malheureusement, la documentation sur Pivy est "pour le
moment" presque inexistante sur le net. Mais vous pouvez
trouver de la documentation très utile sur Coin, car Pivy a
simplement traduit les fonctions, Coin, des nœuds et des
méthodes en Python, les noms sont conservés (mêmes noms)
ainsi que les propriétés ne sont différentes que par la syntaxe

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

234 sur 246 09/06/2015 15:05



entre le C et Python :

https://bitbucket.org/Coin3D/coin/wiki/Documentation -
Coin3D API Reference
http://www-evasion.imag.fr/~Francois.Faure
/doc/inventorMentor/sgi_html/index.html - The Inventor
Mentor - La "bible" de Inventor langage de description de
scène.

Vous pouvez également consulter le fichier Draft.py dans le
dossier FreeCAD Mod/Draft, car Pivy est fortement utilisé.

pyCollada

homepage: http://pycollada.github.com
license: BSD
option, est nécessaire pour permettre l'importation et
l'exportation de fichiers Collada (.DAE)

pyCollada (http://pycollada.github.com) est une bibliothèque
Python qui permet aux programmes de lire et d'écrire des
fichiers Collada (*.DAE) (http://en.wikipedia.org
/wiki/COLLADA). Lorsque pyCollada est installé sur votre
système, FreeCAD (available in version 0.13

) le détecte et ajoute les options d'importation et d'exportation,
qui permettent l'ouverture et l'enregistrement de fichiers au
format Collada.

Installation

Pycollada n'est généralement pas encore disponible dans les
dépôts des distributions Linux, mais puisqu'il est fait uniquement
en Python, il ne nécessite pas de compilation, et est facile à
installer.
Vous avez 2 façons de l'installer, soit directement à partir du
pycollada git repository officiel, ou avec l'outil easy_install.

Linux

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

235 sur 246 09/06/2015 15:05



Dans les deux cas, vous aurez besoin des paquetages suivants,
installés d'avance sur votre système :

python-lxml 
python-numpy
python-dateutil

Depuis le dépôt git (pycollada git repository)

git clone git://github.com/pycollada/pycollada.git pycollada
cd pycollada
sudo python setup.py install

Avec easy_install (easy_install)

En supposant que vous avez déjà installé complètement Python,
l'utilitaire easy_install doit être déjà présent :

easy_install pycollada

Vous devez vous assurer que pycollada, est correctement
installé, en utilisant la commande suivante dans la console
Python :

import collada

Si la commande ne retourne aucun message d'erreur, alors tout
est OK.

Windows

Installez Python. Alors que FreeCAD et quelques autres
programmes sont livrés avec une version embarquée de
Python, une installation fixe aidera les prochaines étapes.
Vous pouvez obtenir Python ici: https://www.python.org
/downloads/. Bien sûr, vous devrez choisir la bonne version,
dans ce cas, ce serait 2.6.X, FreeCAD utilise actuellement la
2.6.2 (Personnellement je suis installé avec la version 2.6.2,
et pour la forme, vous pouvez vérifier la version en démarrant

1. 

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

236 sur 246 09/06/2015 15:05



Python.exe dans le dossier bin de FreeCAD). Vous aurez
également à ajouter le chemin du répertoire d'installation
dans la variable path afin que vous puissiez accéder à Python
à partir de la console (cmd). Maintenant, nous pouvons
installer tout ce qu'il nous manquante, au total il y a trois
choses que nous devons installer: numpy, setuptools et
pycollada
Fetch numpy ici: http://sourceforge.net/projects/numpy/files
/NumPy/. Choisissez une version qui s'adapte à la version
utilisée par FreeCAD, dans chaque dossier de version numpy
il existe plusieurs programmes d'installation pour les
différentes versions de Python, l'installateur sera placé dans
le dossier numpy de votre installation Python, où FreeCAD
peut y accéder aussi

2. 

Fetch setuptools ici : https://pypi.python.org/pypi/setuptools
(Nous devons installer les setuptools pour installer pycollada
dans l'étape suivante)

3. 

décompressez dans un dossier le fichier setuptools téléchargé4. 
Démarrer une console (cmd) avec la permission admin5. 
Accédez au dossier décompressé de setuptools6. 
installer les setuptools "Python setup.py install" par
basculement dans la console (cmd), ne fonctionnera pas si
Python n'est pas installé ou lorsque la variable path n'a pas
été configurée

7. 

Fetch pycollada ici: https://pypi.python.org/pypi/pycollada/ (a
déjà été affiché ci-dessus) et encore une fois:

8. 

Décompressez le fichier pycollada téléchargé dans un dossier9. 
Démarrer une console (cmd) avec la permission
d'administration, ou utilisez celui que vous avez ouvert il n'y
a pas longtemps

10. 

Accédez au dossier pycollada décompressé11. 
Installez les setuptools "Python setup.py install" à partir de la
console (cmd)

12. 

Une autre référence pour utiliser easy_install:
http://jishus.org/?p=452

Mac OS

Si vous utilisez l'accumulation des Homebrew FreeCAD vous

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

237 sur 246 09/06/2015 15:05



pouvez installer pycollada dans votre système Python en utilisant
pip.

Si vous devez installer pip:

$ sudo easy_install pip

Installer pycollada:

$ sudo pip install pycollada

Si vous utilisez une version binaire de FreeCAD, vous pouvez dire
pip installez pycollada dans le site-packages à l'intérieur
FreeCAD.app:

$ pip install --target="/Applications/FreeCAD.app/Contents/lib/python2.7/site-packages" pycollada

IfcOpenShell

homepage: http://www.ifcopenshell.org
license: LGPL
option, requis pour étendre les capacités d'importation de
fichiers IFC

IFCOpenShell, est une bibliothèque actuellement en
développement, ce qui permet d'importer (et bientôt d'exporter)
Industry foundation Classes (*.Fichiers IFC)
(http://fr.wikipedia.org/wiki/Industry_Foundation_Classes).

Ceci est une extension pour le format STEP
(http://fr.wikipedia.org/wiki/Standard_pour_l%27%C3
%A9change_de_donn%C3%A9es_de_produit), et, devient la
norme dans les workflows BIM (http://fr.wikipedia.org
/wiki/Building_Information_Modeling). Lorsque ifcopenshell est
correctement installé sur votre système, le Module Arch  de
FreeCAD le détectera, et, l'utilisera pour importer des fichiers
IFC. Étant donné qu'ifcopenshell est basé sur OpenCasCade,
comme FreeCAD, la qualité de l'importation est très élevée, en
produisant une géométrie de solides de haute qualité.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

238 sur 246 09/06/2015 15:05



Installation

Étant donné que 'ifcopenshell est assez nouveau, vous devrez
probablement le compiler vous-même.

Linux

Vous aurez besoin de deux ou trois paquets de développement,
installés sur votre système afin de rassembler les ifcopenshell :

liboce-*-dev
python-dev
swig

mais, étant donné que FreeCAD exige tout, vous pouvez compiler
FreeCAD, vous n'aurez aucune dépendance supplémentaire pour
compiler IfcOpenShell.

Prenez le dernier code source ici :

svn co https://svn.code.sf.net/p/ifcopenshell/svn/trunk ifcopenshell ifcopenshell

or

svn co https://ifcopenshell.svn.sourceforge.net/svnroot/ifcopenshell ifcopenshell

Le processus de création est très simple :

mkdir ifcopenshell-build
cd ifcopenshell-build
cmake ../ifcopenshell/cmake

ou, si vous utilisez oce au lieu d'opencascade :

cmake -DOCC_INCLUDE_DIR=/usr/include/oce ../ifcopenshell/cmake

Étant donné que ifcopenshell est fait principalement pour
Blender (http://www.blender.org/), il utilise python3 par défaut.
Pour l'utiliser à l'intérieur de FreeCAD, vous devez le compiler
avec la même version de Python qui est utilisé dans FreeCAD.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

239 sur 246 09/06/2015 15:05



Vous devrez peut-être forcer les paramètres avec la version de
Python et cmake (réglez la version de Python avec la vôtre) :

cmake -DOCC_INCLUDE_DIR=/usr/include/oce -DPYTHON_INCLUDE_DIR=/usr/include/python2.7 -DPYTHON_LIBRARY=/usr/lib/python2.7.

Alors :

make
sudo make install

Vous pouvez vérifier que ifcopenshell, a été correctement
installé en tapant dans la console Python :

import IfcImport

Si la commande ne retourne aucun message d'erreur, alors tout
est OK.

Windows

Documentation copiée à partir du fichier README IfcOpenShell

Les utilisateurs sont priés d'utiliser le fichier .sln de Visual
Studio qui se trouve dans win/folder.

Pour les utilisateurs de Windows une version pré-construite Open
CASCADE est disponible sur le site d'OpenCascade
(http://opencascade.org). Téléchargez, et, installez cette version
dans le chemin d'accès d'Open CASCADE, et, des fichiers de la
bibliothèque de MS Visual Studio C++.

Pour créer le IfcPython wrapper, SWIG doit être installé.
Téléchargez la dernière version de swigwin (http://www.swig.org
/download.html). Après avoir extrait le fichier .zip, veuillez
ajouter le dossier à la variable d'environnement PATH. Python
doit être installé, veuillez fournir les chemins d'accès des fichiers
include, et, bibliothèque pour Visual Studio.

Teigha Converter

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

240 sur 246 09/06/2015 15:05



< précédent: Localisation suivant: Source documentation >

homepage: http://www.opendesign.com/guestfiles
/TeighaFileConverter
license: freeware
option, utilisé pour permettre l'importation et l'exportation de
fichiers DWG

Le convertisseur Teigha Converter est un petit utilitaire
disponible gratuitement qui permet de convertir plusieurs
versions de fichiers DWG et DXF. FreeCAD peut l'utiliser pour
permettre l'importation et l'exportation de fichiers DWG, en
convertissant les fichiers DWG au format DXF de manière
transparente, puis utiliser son importateur DXF standard pour
importer le contenu du fichier. Les restrictions de la DXF
importer s'appliquent.

Installation

S'installe sur toutes les plateformes, par l'installation du package
approprié dans http://www.opendesign.com/guestfiles
/TeighaFileConverter. Après l'installation, si l'utilitaire n'est pas
trouvé automatiquement par FreeCAD, vous devrez configurer
manuellement le chemin de l'exécutable du convertisseur, dans le
menu Edition -> Préférences -> Projet -> Options
d'importation/exportation.

Index

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

241 sur 246 09/06/2015 15:05



Credits

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

242 sur 246 09/06/2015 15:05



<translate> FreeCAD would not be what it is without the
generous contributions of many people. Here's an overview of the
people and companies who contributed to FreeCAD over time.
For credits for the third party libraries see the Third Party
Libraries page.

Developement

Project managers

Lead developers of the FreeCAD project: </translate>

Jürgen Riegel
Werner Mayer
Yorik van Havre

<translate>

Main developers

People who work regularly on the FreeCAD code: </translate>

Logari81 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=270)
Luke A. Parry (http://freecadamusements.blogspot.co.uk/)
Jose Luis Cercos Pita (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=574)
Jan Rheinlaender (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=997)
shoogen (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=765)
tanderson69 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=208)

<translate>

Other coders

People who contributed code to the FreeCAD project:

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

243 sur 246 09/06/2015 15:05



</translate>

ickby (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=686)
jmaustpc (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=611)
j-dowsett (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=652)
keithsloan52 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=930)
wandererfan (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=1375)
Joachim Zettler
Graeme van der Vlugt
Berthold Grupp
Georg Wiora
Martin Burbaum
Jacques-Antoine Gaudin
Ken Cline
Dmitry Chigrin
Remigiusz Fiedler (DXF-parser)

<translate>

Companies

Companies which donated code or developer time: </translate>

Imetric 3D

<translate>

Community

People from the community who put a lot of efforts in helping the
FreeCAD project either by being active on the forum, keeping a
blog about FreeCAD, making video tutorials, packaging FreeCAD
for Windows/Linux/MacOS X, writing a FreeCAD book... (listed by
alphabetical order) </translate>

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

244 sur 246 09/06/2015 15:05



bejant (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=1940)
Brad Collette (http://www.packtpub.com/freecad-solid-
modeling-with-python/book)
cblt2l (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=251)
Daniel Falck (http://opensourcedesigntools.blogspot.com/)
Eduardo Magdalena
hobbes1069 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=725)
jdurston (5needinput) (http://www.youtube.com
/user/5needinput)
jmaustpc (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=611)
John Morris (butchwax) (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=861)
Kwahooo (http://freecad-tutorial.blogspot.com/)
lhagan (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=108)
marcxs (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=1047)
Mario52
Normandc
peterl94 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=1819)
pperisin (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=356)
Quick61
Renatorivo
Rockn

<translate> </translate>

Récupérée de « http://www.freecadweb.org
/wiki/index.php?title=Manual02/fr&oldid=145223 »

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

245 sur 246 09/06/2015 15:05



Catégories : Poweruser Documentation/fr Python Code/fr
Tutorials/fr Poweruser Documentation
Developer Documentation/fr Developer

Dernière modification de cette page le 8 février 2015 à 23:42.
Cette page a été consultée 15 587 fois.
Le contenu est disponible sous licence Creative Commons
Attribution sauf mention contraire.

Manual02/fr — FreeCAD Documentation http://www.freecadweb.org/wiki/index.php?title=...

246 sur 246 09/06/2015 15:05


