

● 327

Design IoT Projects with Raspberry Pi, Arduino and ESP32Design IoT Projects with Raspberry Pi, Arduino and ESP32

Programming
with Node-RED

Dogan Ibrahimlektor

SHAREDESIGNLEARN

Programming with Node-RED
Design IoT Projects with Raspberry Pi,

Arduino and ESP32

●

Dogan Ibrahim

Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro

engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops

and delivers high-quality content - via a variety of media channels (including magazines, video, digital media, and social

media) in several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

SHAREDESIGNLEARN

● This is an Elektor Publication. Elektor is the media brand of

Elektor International Media B.V.

78 York Street, London W1H 1DP, UK

Phone: (+44) (0)20 7692 8344

● All rights reserved. No part of this book may be reproduced in any material form, including

photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally

to some other sue of this publication, without the written permission of the copyright holder except in

accordance with the provisions of the Copyright Designs and Patents Act 1988 or under the terms of a

licence issued by the Copyright Licencing Agency Ltd., 90 Tottenham Court Road, London, England W1P

9HE. Applications for the copyright holder's permission to reproduce any part of the publication should be

addressed to the publishers.

● Declaration

The author and publisher have used their best efforts in ensuring the correctness of the information

contained in this book. They do not assume, or hereby disclaim, any liability to any party for any loss or

damage caused by errors or omissions in this book, whether such errors or omissions result from negligence,

accident or any other cause..

● British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

● ISBN 978-1-907920-88-2

© Copyright 2020: Elektor International Media b.v.

Prepress Production: D-Vision, Julian van den Berg

First published in the United Kingdom 2020

● 5

Preface .13

Chapter 1 • Raspberry Pi 4 . .15

1.1 Overview . 15

1.2 Parts of the Raspberry Pi 4 . 15

1.3.1 Setup option 1 . 18

1.3.2 Setup option 2 . 19

Summary. 19

Chapter 2 • Installing the Raspberry Pi operating system 20

2.1 Overview . 20

2.2 Raspbian Buster installation steps on Raspberry Pi 4 . 20

2.3 Remote access . 22

2.4 Using Putty . 23

2.4.1 Configuring Putty . 24

2.5 Remote access of the desktop. 25

2.6 Summary . 26

Chapter 3 • Using the command line .27

3.1 Overview . 27

3.2 The Raspberry Pi directory structure . 27

3.3 File permissions. 28

3.4 Help. 32

3.5 Date, time, and calendar . 33

3.6 File operations . 33

3.7 System and user information . 35

3.8 Resource monitoring on Raspberry Pi . 37

3.9 Shutting down. 39

3.10 Summary . 40

Chapter 4 • Installing Node-RED software on Raspberry Pi 41

4.1 Overview . 41

4.2 Raspberry Pi Node-RED installation . 41

4.3 Node-RED interface to external world. 43

4.4 Node-RED screen layout . 44

4.5 Project 1 – Hello World! . 44

Contents

Programming with Node-RED

● 6

4.6 Project 2 – Date and time. 47

4.7 Project 3 – Temperature conversion. 52

4.8 Importing and exporting flow programs . 54

4.8.1 Exporting flows. 54

4.8.2 Importing aflow . 55

4.9 Copying nodes in the same workspace . 55

4.10 Core nodes . 55

4.10.1 Input nodes . 55

4.10.2 Output nodes . 56

4.10.3 Function nodes . 57

4.10.4 Social nodes. 58

4.10.5 Storage nodes . 58

4.10.6 Analysis nodes . 58

4.10.7 Advanced nodes . 58

4.10.8 Raspberry Pi nodes . 58

4.11 Project 4 – Dice number . 59

4.12 Project 5 – Double dice numbers . 60

4.13 Project 6 – Unit conversions - Multiple inputs to a function 62

4.14 Multiple inputs and multiple outputs from a function . 65

4.15 Project 7 – Mean of numbers - Using the smooth node. 67

4.16 Project 8 – Squares of numbers. 68

4.17 Project 9 – Getting the weather reports – Display the local weather report 70

4.18 Project 10 – Display the current temperature . 73

4.19 Project 11 – Sending the current temperature to an email 74

4.20 Project 12 – Sending the current temperature and atmospheric

 pressure to your twitter account . 76

4.21 Node-RED configuration . 78

4.22 Summary . 79

Chapter 5 • Node-RED based Raspberry Pi projects using GPIO80

5.1 Overview . 80

5.2 GPIO – Parallel interface. 80

5.3 Project 13 – LED control. 82

5.4 Project 14 – Flashing LED . 85

● 7

5.4.1 Using a context variable to flash the LED. 87

5.5 Project 15 – Alternately flashing LEDs . 88

5.5.1 Using context variables to flash the LEDs alternately. 89

5.6 Project 16 – Temperature alarm with buzzer . 90

5.7 Project 17 – Controlling a GPIO port remotely using email 93

5.8 Project 18 – Confirmation of the buzzer state . 95

5.9 Project 19 – Controlling multiple GPIO ports remotely using email. 98

5.10 Project 20 – Traffic lights simulator . 102

5.11 Project 21 – Push-Button switch input . 106

5.12 Project 22 – Changing LED brightness – The PWM output 110

5.13 Summary . 112

6.1 Overview . 113

6.2 Raspberry Pi I2C ports . 114

6.3 I2C LCD . 115

6.4 Installing the I2C LCD software on Node-RED . 115

6.5 Project 23 – Displaying current time on the LCD . 118

6.6 Project 24 – Displaying local temperature and humidity on the LCD. 120

6.7 Project 25 – Displaying dice numbers. 120

6.8 Project 26 – Event counter with LCD . 122

6.9 Project 27 – DHT11 temperature and humidity sensor with LCD Display. 124

6.10 Project 28 – Ultrasonic distance sensor with LCD display 129

6.11 Project 29 – Ultrasonic distance alarm with buzzer . 134

6.12 Project 30 – Ultrasonic car parking system with buzzer 135

6.13 Using a parallel LCD . 137

6.14 Project 31 – Displaying message on a parallel LCD . 139

6.15 Summary . 141

Chapter 7 • Using ADC in Raspberry Pi Node-RED projects142

7.1 Overview . 142

7.2 The MCP3002 ADC. 142

7.3 Project 32 – Voltmeter with LCD output . 144

7.4 Project 33 – Temperature measurement using analog sensor 146

7.5 Project 34 – ON/OFF temperature control . 148

Programming with Node-RED

● 8

7.6 Summary . 152

Chapter 8 • The dashboard palette .153

8.1 Overview . 153

8.2 Installing the dashboard. 153

8.3 Project 35 – Using a gauge to display the temperature 154

8.4 Using a Line Chart to display the temperature. 156

8.5 Using a Bar Chart to display the temperature . 157

8.6 Project 36 – Using gauges to display the temperature and humidity 158

8.7 Project 37 – Using multiple gauges . 160

8.8 Project 38 – Using a slider to change LED brightness . 161

8.9 Project 39 – Using button nodes to control an LED . 163

8.10 Project 40 – Using switch and text nodes to control an LED 165

8.11 Project 41 – Talking weather forecast. 166

8.12 Configuring the dashboard . 169

8.13 Summary . 169

Chapter 9 • Wi-Fi UDP/TCP Network-Based projects . .170

9.1 Overview . 170

9.2 Project 42 – Controlling an LED from a mobile phone –

UDP based communication . 170

9.3 Project 43 – Controlling multiple LEDs from a mobile phone – UDP based

communication . 173

9.5 Project 45 – Controlling an LED from a mobile phone –

TCP based communication . 178

9.6 Project 46 – Controlling Multiple LEDs From a Mobile Phone –

TCP Based Communication . 181

9.7 Project 47 – Sending the temperature and humidity to the mobile phone –

TCP based communication . 182

9.8 Project 48 – Chat program – Mobile phone to Raspberry Pi chat 184

9.9 Project 49 – Using the ping. 187

9.10 Summary . 189

Chapter 10 • Storage Nodes . .190

10.1 Overview . 190

10.2 Project 50 – Storing timestamped temperature and

humidity data in a file .190

● 9

10.3 Project 51 – Reading contents of a file . 192

10.4 Project 52 – Reading a file line by line . 195

10.5 Summary . 197

Chapter 11 • Serial communication .198

11.1 Overview . 198

11.2 Project 53 – Communicating with Arduino over serial line 199

11.3 Project 54 – Receiving serial data – Receiving GPS data 204

11.4 Project 55 – Receiving GPS data – Extracting the latitude and longitude. 208

11.5 Project 56 – Displaying our location on a map . 212

11.6 Project 57 – Sending out serial data to arduino . 216

11.7 Project 58 – Connecting Raspberry Pi and Arduino Uno using USB ports. 220

11.8 Project 59 – Sending serial data from Raspberry Pi to Arduino over RF Radio . . . 222

11.9 Summary . 224

Chapter 12 • Using Sense HAT .225

12.1 Overview . 225

12.2 The Sense HAT board . 225

12.3 Node-RED Sense HAT nodes . 226

12.4 Project 60 - Displaying the temperature, humidity,

and pressure (environmental events) . 227

12.5 Project 61 - Displaying the compass heading (motion events) 229

12.6 Project 62 - Displaying the acceleration (motion events) 230

12.7 Project 63 - Displaying the orientation (motion events) 231

12.8 Using the joystick . 233

12.9 Using the LED matrix . 234

12.10 Project 64 – Random flashing LED lights having random colours 238

12.11 Project 65 – Display of temperature by LED count . 239

12.12 Displaying and scrolling data on LED Matrix . 242

12.13 Project 66 – Scrolling the pressure readings on the LED matrix 242

12.14 Summary . 244

Chapter 13 • Node-RED with Arduino Uno . .245

13.1 Overview . 245

13.2 Installing Node-RED For Arduino Uno . 245

Programming with Node-RED

● 10

13.3 Project 67 – Flashing LED . 247

13.4 Project 68 – Displaying the ambient temperature in the debug window 248

13.5 Project 69 – Displaying the ambient temperature in the dashboard 250

13.6 Project 70 – Displaying the ambient temperature as gauge and chart 251

13.7 Using the Arduino Uno serial port . 253

13.7.1 Project 71 – Using the DHT11 with the Arduino . 253

13.8 Summary . 256

Chapter 14 • Using the ESP32 DevkitC with Node-RED .257

14.1 Overview . 257

14.2 ESP32 DevKitC and Node-RED. 259

14.3 Project 72 – Controlling an LED connected to ESP32 DevKitC 259

14.4 Summary . 262

Chapter 15 • Using Amazon Alexa in Node-RED projects 263

15.1 Overview . 263

15.2 Project 73 – Controlling an LED using Alexa . 263

15.3 Project 74 – Controlling an LED and a buzzer using Alexa. 265

15.4 Summary . 268

Chapter 16 • Accessing Raspberry Pi Node-RED from anywhere 269

16.1 Overview . 269

16.2 The ngrok . 269

16.3 Starting Node-RED automatically at reboot time . 271

16.4 Summary . 271

Chapter 17 • Using Bluetooth with Node-RED .272

17.1 Overview . 272

17.2 Project 75 – Controlling an LED and a buzzer using Bluetooth 272

17.3 Summary . 276

Chapter 18 • Node-RED and MQTT .278

18.1 Overview . 278

18.2 How MQTT works . 278

18.3 The Mosquitto broker . 280

18.4 Using MQTT in home automation and in IoT projects . 281

18.5 Project 76 – Controlling an LED using MQTT . 282

● 11

18.6 The ESP8266 processor . 283

18.7 Project 77 – Flashing an LED using ESP8266 NodeMCU 285

18.8 Using the ESP8266 NodeMCU with MQTT . 287

18.9 Project 78 – Controlling an LED using ESP8266 NodeMCU with MQTT –

LED connected to Raspberry Pi . 288

18.10 Project 79 – Controlling an LED using ESP8266 NodeMCU with MQTT – LED

connected to ESP8266 NodeMCU . 293

18.11 Summary . 299

Chapter 19 • Using HTTP in Node-RED projects . .300

19.1 Overview . 300

19.2 Using HTTP GET. 300

19.3 Web server . 301

19.4 Project 80 – Controlling 4 Relays using web server . 302

19.5 Summary . 308

Appendix A • The function node . .309

A.1 Overview . 309

A.2 Variables . 309

A.3 Multiple outputs . 310

A.4 String manipulation . 310

A.5 Mathematical functions . 313

A.6 Number conversions and checking numbers . 314

A.7 Date . 315

A.8 Arrays . 315

A.9 Conditional statements . 316

A.10 Repetition (loops) . 317

A.12 Examples . 319

Appendix B • Flow programs used in the book .321

A.1 Overview . 321

A.2 Using the flow programs . 321

Appendix C • Components used in the book .322

Index .323

Programming with Node-RED

● 12

● 13

Preface

Preface

It is becoming important for microcontroller users to adapt to new technologies quickly and

learn the architecture and use of high-performance 32-bit microcontrollers. Several manu-

facturers offer 32-bit microcontrollers as general-purpose processors in embedded applica-

tions. ARM architecture is currently one of the most frequently used 32-bit microcontroller

architectures in mobile devices, such as in mobile phones, iPads, games consoles, and in

many other portable devices.

Raspberry Pi is based on ARM architecture and it is currently one of the most commonly

used single-board computers used by students, engineers, and hobbyists. There are hun-

dreds of Raspberry Pi based projects available on the internet

Arduino is also a very popular microcontroller development board. Although it is based on

8-bit architecture, it is widely used as it is supported by large numbers of software libraries,

making it easy to develop projects in relatively short times.

Another popular microcontroller is ESP32. It is widely sold as a development board known

as the ESP32 DevKitC. The reason why ESP32 is very popular is that it has onboard Wi-Fi

and Bluetooth capability, many digital and analog input ports, and built-in timers. Addition-

ally, its power consumption is very low and it has a processor that can be put into sleep

mode, which consumes extremely low current.

The Internet of Things (IoT) is becoming a major application area of embedded systems.

As a result, more people are becoming interested in learning about embedded design and

programming. In addition, we can see that more technical colleges and universities are

moving away from legacy 8-bit and 16-bit microcontrollers and introducing 32-bit embed-

ded microcontrollers into their curriculums. Some IoT applications demand precision, high

processing power, and very low power consumption.

Node-RED is an open-source visual editor for wiring the Internet of Things produced by

IBM. Node-RED comes with a large number of nodes to handle a variety of tasks. The

required nodes are selected and joined together to perform a particular task. Node-RED

is based on flow type programming where nodes are configured and joined together to

form an application program. There are nodes for doing very complex tasks, including web

access, Twitter, E-mail, HTTP, Bluetooth, MQTT, controlling GPIO ports, etc. The nice thing

about Node-RED is that the programmer does not need to learn how to write complex

programs. For example, an email can be sent by joining a few nodes together and writing

a few lines of code.

The aim of this book is to teach how Node-RED can be used in projects. The main proces-

sor used in the majority of projects in this book is Raspberry Pi 4. Chapters are included

to show how Node-RED can be used with Arduino Uno, ESP32 DevKitC, and the ESP8266

NodeMCU microcontroller development boards.

Programming with Node-RED

● 14

Many example projects are given in the book. All projects have been fully tested and were

working at the time of writing this book. Users can select flow programs of the projects

from the book website and configure them to suit their own applications. The operation of

each flow program is fully described in the book.

I hope you enjoy reading this book and are then able to use Node-RED happily in your

future projects.

Prof Dr. Dogan Ibrahim

London, 2020

● 15

Chapter 1 • Raspberry Pi 4

Chapter 1 • Raspberry Pi 4

1 .1 Overview

Raspberry Pi has recently become one of the most popular and most powerful single-board

computers used by students, hobbyists, and professional engineers. Raspberry Pi 4 is the

latest and the most powerful version of Raspberry Pi. In this chapter, we will be looking at

the basic specifications and requirements of the Raspberry Pi 4 computer. What is included

in this chapter can easily be applied to other models in the Raspberry Pi family.

1 .2 Parts of the Raspberry Pi 4

Just like its earlier versions, Raspberry Pi 4 is a single-board computer having the following

basic specifications:

• 1.5GHz 64-bit quad-core CPU

• 1GB, 2GB, or 4GB RAM

• 2.4GHZ and 5.0GHz IEEE 802.11ac Wi-Fi

• Bluetooth 5.0 BLE

• Gigabit Ethernet

• 2 x USB 3.0, 2 x USB 2.0 and 1 x USB-C ports

• 2 x micro-HDMI ports for dual display, supporting up to 4K resolution

• DSI display and CSI camera ports

• micro SD card slot for the operating system and data storage

• 4-pole stereo audio and composite video port

• 40-pin GPIO header

• Power over Ethernet (PoE) enabled with the PoE HAT

• OpenGL ES 3.0 graphics

Figure 1 shows the Raspberry Pi 4 board with its major components identified.

Figure 1.1 Raspberry Pi 4 board

Programming with Node-RED

● 16

A brief description of the various components on the board is given below:

Processor: the processor is enclosed in a metal cap and it is based on Broadcom

BCM2711B0, which consists of a Cortex A-72 core, operating at 1.5GHz.

RAM: There are 3 versions of Raspberry Pi 4 depending on the amount of DDR4 RAM re-

quired: 1GB, 2GB, and 4GB.

USB Ports: Raspberry Pi 4 includes 2 x USB 3.0, 2 x USB 2.0, and 1 x USB-C ports. USB

3.0 data transfer rate is 4,800 Mbps (megabits per second), while USB 2.0 can transfer at

up to 480Mbps, i.e. 10 times slower than the USB 2.0. The USB-C port enables the board

to be connected to a suitable power source.

Ethernet: The Ethernet port enables the board to be connected directly to an Ethernet port

on a router. The port supports Gigabit connections (125Mbps).

HDMI: Two micro HDMI ports are provided that support up to 4K screen resolutions. HDMI

adapters can be used to interface the board to standard size HDMI devices.

GPIO: A 40-pin header is provided as the GPIO (General Purpose Input Output). This is

compatible with the earlier GPIO ports.

Audio and Video Port: A 3.5mm jack type socket is provided for stereo audio and com-

posite video interface. Headphones can be connected to this port. External amplifier de-

vices will be required to connect speakers to this port. This port also supports composite

video, enabling TVs, projectors, and other composite video compatible display devices to

be connected to the port.

CSI Port: This is the camera port (Camera Serial Interface), allowing a compatible camera

to be connected to the Raspberry Pi.

DSI Port: This is the display port (Display Serial Interface), allowing a compatible display

(e.g. 7 inch Raspberry Pi display) to be connected to the Raspberry Pi.

PoE Port: This is a 4-pin header, allowing the Raspberry Pi to receive power from a net-

work connection.

Micro SD Card: This card is mounted at the cardholder placed at the bottom of the board

and it holds the operating system software as well as the operating system and user data.

Requirements of the Raspberry Pi 4

As listed below, a number of external devices are required before the Raspberry Pi can be

used:

• Power supply

• Micro SD card

● 17

Chapter 1 • Raspberry Pi 4

• Operating system software

• USB keyboard and mouse

• A micro HDMI cable to receive sound and video signals

• HDMI compatible display or TV (you may also need to have micro HDMI to DVI-D

or VGA adapters. A 3.5mm TRRS type cable and plug will be required if you will

be using an old TV with composite video)

Power Supply: A 5V 3A power supply with a USB-C type connector is required. You may

either purchase the official Raspberry Pi 4 power supply (Figure 1.2) or use a USB-C adapt-

er to provide power from an external source.

Figure 1.2 Official Raspberry Pi 4 power supply

Micro SD Card: It is recommended to use a micro SD card with a capacity of at least 8GB,

although higher capacity (e.g. 16GB or 32GB) is better as there will be room to grow in the

future. A Class 10 (or faster) card is recommended.

Operating System: You can purchase the operating system pre-loaded on a micro SD

card, known as NOOBS (New Out Of Box Software) which requires minimum configuration

before it is fully functional. The alternative is to purchase a blank micro SD card and upload

the operating system on this card. The steps to prepare a new micro SD card with the op-

erating system is given in the next Chapter.

USB Keyboard and Mouse: You can either use a wireless or wired keyboard and mouse

pair. If using a wired pair, you should connect the keyboard to one of the USB ports and the

mouse to another USB port. If using a wireless keyboard and mouse, you should connect

the wireless dongle to one of the USB ports.

Programming with Node-RED

● 18

Display: A standard HDMI compatible display monitor with a micro HDMI to standard HDMI

adapter can be used. Alternatively, a VGA type display monitor with a micro HDMI to VGA

adapter or DVI-D adapter can be used. If you have an old TV with a composite video inter-

face, then you can connect it to the Raspberry Pi 3.5mm port with a TRRS type connector.

You may also consider purchasing additional parts, such as a case, CPU fan, and so on. The

case is very useful as it protects your Raspberry Pi electronics. The working temperature of

the CPU can go as high as 80 degrees Centigrade. Using a fan (see Figure 1.3) makes the

CPU more efficient as it can lower its temperature by about 50%.

Figure 1.3 Raspberry Pi 4 CPU fan (www.seeedstudio.com)

1 .3 .1 Setup option 1

As shown in Figure 1.4, in this option various devices are connected directly to the Raspber-

ry Pi 4. Depending on what type of display monitor we have, we can use an HDMI display,

VGA monitor, DVI-D monitor, or TV. Notice that depending on the external USB devices

used, you can use either the USB 2.0 or the USB 3.0 ports.

Figure 1.4 Raspberry Pi 4 setup - option 1

● 19

Chapter 1 • Raspberry Pi 4

1 .3 .2 Setup option 2

In this option, shown in Figure 1.5, a powered hub is used to connect the USB devices.

Figure 1.5 Raspberry Pi 4 setup – option 2

Summary

In this chapter, we have learned about the main parts and their functions of the Raspberry

Pi 4 board. In addition, we have learned how to configure Raspberry Pi 4.

In the next chapter, we will be learning how to install the latest Raspberry Pi operating

system, Raspbian Buster, on a new blank micro SD card.

Programming with Node-RED

● 20

Chapter 2 • Installing the Raspberry Pi operating system

2 .1 Overview

In the last chapter, we had a look at some of the hardware features of Raspberry Pi 4 and

learned how to set up the hardware using various external devices. In this chapter, we will

be learning how to install the latest Raspberry Pi operating system, Raspbian Buster, on

an SD card.

2 .2 Raspbian Buster installation steps on Raspberry Pi 4

Raspbian Buster is the latest operating system of Raspberry Pi 4. This section gives the

steps for installing this operating system on a new blank SD card, ready to use with your

Raspberry Pi 4. You will need a micro SD card with a capacity of at least 8GB (16 GB is

preferable) before installing the new operating system on it.

The steps to install Raspbian Buster are as follows:

• Download the Buster image to a folder on your PC (e.g. C:\RPIBuster) from the

following link by clicking the Download ZIP under section Raspbian Buster with

desktop and recommended software (see Figure 2.1). At the time of writing

this book the file was called: 2019-07-10-raspbian-buster-full .img. You may

have to use the Windows 7Zip software to unzip the download since some of the

features are not supported by older unzip software.

 https://www.raspberrypi.org/downloads/raspbian/

Figure 2.1 Raspbian Buster download page

• Put your blank micro SD card into the card slot on your computer. You may need

to use an adapter to do this.

● 21

• Download the Etcher program to your PC to flash the disk image. The link is (see

Figure 2.2):

 https://www.balena.io/etcher/

Figure 2.2 Download Etcher

• Double click to Open Etcher, and click Select image. Select the Raspbian Buster

file you just downloaded.

• Click Select target and select the micro SD card.

• Click Flash (see Figure 2.3). This may take several minutes, wait until it is fin-

ished. The program will then validate and unmount the micro SD card. You can

remove your micro SD card after it is unmounted.

Figure 2.3 Click Flash to flash the disk image

• You are now ready to use your micro SD card on your Raspberry Pi 4.

Chapter 2 • Installing the Raspberry Pi operating system

Programming with Node-RED

● 22

• Connect your Raspberry Pi 4 to a HDMI monitor (you may need to use an adapter

cable for mini HDMI to standard HDMI conversion), connect a USB keyboard, and

power up the Raspberry Pi.

• You will see the startup menu displayed on the monitor. Click Next to get started.

• Select the Wi-Fi network and enter the password of your Wi-Fi router.

• Click on the Wi-Fi icon at the top right-hand side of the screen and note the Wire-

less IP address of your Raspberry Pi (notice that this IP address is not static and

it can change next time you power-up your Raspberry Pi).

• You should now be ready to use your Raspberry Pi 4 (see Desktop in Figure 2.4).

Figure 2.4 Raspberry Pi 4 desktop

Notice that the IP address of your Raspberry Pi can also be seen in your router. You can also

get the IP address of your Raspberry Pi using your mobile phone. There are several pro-

grams free of charge that can be installed on your mobile phone that will show you the IP

addresses of all the devices connected to your router. In this section, the use of the Android

apps called Who's On My Wi-Fi – Network Scanner by Magdalm is used to show how

the IP address of your Raspberry Pi can be displayed. Running this program will display the

Raspberry Pi Wireless IP address under the heading Raspberry Pi Trading Ltd. In addi-

tion to the IP address, other parameters such as MAC address, gateway address, IP mask,

etc are all displayed by this program.

2 .3 Remote access

It is much easier to access the Raspberry Pi remotely over the Internet, for example using

a PC rather than connecting a keyboard, mouse, and display to it. Before being able to ac-

cess your Raspberry Pi remotely, we have to enable the SSH and the VNC by entering the

following command at a terminal session:

● 23

 pi$raspberrypi:~ $ sudo raspi-config

Go to the configuration menu and select Interface Options. Go down to P2 SSH (see

Figure 2.5) and enable SSH. Click <Finish> to exit the menu.

Figure 2.5 Enable SSH

You should also enable VNC so that your Raspberry Pi can be accessed graphically over the

Internet. This can be done by entering the following command at a terminal session:

 pi$raspberrypi:~ $ sudo raspi-config

Go to the configuration menu and select Interface Options. Go down to P3 VNC and en-

able VNC. Click <Finish> to exit the menu. At this stage, you may want to shut down your

Raspberry Pi by clicking the Applications Menu on Desktop and selecting the Shutdown

option.

2 .4 Using Putty

Putty is a communications program that is used to create a connection between your PC

and Raspberry Pi. This connection uses a secure protocol called SSH (Secure Shell). Putty

doesn't need to be installed as it can just be stored in any folder of your choice and run

from there.

Putty can be downloaded from the following web site:

 https://www.putty.org/

Simply double click to run it and the Putty startup screen will be displayed. Click SSH and

enter the Raspberry Pi IP address, then click Open (see Figure 2.6). The message shown in

Figure 2.7 will be displayed the first time you access your Raspberry Pi. Click Yes to accept

this security alert.

Chapter 2 • Installing the Raspberry Pi operating system

Programming with Node-RED

● 24

Figure 2.6 Putty startup screen

Figure 2.7 Click Yes to accept

You will be prompted to enter the username and password. Notice that the default user-

name and password are:

 username: pi

 password: raspberry

You now have a terminal connection with the Raspberry Pi and you can type in commands,

including sudo commands. You can use the cursor keys to scroll up and down through the

commands you've previously entered in the same session. You can also run programs al-

though not graphical programs.

2 .4 .1 Configuring Putty

By default, the Putty screen background is black with white foreground characters. In this

book, we used a white background with black foreground characters, with the character

size set to 12 points bold. The steps to configure Putty with these settings are given below.

Notice that in this example the settings are saved with the name RPI4 so that they can be

recalled whenever Putty is re-started:

● 25

• Restart Putty

• Select SSH and enter the Raspberry Pi IP address

• Click Colours under Window

• Set the Default Foreground and Default Bold Foreground colours to black

(Red:0, Green:0, Blue:0)

• Set the Default Background and Default Bold Background to white (Red:255,

Green:255, Blue:255)

• Set the Cursor Text and Cursor Colour to black (Red:0, Green:0, Blue:0)

• Select Appearance under Window and click Change in Font settings. Set the

font to Bold 12.

• Select Session and give a name to the session (e.g. RPI4) and click Save.

• Click Open to open the Putty session with the saved configuration

• Next time you re-start Putty, select the saved session and click Load followed by

Open to start a session with the saved configuration

2 .5 Remote access of the desktop

You can control your Raspberry Pi via Putty, and run programs on it from your Windows PC.

This, however, will not work with graphical programs because Windows doesn't know how

to represent the display. As a result of this, for example, we cannot run any graphical pro-

grams in the Desktop mode. We can get around this problem using some extra software.

Two popular programs used for this purpose are VNC (Virtual Network Connection), and

Xming. Here, we will be learning how to use VNC.

Installing and using VNC

VNC consists of two parts: VNC Server and VNC Viewer. VNC Server runs on the Raspberry

Pi, and VNC Viewer runs on the PC. VNC server is already installed on your Raspberry Pi.

You can start the server by entering the following command in the command mode:

pi$raspberrypi:~ $ vncserver :1

The steps to install and use VNC Viewer on your PC are given below:

• There are many VNC Viewers available, but the recommended one is TightVNC

which can be downloaded from the following web site:

 https://www.tightvnc.com/download.php

Chapter 2 • Installing the Raspberry Pi operating system

Programming with Node-RED

● 26

• Download and install TightVNC software for your PC. You will have to choose a

password during the installation.

• Start TightVNC Viewer on your PC and enter the Raspberry Pi IP address (see

Figure 2.8) followed by :1. Click Connect to connect to your Raspberry Pi.

Figure 2.8 Start the TightVNC and enter the IP address

Figure 2.9 shows the Raspberry Pi Desktop displayed on the PC screen.

 Figure 2.9 Raspberry Pi Desktop on the PC screen]

2 .6 Summary

In this chapter, we have learned how to install the latest Raspberry Pi operating system

on an SD card. Now that the software has been installed and our Raspberry Pi is working,

in the next chapter, we will look at some of the important commands of the Raspberry Pi

operating system.

Chapter 3 • Using the command line

● 27

Chapter 3 • Using the command line

3 .1 Overview

Raspberry Pi operating system is based on a version of the Linux operating system. Linux

is one of the most popular operating systems in use today. Linux is very similar to other

operating systems, such as Windows and Unix. Linux is an open operating system based

on Unix and has been developed collaboratively by many companies and universities since

1991. In general, Linux is harder to manage than some other operating systems like Win-

dows but offers more flexibility and wider configuration options. There are several popular

versions of the Linux operating system such as Debian, Ubuntu, Red Hat, Fedora and so on.

In this chapter we shall be looking at some of the commonly used Raspberry Pi commands

that we can enter from the command line. The commands entered by the user are shown

in bold for clarity.

3 .2 The Raspberry Pi directory structure

The Raspberry Pi directory structure consists of a single root directory, with directories and

subdirectories under the root. Different operating system programs, applications, and user

data are stored in different directories and subdirectories.

The root directory is identified by the "/" symbol. Under the root, we have directories

named such as bin, boot, dev, etc, home, lib, lost+found, media, mnt, opt, proc,

and many more. The important directory as far as the users are concerned is the home

directory which contains subdirectories for each user of the system. The full path to the

home directory is /home/pi. We can move to our home directory from any other directory

by entering the command cd ~

Some useful directory commands are given below. Command pwd displays the user home

directory:

 pi@raspberrypi:~ $ pwd

 /home/pi

 pi@raspberrypi:~ $

To show the directory structure, enter the command ls / as shown in Figure 3.1.

Figure 3.1 List the directory structure

To show the subdirectories and files in our home directory, enter ls as shown in Figure 3.2.

Figure 3.2 List of files in our home directory

Programming with Node-RED

● 28

The ls command can take a number of arguments. Some examples are given below:

To display the subdirectories and files in a single row:

pi@raspberrypi:~ $ ls -1

To display the file type, enter the following command. Note that directories have a "/" after

their names, executable files have a "*" character after their names:

pi@raspberrypi:~ $ ls -F

To list the results separated by commas:

pi@raspberrypi:~ $ ls –m

We can mix the arguments as in the following example:

pi@raspberrypi:~ $ ls –m –F

Subdirectories are created using command mkdir followed by the name of the subdirecto-

ry. In the following example, subdirectory myfiles is created in our working directory (see

Figure 3.3).

Figure 3.3 Creating a subdirectory

Use command rmdir followed by the subdirectory name to remove a subdirectory.

3 .3 File permissions

One of the important arguments used with the ls command is "-l" (lower case letter l)

which displays the file permissions, file sizes, and when they were last modified. In the

example in Figure 3.4, each line relates to one directory or file. Reading from right to left,

the name of the directory or the file is on the right-hand side. The date the directory or

the file was created is on the left-hand side of its name. Next comes the size in bytes. The

characters at the beginning of each line are about the permissions. i.e. who is allowed to

use or modify the file or the subdirectory.

Chapter 3 • Using the command line

● 29

Figure 3.4 File permissions example

The permissions are divided into 3 categories:

• What the user (or owner, or creator) can do – called USER

• What the group owner (people in the same group) can do – called GROUP

• What everyone else can do – called WORLD

The first pi in the example shows who the user of the file (or subdirectory) is, and the sec-

ond word pi shows the group name that owns the file (or subdirectory). In this example,

both the user and the group names are pi.

The permissions can be analysed by breaking down the characters into four chunks for

File type, User, Group, World. The first character for a file is "-", and for a directory, it is

"d". Next comes the permissions for the User, Group, and World. The permissions are as

follows:

• Read permission (r): the permission to open and read a file or to list a directory

• Write permission (w): the permission to modify a file, or to delete or create a

file in a directory

• Execute permission (x): the permission to execute the file (applies to execut-

able files), or to enter a directory

The three letters rwx are used as a group and if there is no permission assigned then a "-"

character is used.

As an example, considering the Music subdirectory, we have the following permission

codes:

 drwxr-xr-x which translates to:

 d: it is a directory

 rwx: user (owner) can read, write, and execute

 r-x: group can read and execute, but cannot write (e.g. create or delete)

 r-x: world (everyone else) can read and execute, but cannot write

Programming with Node-RED

● 30

The chmod command is used to change the file permissions. Before going into details of

how to change the permissions, let us look and see what arguments are available in chmod

for changing the file permissions.

The available arguments for changing file permissions are given below. We can use these

arguments to add/remove permissions or to explicitly set permissions. It is important to

realize that if we explicitly set permissions then any unspecified permissions in the com-

mand will be revoked:

u: user (or owner)

g: group

o: other (world)

a: all

+: add

-: remove

=: set

r: read

w: write

x: execute

To change the permissions of a file we type the chmod command, followed by one of the

letters u, g, o, or a to select the people, followed by the + - or = to select the type of

change, and finally followed by the filename. An example is given below. In this example,

subdirectory Music has the user read and write permissions. We will be changing the per-

missions so that the user does not have read permission on this file:

pi@raspberrypi ~$ chmod -u -r Music

pi@raspberrypi ~$ ls –l

The result is shown in Figure 3.5.

Figure 3.5 File permissions of subdirectory Music

Chapter 3 • Using the command line

● 31

In the following example, rwx user permissions are given to subdirectory Music:

pi@raspberrypi ~$ chmod u+rwx Music

Figure 3.6 shows the new permissions of subdirectory Music.

Figure 3.6 New permissions of subdirectory Music

To change our working directory the command cd is used. In the following example we

change our working directory to Music:

pi@raspberrypi ~$ cd /home/pi/Music

pi@raspberrypi ~/Music $

to go up one directory level, i.e. to our default working directory:

pi@raspberrypi ~/Music $ cd..

pi@raspberrypi ~$

to change our working directory to Music, we can also enter the command:

pi@raspberrypi ~$ cd ~/Music

pi@raspberrypi ~/myfiles $

to go back to the default working directory, we can enter:

pi@raspberrypi ~/Music $ cd ~

pi@raspberrypi ~$

to find out more information about a file we can use the file command. For example:

pi@raspberrypi ~$ file Music

Music: directory

pi@raspberrypi ~$

Programming with Node-RED

● 32

the –R argument of command ls lists all the files in all the subdirectories of the current

working directory. An example is shown in Figure 3.7.

Figure 3.7 Using command –R with ls

3 .4 Help

Man

To display information on how to use a command, we can use the man command. As an

example, to get help on using the mkdir command:

 pi@raspberrypi ~$ man mkdir

 MKDIR(1)

 NAME

 Mkdir – make directories

 SYNOPSIS

 Mkir [OPTION]…DIRECTORY…

 DESCRIPTION

 Create the DIRECTORY(ies), if they do not already exist.

 Mandatory arguments to long options are mandatory for short options

 -m, --mode=MODE

 Set file mode (as in chmod), not a=rwx – umask

Enter Cntrl+Z to exit from the man display.

Help

The man command usually gives several pages of information on how to use a command.

We can type q to exit the man command and return to the operating system prompt.

The less command can be used to display a long listing one page at a time. Using the up

and down arrow keys, we can move between pages. An example is given below. Type q to

exit:

pi@raspberrypi ~$ man ls | less

<display of help on using the ls command>

Chapter 3 • Using the command line

● 33

pi@raspberrypi ~$

3 .5 Date, time, and calendar

To display the current date and time, the date command is used. Similarly, the cal com-

mand displays the current calendar. Figure 3.8 shows an example.

 Figure 3.8 Commands: date and cal

3 .6 File operations

Copying a file

To make a copy of a file, use the command cp. In the following example, a copy of file

mytestfile .txt is made and the new file is given the name test .txt:

pi@raspberrypi ~$ cp mytestfile.txt test.txt

Wildcards

We can use wildcard characters to select multiple files with similar characteristics. e.g. files

having the same file-extension names. The "*" character is used to match any number of

characters. Similarly, the "?" character is used to match any single character. In the exam-

ple below all the files with extensions " .txt" are listed:

pi@raspberrypi ~$ ls *.txt

The wildcard characters [a-z] can be used to match any single character in the specified

character range. An example is given below which matches any files that start with letters

o, p, q, r, s, and t, and with the " .txt" extension:

pi@raspberrypi ~$ ls [o-t]*.txt

Renaming a file

You can rename a file using the mv command. In the example below, the name of file test .

txt is changed to test2 .txt:

pi@raspberrypi ~$ mv test.txt test2.txt

Programming with Node-RED

● 34

Deleting a file

The command rm can be used to remove (delete) a file. In the example below file test2 .

txt is deleted:

pi@raspberrypi ~$ rm test2.txt

The argument –v can be used to display a message when a file is removed. Also, the –i

argument asks for confirmation before a file is removed. In general, the two arguments are

used together as –vi. An example is given below:

pi@raspberrypi ~$ rm –vi test2.txt

rm: remove regular file 'test2.txt'? y

removed 'test2.txt'

pi@raspberrypi ~$

Removing a directory

A directory can be removed using the rmdir command:

pi@raspberrypi ~$ rmdir Music

Re-directing the output

The greater sign > can be used to re-direct the output of a command to a file. For example,

we can re-direct the output of the ls command to a file called lstest .txt:

pi@raspberrypi ~$ ls > lstest.txt

The cat command can be used to display the contents of a file:

pi@raspberrypi ~$ cat mytestfile.txt

This is a file

This is line 2

pi@raspberrypi ~$

Using two greater signs >> adds to the end of a file.

Writing to the screen or to a file

The echo command can be used to write to the screen. It can be used to perform simple

mathematical operations if the numbers and the operation are enclosed in two brackets,

preceded by a $ character:

pi@raspberrypi ~$ echo $((5*6))

30

pi@raspberrypi ~$

Chapter 3 • Using the command line

● 35

The echo command can also be used to write a line of text to a file. An example is shown

below:

pi@raspberrypi ~$ echo a line of text > lin.dat

pi@raspberrypi ~$ cat lin.dat

a line of text

pi@raspberrypi ~$

Matching a string

The grep command can be used to match a string in a file. An example is given below

assuming that the file lin .dat contains sting a line of text. Notice that the matched word

is shown in bold:

pi@raspberrypi ~$ grep line lin.dat

a line of text

pi@raspberrypi ~$

Head and tail commands

The head command can be used to display the first 10 lines of a file. The format of this

command is as follows:

pi@raspberrypi ~$ head mytestfile.txt

…………………………………..

…………………………………..

pi@raspberrypi ~$

Similarly, the tail command is used to display the last 10 lines of a file. The format of this

command is as follows:

pi@raspberrypi ~$ tail mytestfile.txt

………………………………….

………………………………….

pi@raspberrypi ~$

3 .7 System and user information

These commands are useful as they tell us information about the system. Command cat /

proc/cpuinfo displays information about the processor (command cat displays the con-

tents of a file. In this example, the contents of the file /proc/cpuinfo is displayed). Since

there are 4 cores in the Raspberry Pi 4, the display is in 4 sections. Figure 3.9 shows an

example display, where only part of the display is shown here.

Programming with Node-RED

● 36

Figure 3.9 Command: cat /proc/cpuinfo (only part of the output is shown)

Command uname –s displays the operating system Kernel name, which is Linux. Com-

mand uname –a displays complete detailed information about the Kernel and the operat-

ing system.

Command cat /proc/meminfo displays information about the memory on your Pi. Infor-

mation such as the total memory and free memory at the time of issuing the command are

displayed.

Command whoami displays the name of the current user. In this case, it displays pi.

A new user can be added to your Raspberry Pi using the command useradd. In the ex-

ample in Figure 3.10, a user called Johnson is added. A password for the new user can be

added using the passwd command followed by the username. In Figure 3.10, the pass-

word for user Johnson is set to mypassword (not displayed for security reasons). Notice

that both the useradd and passwd are privileged commands and the keyword sudo must

be entered before these commands. Notice that the –m option creates a home directory

for the new user.

Figure 3.10 Commands: useradd and passwd

We can log in to the new user account by specifying the username and the password.

What software is installed on my Raspberry Pi

To find out what software is installed on your Raspberry Pi, enter the following command.

You should get several pages of display:

Chapter 3 • Using the command line

● 37

pi@raspberrypi ~$ dpkg –l

…………………………….

…………………………….

pi@raspberrypi ~$

We can also find out if a certain software package is already installed on our computer. An

example is given below which checks whether or not software called xpdf (PDF reader) is

installed. In this example xpdf is installed and the details of this software are displayed:

pi@raspberrypi ~$ dpkg --s xpdf

Package: xpdf

Status: install ok installed

Priority: optional

Section: text

Installed-Size: 395

………………………….

………………………….

pi@raspberrypi ~$

If the software is not installed, we get a message similar to the following (assuming we are

checking to see if a software package called bbgd is installed):

pi@raspberrypi ~$ dpkg –s bbgd

dpkg-query: package 'bbgd' is not installed and no information is available

……………………………………………………………………………..

…………………………………………………………………………….

pi@raspberrypi ~$

Super user commands

Some of the commands are privileged and only authorized persons can use them. Inserting

the word sudo at the beginning of a command gives us the authority to use the command

without having to log in as an authorized user.

3 .8 Resource monitoring on Raspberry Pi

System monitoring is an important topic for managing usage of your Raspberry Pi. One of

the most useful system monitoring commands is the top, which displays the current usage

of system resources and displays which processes are running and how much memory and

CPU time they are consuming.

Figure 3.11 shows a typical system resource display obtained by entering the following

command (Enter Ctrl+Z to exit):

pi@raspberrypi ~$ top

pi@raspberrypi ~$

Programming with Node-RED

● 38

Figure 3.11 Typical system resource display

Some of the important points in Figure 3.11 are summarized below (for lines 1 to 5 of the

display):

• There are a total of 149 processes in the system

• Currently, only one process is running, 146 processes are sleeping, and

2 processes are in Zombie state

• The percentage CPU utilization is 0.0us for user applications (us)

• The percentage CPU utilization for system applications is 5.2 (sy)

• There are no processes requiring more or less priority (ni)

• 94.8% of the time the CPU is idle (id)

• There are no processes waiting for I/O completion (wa)

• There are no processes waiting for hardware interrupts (hi)

• There are no processes waiting for software interrupts (si)

• There is no time reserved for a hypervisor (st)

• The total usable memory is 1939.5MB, of which 151.3MB bytes are in use,

1353.7MB are free, and 434.5MB are used by buffers/cache

• Line 5 displays the swap space usage

The process table gives the following information for all the processes loaded to the system:

• PID: the process ID number

• USER: the owner of the process

• PR: priority of the process

• NI: the nice value of the process

• VIRT: the amount of virtual memory used by the process

• RES: the size of the resident memory

• SHR: shared memory the process is using

• S: process status (sleeping, running, zombie)

• %CPU: the percentage of CPU consumed

• %MEM: percentage of RAM used

Chapter 3 • Using the command line

● 39

• TIME+: total CPU time the task used

• COMMAND: The actual name of the command

The ps command can be used to list all the processes used by the current user. An example

is shown in Figure 3.12.

Figure 3.12 Command: ps

the command ps –ef gives a lot more information about the processes running in the sys-

tem.

Killing a process

There are many options for killing (or stopping) a process. A process can be killed by spec-

ifying its PID and using the following command:

pi@raspberrypi ~$ kill -9 <PID>

Disk usage

The disk free command df can be used to display the disk usage statistics. An example is

shown in Figure 3.13. option –h displays in human-readable form.

Figure 3.13 Command: df

3 .9 Shutting down

Although you can disconnect the power supply from your Raspberry Pi when you finish

working with it, it is not recommended since there are many processes running on the sys-

tem and it is possible to corrupt the file system. It is much better to shut down the system

in an orderly manner.

Programming with Node-RED

● 40

The following command will stop all the processes and make the file system safe and then

turn off the system safely:

pi@raspberrypi ~$ sudo halt

The following command stops and then re-starts the system:

pi@raspberrypi ~$ sudo reboot

The system can also be shut down and then restarted after a time by entering the following

command. Optionally, a shutdown message can be displayed if desired:

pi@raspberrypi ~$ shutdown –r <time> <message>

3 .10 Summary

This Chapter has described the use of a number of important Linux commands. You should

be able to get further information on each command and other Linux commands from the

internet and from other books on Raspberry Pi and Linux.

In the next chapter, we shall see how to install Node-RED software on our Raspberry Pi

computer.

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 41

Chapter 4 • Installing Node-RED software on Raspberry Pi

4 .1 Overview

In the last chapter, we have seen how to use some of the common Raspberry Pi command

line commands from a terminal. In this chapter, we will be installing Node-RED software on

our Raspberry Pi SD card.

4 .2 Raspberry Pi Node-RED installation

Node-RED is already installed on the Raspbian Buster operating system of Raspberry Pi

(you will find that it may also be installed if you are using an earlier version of the operating

system, e.g. the Jessie-Version 2017-04-010, version 0.15.3 or a newer version, and it can

be started immediately).

If Node-RED is not installed on your Raspberry Pi, you can easily install it by entering the

following command:

pi@raspberrypi:~ $ sudo apt-get install nodered

At the time of writing this book, the default version of Node-RED pre-installed with the

Raspbian Buster operating system was v0.20.6 and this was not the latest version. If

Node-RED is already installed on your Raspberry Pi, you can upgrade to the latest version

(recommended) by entering the following command (see link: https://nodered.org/docs/

getting-started/raspberrypi):

pi@raspberrypi:~ $ bash <(curl -sL https://raw.githubusercontent.com/

node-red/linux-installers/master/deb/update-nodejs-and-nodered)

After upgrading Node-RED, the latest version at the time of writing this book was v1.0.3

and this is the version used in all examples in this book.

You can start Node-RED by entering the following command in the command mode (char-

acters entered by the user are in bold for clarity):

pi@raspberrypi:~ $ node-red-start

When started, you should see some messages scrolling in your screen, where part of the

messages is shown in Figure 4.1.

Programming with Node-RED

● 42

Figure 4.1 Part of the messages displayed when Node-RED started

A list of the important commands are given below:

node-red-start: start Node-RED

node-red-stop: stop Node-RED

node-red-log: view the recent log output

sudo systemctl enable nodered .service: autostart Node-RED after every

boot

sudo systemctl disable nodered .service: disable autostart after every boot

Notice that this is a service type application and therefore it can be accessed from any-

where on the network and from other computers as well. To do this, we have to know the

IP address of our Raspberry Pi. This can be found by entering the following command at

the command prompt:

pi@raspberrypi:~ $ ifconfig

The IP address of our Raspberry Pi in this example is 192.168.1.202 as shown in Figure 4.2

(only part of the output is shown here).

Figure 4.2 Finding the IP address of our Raspberry Pi

We can now enter the following command on our web browser to display the Node-RED

startup screen:

 http://192.168.1.202:1880

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 43

When started, you should see the Node-RED startup screen as in Figure 4.3. When Node-

RED is started as a service, pressing Cntrl+C does not stop the service as it keeps running

in the background.

Figure 4.3 Node-RED startup screen

Notice that, if you are using a browser on the same computer that Node-RED is running,

then you can access Node-RED using the following URL:

 http://localhost:1880

4 .3 Node-RED interface to external world

Node-RED is normally accessed from a web browser. Figure 4.4 shows the Node-RED in-

terface to the external world. Raspberry Pi accesses the Node-RED software through the

local Wi-Fi router (or Internet). Sensors, actuators, and any other hardware are interfaced

directly to the Raspberry Pi GPIO ports through the 40-pin header mounted on Raspberry

Pi. Raspberry Pi communicates with the external hardware by receiving commands from

Node-RED through the local Wi-Fi router.

Figure 4.4 Node-RED Interface to External World

Programming with Node-RED

● 44

4 .4 Node-RED screen layout

Figure 4.5 shows the various components of the Node-RED screen.

Figure 4.5 Node-RED screen components

The node categories, also called the Node Palettes consists of following sections:

• input

• output

• function

• social

• storage

• analysis

• advanced

• Raspberry Pi

• network

4 .5 Project 1 – Hello World!

Perhaps the easiest way to understand how to use Node-RED is to look at a simple flow

program. In this program, we will display the message Hello World! In the Debug window.

The steps are given below:

• Start Node-RED on your Raspberry Pi:

pi@raspberrypi:~ $ node-red-start

• Enter the following URL into your web browser to display the Node-RED screen

(you will have to enter the IP address of your own Raspberry Pi):

http://192.168.1.202:1880

• From the node palette, Click on inject node on the left-hand side and drag it to

the workspace.

• Double click on this node, click on Payload, select String and enter the following

string Hello World! As shown in Figure 4.6:

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 45

Figure 4.6 Enter Hello World!

• Click Done

• Add node debug by clicking on debug node and dragging it to the right-hand side

of the inject node already in the workspace

• Wire the two nodes together. Place the mouse cursor over the inject nodes out-

put port (a small gray square on the right-hand side of the node), then left-click

and drag a wire over to the input port of the Debug node. A wire should now

connect the two nodes as shown in Figure 4.7

Figure 4.7 Connect the two nodes together

• Click the Deploy button at the top right-hand side of the screen

• Click the small gray square on the right-hand side of node debug to activate the

node. You should see the message Successfully activated: debug displayed

by the console window

• Select the debug tab on the top right-hand side.

• Click the inject nodes button, which is the small square coming out from the left-

hand side of the node. Clicking the button will inject the message into the flow

and to the debug node. The output should be displayed on the debug window as

shown in Figure 4.8

Programming with Node-RED

● 46

Figure 4.8 Display the output at debug window

Notice that, if you place a wrong node on the workspace, you can click on the node and then

use the keyboard delete button to remove it.

In this example, we first created an inject node. The inject node can be used to manually

trigger a flow by clicking the nodes button within the workspace. It can also be used to au-

tomatically trigger flows at regular intervals. We then stored the string Hello World! In this

node. Next, we created a debug node and connected the two nodes together and activated

the debug node. By triggering the inject node, the string is sent to the debug node and is

displayed in the debug window. The Debug node can be used to display messages in the

Debug sidebar within the editor. In addition to the displayed messages, the debug sidebar

includes information about the time the message was received and also the ID of the Debug

node that sent the message. Clicking on the ID reveals the node that sent the message.

Modified program

We can modify the flow program, for example, to display the string every 5 seconds. The

steps to do this are given below:

• Double click on inject node

• Set the Repeat Interval to every 5 seconds (Figure 4.9) and click Done

Figure 4.9 Set the repeat interval to 5 seconds

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 47

• Click Deploy

• Activate the debug node.

• Click the inject nodes button. You should see the message displayed every 5

seconds as in Figure 4.10

Figure 4.10 Displaying the message every 5 seconds

4 .6 Project 2 – Date and time

In this program, we will be using the function node to return the current date and time to

the debug window. The steps are as follows:

• From the node palette, Click on inject node on the left-hand side and drag it to

the workspace.

• Double click on this node, click on Payload, select String and enter the following

string THE DATE AND TIME ARE:. Select the Repeat interval to 1 second as

shown in Figure 4.11.

Programming with Node-RED

● 48

Figure 4.11 The inject node

• Click Done

• Add node function by clicking on function node and dragging it to the right-hand

side of the inject node already in the workspace

• Wire the two nodes together. Click on the function node and enter the following

as shown in Figure 4.12. Click Done:

msg.payload=new Date();

return msg;

Figure 4.12 Function to get the data and time

• Add node debug by clicking on debug node and dragging it to the right-hand side

of the inject node already in the workspace.

• Join the three nodes together as shown in Figure 4.13.

Figure 4.13 Join the three nodes

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 49

• Click the small gray square at the right-hand side of node debug to activate the

node. You should see the message Successfully activated: debug displayed

by the console window

• Click the inject nodes button. You should see the date and time displayed every

second in the following format (see Figure 4.14):

DATE AND TIME ARE:

"Mon Dec 02 2019 15:11:03 GMT+0000

 (Greenwich Mean Time)"

Figure 4.14 Displaying the message every 5 seconds

We have learned in this example that the function node allows JavaScript code to be run

against the messages that are passed through it. A function node receives data from its

left, processes the data and outputs from its right.

A function node can have multiple outputs. To create more than one output, double click

on the function node and set Outputs at the bottom left corner to the required value.

Additionally, a function node can create a library by saving your functions. This is done by

double-clicking the function node and then clicking the book icon next to Name. Here, you

will be given options to Open an existing library or to Save the function in a library.

Flow names

We can add new flows by clicking the + sign at the top right-hand side of the screen. The

name of a flow can be changed as follows:

• Click the menu on the far top right-hand side of the screen

• Select Flows -> Rename as shown in Figure 4.15

Programming with Node-RED

● 50

Figure 4.15 Renaming a flow

• Change the name of the existing flow as required and then click DONE.

Modified program

We can modify the function in the above flow program, for example just to display the local

time in the following format:

Time = hh:mm:ss

The steps are given below:

• Insert an inject node to repeat every second with the string THE CURRENT TIME

• Insert a function node and enter the following statements inside this function

node and click DONE:

var LocalTime = new Date();

var Tim = LocalTime.toLocaleTimeString();

msg.payload = msg.payload + "Time = " + Tim;

return msg;

• Insert a debug node.

• Join all three nodes. Click Deploy and activate the debug node

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 51

• Click the inject nodes button. You should see the time updating every second in

the Debug window as in the format shown in Figure 4.16.

Figure 4.16 Displaying the local time in Debug window

It is important to realize that the programming in Node-RED is based on JavaScript which

is based on objects. Variables are represented by the keyword var. For example, a person

may be represented as follows:

var person = {firstname: "Dogan", surname: "Ibrahim", age: 50, height: 160};

the elements of person can, for example, be accessed as follows:

person.firstname or person.surname, etc.

The Node-RED message object is called msg and it has the following properties: payload,

topic, and _msgid.

payload: this property by default stores the payload of the message. The payload can take

the following values (see link: https://nodered.org/docs/user-guide/messages):

• Boolean - true, false

• Number - eg 0, 123.4

• String - "hello world"

• Array - [1,2,3,4,5]

• Object - { "a": 1, "b": 2}

• Null

By default, the Debug node displays the msg .payload property of a message but can be

configured to display any property or the whole message.

When using a function node, we can store a new text string in variable msg as follows:

var msg = {payload: "This is a string"};

or, we can use the following statement:

msg.payload = "This is a string";

topic stores the parent topic of a message

_msgid: this is an ID that can be used to identify and track the progress of the message

through a flow.

Programming with Node-RED

● 52

4 .7 Project 3 – Temperature conversion

In this program, we will be introducing the change node. This is a temperature conversion

program. The program converts degrees Celsius to degrees Fahrenheit. As an example,

10ºC is converted into ºF and is displayed in the Debug window.

The steps are as follows:

• Create an inject node with te string Temperature Conversion

• Create a change node and set the msg.payload to 10 (this is the degrees Celsi-

us) as shown in Figure 4.17. Click DONE

Figure 4.17 Create a change node

• Create a function node with the following statements to convert ºC to ºF:

var F = msg.payload;

var C = F*1.8+32;

msg.payload = F + "C = "+ C.toString() + "F";

return msg;

• Create a debug node and join all four nodes together as shown in Figure 4.18.

Figure 4.18 Join the nodes together

• Click Deploy

• Activate the debug node and then click the inject nodes button. You should see

10ºC is converted into 50ºF in the Debug node as shown in Figure 4.19

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 53

Figure 4.19 Conversion displayed by the Debug window

In this example, we have used a change node. The change node provides the following

functionalities:

• Set a property to a value

• Change a string property (by performing search and replace)

• Delete a property

• Move a property

With the set operation, we can set a value to msg.payload. This value can be a string or a

number as in the above example, or it can come from another message.

Saving function to a library

Figure 4.20 shows how the statements in the function to convert ºC to ºF can be saved in a

library called TempConv. To do this, click the book icon in the function node and then click

Save to Library, and click Save

Figure 4.20 Saving function to a library

Loading function from a library

Figure 4.21 shows how a library item can be loaded from the library. In this example, li-

brary item TempConv which was saved earlier is loaded into the function. Open the library

by clicking the book icon in function node, select TempConv and click Load.

Programming with Node-RED

● 54

Figure 4.21 Loading a library item

There are many nodes available in the standard Node-RED, and it is not possible to look at

all of them in detail in this book. There are also third-party nodes, created and distributed

by several firms. We will only look at the nodes and make ourselves familiar with the nodes

that we will be using in projects with our Raspberry Pi. We can summarize that the nodes

are the fundamental parts of node-RED and some of their application areas are:

• Accessing the GPIO pins of the Raspberry Pi. This enables us to undertake pro-

jects using various sensors and actuators connected to the Raspberry Pi

• Sending and receiving data packets from the Internet. This enables us, for ex-

ample, to carry out remote control operations, for example, to control equipment

over the Wi-Fi

• Machine to machine communication

• Sensing and receiving data from the Cloud. This application enables us to devel-

op IoT based applications with the help of Node-RED and Raspberry Pi

• Learning and enhancing our programming skills

4 .8 Importing and exporting flow programs

We can import and export flow programs between computers using the export and import

features of Node-RED. Flows are exported as a JSON file, and also imported as a JSON file.

4 .8 .1 Exporting flows

Press CTRL and at the same time Click each node in the flow that you want to export. You

will see the clicked nodes as highlighted. If you wish to export all nodes in the workspace,

then click CTRL+A. Then, click Menu -> Export . You will be presented with a window as in

Figure 4.22. Click Copy to clipboard . There are three tabs on the window with the select-

ed nodes tab selected. You can if you wish, change it to export the entire flow or all flows in

the workspace, by selecting current flow or the all flows tabs respectively. You should now

open a file in a text editor and paste the contents of the JASON flow data into this file using

Paste, or CTRL+V. Finally, give a name to the file and save it in a folder of your choice.

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 55

Figure 4.22 Exporting a flow

4 .8 .2 Importing aflow

A JASIN formatted flow file must be opened in a text editor and the flow data copied into it

using CNTRL+C . Then you should go to Menu->Import and paste the file from the clip-

board into the window. The new flow can be imported into an existing flow, or into a new

flow. Finally, click the Import button to import the flow. If you find that the Import button

doesn't work (e.g. the button colour is not changed), then it is probable that the file you

are trying to import is not a valid JSON file.

4 .9 Copying nodes in the same workspace

There may be applications where you may want to copy a node in Node-RED. To do this,

you simply press CTRL and click the nodes to be copies, or press CTRL+A to select all the

nodes in the workspace. Then, click CTRL+C to copy the nodes. Move the cursor where

you want the nodes to be copied to and press CTRL+V to paste the nodes into the new

location in the workspace.

4 .10 Core nodes

When Node-RED is installed on Raspberry Pi, it starts with categories of nodes known as

the core nodes (see Figure 4.5). We will now briefly look at the nodes in each category.

4 .10 .1 Input nodes

inject: this node injects a timestamp or text into a message The node can be con-

figured either to inject manually or at regular intervals.

Programming with Node-RED

● 56

catch: If a node gives an error while handling a message, it is probable that the

flow will halt. The catch node can be used to catch the errors and return messages

about the error.

mqtt in: this node connects to an MQTT broker and subscribes to messages from

the specified topic

http in: this node creates an HTTP end-point for creating web services

websocket: this node provides an endpoint for a browser so that a Websocket

connection can be established with Node-RED

tcp: this node is used to establish TCP communications on a specified port. It ac-

cepts incoming TCP requests

udp: this node is used to establish communication using the UDP protocol. It ac-

cepts incoming UDP packets

serial in: this node reads serial data from the serial port of the local device. The

node can be configured to read at specific times.

4 .10 .2 Output nodes

debug: This node is used to view messages on the Debug window. The node can

be configured to display either the entire message or just the msg.payload

mqtt out: this node connects to an MQTT broker and publishes messages

http response: this node sends responses back to the HTTP requests received

from HTTP input node.

http request: this node sends HTTP requests and returns the response

websocket: this node sends msg.payload to the configured websocket

tcp: this node replies to a configured TCP port.

udp: this node sends UDP messages to the configured UDP host where the IP ad-

dress and port number are specified. Broadcast is supported

serial out: this node sends data to the defined serial port of the local device. The

node can be configured to send some control characters such as newline after a

message

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 57

4 .10 .3 Function nodes

function: this is a processing node, used to write JavaScript compatible functions

template: this node is useful for constructing messages and configuration files

where name:value pairs are inserted into the template

delay: this node delays messages by a random or specific time

trigger: this node can be used as a watchdog timer. It can also be used to create

two output messages with time intervals when an input message is received

comment: this node is used to insert comments

http request: this node is used to construct and then send an HTTP request to a

given URL

tcp request: this node sends msg.payload to a TCP server and expects a re-

sponse. The node is configurable, for example, it can be configured to wait for a

specific character, or to return immediately

switch: this node is used to route messages based on their properties

change: this node can be used to set, change, or delete the properties of incoming

messages

range: this node maps numerical input data to new output data

csv: this node parses msg.payload and converts to or from CSV format. The input

can be a string in which case a JavaScript object is outputted. If on the other hand,

the input is a JavaScript object, then a CSV formatted string is outputted

html: this node is used to extract data from an html type document in msg.payload

json: this node converts to or from a JSON object and JavaScript object

xml: this node converts to or from XML format and JavaScript object

random: this node generates a random number between a high and a low value

smooth: this node is used for various functions such as max, min, mean, high,

and low pass filter

rbe: this is the rbe (Report By Exception) node which generates message if its

input is different from the previous input

Programming with Node-RED

● 58

4 .10 .4 Social nodes

email in: this node is used to read new emails as they arrive at the localhost. It

can be configured to read repeatedly

twitter in: this node is used to return tweeter messages

email out: this node is used to send email messages

twitter out: this node Tweets the msg.payload on the configured user account.

Text and binary (image) messages can be sent

4 .10 .5 Storage nodes

tail: this node tails a file and injects the contents into the flow

file in: this node reads the specified file and sends it contents as msg.payload

file: this node writes the msg.payload to the specified file

4 .10 .6 Analysis nodes

sentiment: this node analyses the msg.payload and scores incoming words using

the AFINN-165 wordlist, and attaches a sentiment.score property to the msg

4 .10 .7 Advanced nodes

watch: this node watches a folder for changes and sends events when files are

added, changed. created or deleted

feedparse: this node monitors an RSS/Atom feed for new entries and if there are

new entries, it delivers them as messages

exec: this node calls to a system command and provides stdout, stderr, and the

return code

4 .10 .8 Raspberry Pi nodes

rpi gpio in: this is the Raspberry Pi input node. Depending on the state of the in-

put, this node generates a msg.payload with either a 0 or 1. We shall be using this

node in the Raspberry Pi based projects in later Chapters

rpi gpio out: this is the Raspberry Pi output node. The selected hardware pin of

Raspberry Pi is set HIGH or LOW depending on whether msg.payload is 0 or 1. We

shall be using this node in the Raspberry Pi based projects in later Chapters

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 59

rpi mouse: this is the Raspberry Pi mouse button node. The node generates a 0 or

1 when the selected mouse button is clicked and released. A USB mouse is required

rpi keyboard: this node is used to capture keystrokes from a USB keyboard

Sense HAT: this is the Raspberry Pi Sense HAT input (or output) node. There are

two nodes with the same name: one for the input, and the other one for the output

4 .11 Project 4 – Dice number

In this program, we will be introducing the random node. The program will display a ran-

dom number between 1 and 6 every time it is clicked to start. The steps are as follows:

• Create an injection node with the title Your Chance

• Create a random node and name it as Dice. Double click to edit it and set to

generate whole integer numbers between 1 and 6 as shown in Figure 4.23. Click

Done

Figure 4.23 Generate random numbers between 1 and 6

• Create a debug node

• Join all three nodes as shown in Figure 4.24 and click Deploy

Figure 4.24 Join all three nodes

• Click the inject nodes button. You should see a number between 1 and 6 dis-

played in the Debug window. Every time you click the inject nodes button, a

random number will be generated and displayed between 1 and 6 as shown in

Figure 4.25

Programming with Node-RED

● 60

.

Figure 4.25 The Debug window

4 .12 Project 5 – Double dice numbers

In many dice games such as backgammon, two dice are thrown at any time by each player

before making a move. The program given in the previous project is modified in this project

so that two random dice numbers are generated and displayed every time the inject nodes

button is clicked. This program uses two random nodes and a join node and the steps to

design the flow are given below:

• Create an injection node with the title Your Chance

• Create two random nodes with the names Dice1 and Dice2. Double click to edit

them and set to generate whole integer numbers between 1 and 6 for both nodes

as in the previous project.

• Create a join node with the name join payloads. Double click this node and

edit as shown in Figure 4.26. Notice that the message parts are set to 2 and are

separated with a space character. Click Done

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 61

Figure 4.26 Edit the join node

• Create a debug node as before and activate it.

• Join the five nodes as shown in Figure 4.27, and click Deploy

Figure 4.27 Join the five nodes together

• Click the inject nodes button to generate two random numbers next to each

other in the Debug window as shown in Figure 4.28.

Programming with Node-RED

● 62

Figure 4.28 The Debug window

Notice here that, if the After a number of message parts in node join was set to 1, then

the two dice numbers would not have been displayed next to each other as shown in Figure

4.29.

Figure 4.29 Displaying the two numbers separately

4 .13 Project 6 – Unit conversions - Multiple inputs to a function

In this flow program, we will have 3 inputs to a function. The flow has 3 inject nodes named

inchTocm, cmToinch and mTocm where,

inchTocm: this node injects a number to the function to convert inches to cm. In

this example, the value (topic) is set to 12 inches for demonstration purposes

cmToinch: this node injects a number to the function to convert cm to inches. In

this example, the value (topic) is set to 10 cm for demonstration purposes

mTocm: this node injects a number to the function to convert meters to cm. In this

example, the value (topic) is set to 2 m for demonstration purposes

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 63

The steps are as follows:

• Create 3 inject nodes with the following characteristics:

 Node Payload Topic

 1 inchTocm 12

 2 cmToinch 10

 3 mTocm 2

• Create a function node named Conv, and enter the following code inside the

function (see Figure 4.30) and click Done:

var conv = msg.payload

var number = msg.topic

if(conv == "inchTocm")

{

 msg.payload = number+"inch = "+number*2.54+"cm";

}

else if(conv == "cmToinch")

{

 msg.payload = number+"cm = "+ number/2.54+"inch";

}

else if(conv == "mTocm")

{

 msg.payload = number+"m = "+number *100+"cm";

}

return msg;

Programming with Node-RED

● 64

Figure 4.30 Create a function node

• Create a debug node and then connect all 5 nodes together as shown in Figure

4.31. Then, click Deploy.

Figure 4.31 Join the 5 nodes together

• Click one of the inject nodes buttons to display the conversion in the Debug

window as shown in Figure 4.32. In this figure, the inchTocm and mTocm nodes

are clicked.

Figure 4.32 The Debug window

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 65

4 .14 Multiple inputs and multiple outputs from a function

In this flow program, we will see how multiple inputs and multiple outputs can be handled

in a function. In this example we have 3 inject nodes, a 3 input and 3 output function node,

and debug node. The operation of this example is as follows:

When the button of inject node First is clicked, the message First node clicked is dis-

played by debug node Debug1

When the button of inject node Second is clicked, the message Second node clicked is

displayed by debug node Debug2

When the button of inject node Third is clicked, the message Third node clicked is dis-

played by debug node Debug3

The steps are as follows:

• Create 3 inject nodes with the following characteristics:

 Node Topic

 1 First

 2 Second

 3 Third

• Create a function node named Func, set its Outputs to 3, and enter the follow-

ing code inside the function (see Figure 4.33). Notice that in a statement involv-

ing several if statements, it might be more readable to use a switch statement.

Now click Done:

var conv = msg.topic

if(conv == "First")

{

 var msg1 = {payload: "First node clicked"};

 return [msg1,null,null];

}

else if(conv == "Second")

{

 var msg2 = {payload: "Second node clicked"};

 return [null,msg2,null];

}

else if(conv == "Third")

{

 var msg3 = {payload: "Third node clicked"};

 return [null,null,msg3];

}

Programming with Node-RED

● 66

Figure 4.33 Create a function node

• Create 3 debug nodes with the following characteristics:

Node Output Name

 1 msg.payload Debug1

 2 msg.payload Debug2

 3 msg.payload Debug3

• Join all 7 nodes as shown in Figure 4.34, click Deploy

Figure 4.34 Join all the nodes

• Activate all 3 debug nodes

• Click one of the inject nodes buttons to display a message. Figure 4.35 shows

the messages displayed in the Debug window when inject nodes First and Third

were clicked.

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 67

Figure 4.35 Debug window

4 .15 Project 7 – Mean of numbers - Using the smooth node

In this project, we calculate the average of 4 numbers and then display the result in the

Debug window. The flow program consists of 4 inject nodes, one smooth node, and one

debug node as shown in Figure 4.36. The aim of this project is to show how to use the

smooth node to calculate the mean of a group of numbers. In this project, the numbers

whose mean is calculated are 3, 7, 8, and 2.

Figure 4.36 The flow program of Project 7

The steps are as follows:

• Create 4 inject nodes with the following characteristics:

Node Payload Topic

 1 3 Number1

 2 7 Number2

 3 8 Number3

 4 2 Number4

• Create a smooth node named Mean, as shown in Figure 4.37, click Done, and

set the following parameters:

Property: msg.payload

Action: Return the mean value

 Over the last 4 values

Treat: All msg as one stream

Programming with Node-RED

● 68

Reduce: only emit one message per most recent N values

Name: Mean

The Action is set to return the mean (average) of 4 input numbers. Treat is configured so

that all the 4 input numbers are treated as one stream. The Reduce parameter is set to

output only the calculated mean value and not the intermediate values.

Figure 4.37 Create a smooth node

• Create a debug node named Debug and activate it.

• Click Deploy and make sure there are no error messages

• Click the buttons of the four inject nodes, starting from the top node. You will

notice that no output id produced until the last inject node is clicked. The result is

(3+7+8+2) / 4 = 5) is displayed in the Debug window as shown in Figure 4.38.

Figure 4.38 Displaying the mean value of numbers

4 .16 Project 8 – Squares of numbers

In this project, we calculate and display the squares of numbers from 1 to 5 in the Debug

window. The flow program in this project consists of 3 nodes: an inject node, a function

node, and a debug node as shown in Figure 4.39.

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 69

Figure 4.39 The flow program of Project 8

The steps are as follows:

• Create an inject node with the payload called Click

• Create a function node named Squares and enter the following statements in-

side this function (Figure 4.40). The function displays the heading SQUARES OF

NUMBERS and then calculates and displays the squares of numbers from 1 to 5:

var k;

var m;

for(k=0; k <= 5; k++)

{

 if(k == 0)

 {

 msg.payload = "SQUARES OF NUMBERS";

 }

 else

 {

 msg.payload="";

 msg.payload = msg.payload + "N= "+k + " N*N= "+k*k;

 }

 node.send(msg);

}

return null;

Figure 4.40 Function contents

Programming with Node-RED

● 70

• Create a debug node named Debug. Join all 3 nodes and click Deploy

• Click the inject nodes button and you should see the squares of numbers dis-

played as shown in Figure 4.41.

Figure 4.41 Displaying the squares of numbers

In this flow program, the send statement is used to output messages to the output of the

function independent of the return values. i.e. output is not returned by the function, Here

the function returns a null but the actual data from the function is output using the send

statement.

4 .17 Project 9 – Getting the weather reports –

Display the local weather report

In this project, we will get the local weather report and display it in the Debug window. First

of all, we have to install a node called openweathermap. The steps to install this node

are as follows:

• Click Menu -> Manage Palette

• Click the Install tab and enter the following in the search path (see Figure 4.42)

node-red-node-openweathermap

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 71

Figure 4.42 Search for the openweathermap

• Click install inside the right-hand side of the box displaying node-red-node-

openweathermap

• Click Close

You should now see nodes openweathermap and openweathermap in displayed in

your Node Palette in the Node-RED screen. If there is a problem, you can install the node

openweathermap manually by entering the following command in the root directory of

your Node-RED:

npm install node-red-node-openweathermap

Now that the openweathermap node is installed, we have to register and get an API key

before we can use this node to get the local weather reports. An API key can be obtained

as follows:

• Go to web site: https://openweathermap.org/appid

• Click the API tab at the top of the screen

• Click Sign Up and fill in the form to create a new account

• A new API key will be sent to the email address that you provided

We are now ready to create and use our flow program. The steps are given below:

• Click, drag and drop an inject node

• Click, drag, and drop the openweathermap node to the workspace

• Double click on the node and enter your API key, select the current weather and

enter your city and country as shown in Figure 4.43. Name the node as Local

Weather. Click Done

Programming with Node-RED

● 72

Figure 4.43 Configure node openweathermap

• Click, drag, and drop a debug node. Join the three nodes as shown in Figure 4.44.

Click Deploy

Figure 4.44 Join the two nodes

• Click inject nodes button. You should see the JASON formatted local weather

report displayed in the Debug window as shown in Figure 4.45

Figure 4.45 JASON formatted weather report

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 73

As you can see, the report is very comprehensive, it shows that the weather was cloudy,

the temperature at the time of making the request was 6.1ºC, the humidity was 87%, at-

mospheric pressure was 1020 mbars, the wind speed was 3.1m/s and so on. The city where

this report is generated for and its co-ordinates are given at the bottom part of the report.

In the next project, we will add a function node and see how we can display only the current

temperature in the Debug window.

4 .18 Project 10 – Display the current temperature

In this project, we will get the local weather report and display only the current temper-

ature in the Debug window. Here, the following nodes are used: inject node to start the

flow, openweathermap node to get the current weather report, function node to extract

the current temperature, and debug node to display the current temperature in the Debug

window.

The steps are as follows:

• Create an inject node and an openweathermap node as in the previous project

• Create a function node and name it as Temperature. Double click this node

and enter the following statements (see Figure 4.46):

var T;

T = msg.payload.tempc;

msg.payload = "Current temperature= "+T+ " Degrees C";

return msg;

Figure 4.46 Function node contents

• Create a debug node. Join the 4 nodes together as in Figure 4.47. Click Deploy.

Figure 4.47 Join the 4 nods together

• Click inject nodes button. You should see the current temperature displayed in

the Debug window as shown in Figure 4.48

Programming with Node-RED

● 74

Figure 4.48 Displaying the current temperature

4 .19 Project 11 – Sending the current temperature to an email

In this project, we will get the local weather report and send the current temperature to

your email address. Here, the following nodes are used: inject node to start the flow,

openweathermap node to get the current weather report, function node to extract the

current temperature and the email node to send the email.

If the email node is not available in your Node Palette, you can install it as follows:

• Click Menu -> Manage palette

• Click the Install tab

• Enter the following and click install

node-red-node-email

• Close Manage palette. You should now have 2 email nodes in the Node-RED

screen Node Palette

You can also install the email node by the following commands:

 cd ~/.node-red

npm i node-red-node-email

Now that the email node is installed, we can carry on to create our flow program. The steps

are given below:

• Create nodes: inject, openweathermap, and function exactly as in the pre-

vious project

• Click, drag and drop the email node (the one with an envelope picture on its

right-hand side) to the workspace. Double click and configure as shown in Figure

4.49

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 75

Figure 4.49 Configure the email node

• Set the To field to the destination email address (you can specify more than one

email addresses by separating them with commas), set the Userid to the email

account from where the message will be sent from, and finally, set the password

of this Userid account.

• Click Done

• Join the 4 nodes as shown in Figure 4.40 and click Deploy

Figure 4.50 Join the 4 nodes

• If you are using a Gmail account, you will have to enable less secure access

via your Google account settings. Alternatively, enter the following to your web

browser:

myaccount.google.com/u/1/lesssecureapps

• Click the inject node button. The current temperature will be sent to the email

address you specified. Figure 4.51 shows the mail sent to the author's email

address.

Programming with Node-RED

● 76

Figure 4.51 Received email

You can modify this project if you wish so that the temperature is sent at regular intervals

to your email address. To do this, edit the inject node and set the repetition interval to the

required value.

4 .20 Project 12 – Sending the current temperature and atmospheric pressure

to your twitter account

In this project, we will get the local weather report and send the current temperature and

current atmospheric pressure readings to your Tweeter account. Here, the following nodes

are used: inject node to start the flow, openweathermap node to get the current weath-

er report, function node to extract the current temperature and the current atmospheric

pressure, and the twitter node to tweet.

If the twitter node is not available in your Node Palette, you can install it as follows:

• Click Menu -> Manage palette

• Click the Install tab

• Enter the following and click install

node-red-node-twitter

• Close Manage palette. You should now have 2 twitter nodes in the Node-RED

screen Node Palette: twitter in and twitter out

You can also install the twitter node using the following commands:

 cd ~/.node-red

npm i node-red-node-twitter

Now that the twitter node is installed, we can carry on to create our flow program. The

steps are given below:

• Create nodes: inject, and openweathermap exactly as in the previous project

• Create a function node (Figure 4.52), name it as TempPress, and enter the

following statements inside this node:

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 77

var T;

T = msg.payload.tempc;

P = msg.payload.pressure;

msg.payload = "T= "+T+ " Degrees P="+P+" mbars";

return msg;

Figure 4.52 Contents of the function node

• Click, drag and drop a twitter out node and name it as Tweeter. Double click

to configure this node. Enter your Twitter ID (e.g. @DoganIbrahim7) as shown

in Figure 4.53

Figure 4.53 Enter your Twitter ID

• Click the pen symbol on the right-hand side of the Twitter ID. You will be present-

ed with a screen where you have to enter your Twitter credentials. This requires

registering at the Twitter site (developer.twitter.com/en/apps) and getting the

following four keys unique to your application:

API Key, API secret Key, Access token, Access token secret

• Enter your Twitter ID and then copy and paste the four keys you obtained from

the Twitter site (see Figure 4.54). Click Done to close the node data

Programming with Node-RED

● 78

Figure 4.54 Enter your credentials

• Now, join the 4 nodes as shown in Figure 4.55, and click Deploy

• Click the inject nodes button. The local temperature and atmospheric pressure

readings will be sent to your twitter account as shown in Figure 4.55 which was

copied from the author's mobile phone.

Figure 4.55 Temperature and atmospheric pressure sent to the twitter account

4 .21 Node-RED configuration

Node-RED can be configured using a settings file. When Node-RED starts, it looks for a file

called settings .js in the default user directory ~/ .node-red, and this file is loaded into

the runtime as a Node .js module. It is also possible to define our settings file by using the

option - -settings in the command line.

The default settings file has most of its lines commented out. You can enable the comment-

ed lines but it is recommended that you know exactly what you are ding before enabling

the commented lines. To enable a comment line, just remove the two slash characters (//)

in front of the required line.

Additionally, there is a Settings option in the Menu when Node-RED is up and running,

Chapter 4 • Installing Node-RED software on Raspberry Pi

● 79

where the user View, Keyboard, and Palette options can be configured as shown in Fig-

ure 4.56.

Figure 4.56 Settings menu option

4 .22 Summary

In this chapter, we have learned how to start Node-RED software on Raspberry Pi. In addi-

tion, we have learned how to use some Node-RED nodes in various flow programs. Several

examples and projects are given in this chapter to make the reader familiar with some of

the important concepts of Node-RED.

In the next chapter, we will be learning how to use Node-RED to access Raspberry Pi GPIO

pins, and how to interface sensors and actuators to Raspberry Pi, and how to control them

from Node-RED based flow programs.

Programming with Node-RED

● 80

Chapter 5 • Node-RED based Raspberry Pi projects using GPIO

5 .1 Overview

All versions of Raspberry Pi include a socket for connecting external devices, such as sen-

sors, LEDs, actuators, etc. In this chapter, we will look at how external devices connected

to Raspberry Pi can be accessed from Node-RED flow programs, by developing projects

using Node-RED.

All the projects given in this chapter will include the following sections to make it easy for

the reader to understand how these projects are developed:

• Title

• Description of the project

• Aim

• Background information (where necessary)

• Block diagram (where necessary)

• Circuit diagram

• Node-RED flow program with a full description

• Suggestions for additional work (where necessary)

Before going into the details of the projects, it is worthwhile to look at the Raspberry Pi

GPIO connector. This is a 40-pin dual-in-line 2.54mm wide connector as shown in Figure

5.1.

Figure 5.1 Raspberry Pi 4 GPIO connector

5 .2 GPIO – Parallel interface

When the GPIO connector is at the far side of the board, the pins at the bottom, starting

from the left of the connector are numbered as 1, 3, 5, 7, and so on, while the ones at the

right of the connector are numbered as 2, 4, 6, 8 and so on (see Figure5.2).

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 81

Figure 5.2 Raspberry Pi GPIO pin configuration

The GPIO provides 26 general purpose bi-directional I/O pins. Some of the pins have mul-

tiple functions. For example, pins 3 and 5 are the GPIO2 and GPIO3 input-output pins

respectively. These pins can also be used as the I2C bus I2C SDA and I2C SCL pins respec-

tively. Similarly, pins 9,10,11,19 can either be used as general-purpose input-output, or as

the SPI bus pins. Pins 8 and 10 are reserved for UART serial communication.

Two power outputs are provided: +3.3V and +5.0V. The GPIO pins operate at +3.3V logic

levels (not like many other computer circuits that operate with +5V). A pin can either be

an input or an output. When configured as an output, the pin voltage is either 0V (logic

0) or +3.3V (logic 1). Raspberry Pi is normally operated using an external power supply

(e.g. a mains adapter) with +5V output and minimum 2A current capacity. A 3.3V output

pin can supply up to 16mA of current. The total current drawn from all output pins should

not exceed the 51mA limit. Care should be taken when connecting external devices to the

GPIO pins as drawing excessive currents or short-circuiting a pin can easily damage your

Raspberry Pi. The amount of current that can be supplied by the 5V pin depends on many

factors such as the current required by the Pi itself, current taken by the USB peripherals,

camera current, HDMI port current, and so on.

Programming with Node-RED

● 82

When configured as an input, a voltage above +1.7V will be taken as logic 1, and a voltage

below +1.7V will be taken as logic 0. Care should be taken not to supply voltages greater

than +3.3V to any I/O pin as large voltages can easily damage your Pi.

5 .3 Project 13 – LED control

Description: In this project, we will connect an LED to one of the Raspberry Pi GPIO pins

and then turn the LED ON or OFF from a Node-RED flow program.

Aim: The aim of this project is to show how an LED can be connected to a GPIO port pin

and how it can be controlled from a Node-RED flow program.

Background information: The forward voltage of a typical LED is around 1.8V. The cur-

rent through the LED depends on the required light intensity and the type of LED used. In

general, 3mA should give enough visible light for small LEDs. Because the output voltage

of a GPIO pin is +3.3V we have to use a current limiting resistor in series with the LED. The

value of the current limiting resistor is calculated as:

 R = (3.3V – 1.8V / 3mA = 500 Ohm. We can choose a 470 Ohm resistor

Be careful that the LED has two pins: anode (long pin) and cathode (short pin). The cathode

pin must be connected to ground (see Figure 5.3).

Circuit diagram: Figure 5.4 shows the circuit diagram of the project where the anode of

the LED is connected to pin GPIO 2 of the Raspberry Pi through a current limiting resistor.

Figure 5.3 Pins of an LED

Figure 5.4 LED connected to pin GPIO 2

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 83

Node-RED flow program: Figure 5.5 shows the flow program. In this program, two

inject nodes and a rpi gpio out node are used.

Figure 5.5 Flow program of the project

The steps are as follows:

• Create an inject node with the configuration as shown in Figure 5.6

Figure 5.6 Create an inject node

• Create another inject node with the configuration as shown in Figure 5.7

Figure 5.7 Create another inject node

• Create a rpi gpio out node with the configuration as shown in Figure 5.8, set the

Type to Digital output, Initialize pin state to 0, and name it as LED. Click Done

Programming with Node-RED

● 84

Figure 5.8 Create a rpi gpio out node

• Join the 3 nodes together as shown in Figure 5.5, and click Deploy.

• Connect the LED to Raspberry Pi as shown in Figure 5.4. The circuit was built on

a breadboard and connected to Raspberry Pi GPIO connector using jumper wires

as shown in Figure 5.9.

Figure 5.9 Circuit constructed on a breadboard

• Click the button of inject node ON, you should see the LED turning ON. Click the

button of inject node OFF, and this time the LED should turn OFF

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 85

As shown in Figure 5.10, you can, if you wish, connect debug nodes to the flow so that the

state of the LED can be displayed at any time in the Debug window. Figure 5.11 shows the

LED state as the LED is turned ON or OFF.

Figure 5.10 Connecting debug nodes to the flow

Figure 5.11 State of the LED displayed

5 .4 Project 14 – Flashing LED

Description: In this project, we will connect an LED to one of the Raspberry Pi GPIO pins

as in the previous project, and then flash the LED every second.

Aim: The aim of this project is to show how an LED connected to a GPIO port pin can be

flashed using a trigger node.

Circuit diagram: The LED is connected to Raspberry Pi as in Figure 5.4.

Node-RED flow program: Figure 5.12 shows the flow program. In this program an inject

node, a trigger node, and a rpi gpio out node are used.

Figure 5.12 Flow program of the project

The steps are as follows:

• Create an inject node which runs regularly every 2 seconds, whose configuration

is shown in Figure 5.13. Click Done.

Programming with Node-RED

● 86

Figure 5.13 Create an inject node

• Create a trigger node to send out 1, wait for 1 second and then send out 0, with

the configuration as shown in Figure 5.14. Click Done.

Figure 5.14 Create a trigger node

• Create the rpi gpio out node as in the previous project. Join the 3 nodes, and

click Deploy.

• Click the inject node's button. You should see the LED flashing every second.

In this project, the inject node activates the trigger node every two seconds, which in turn

controls the LED by turning it ON for a second, and OFF for a second.

You could insert a debug node to the flow program (Figure 5.15) so that the state of the

LED can be displayed. Additionally, you can see the timing accuracy of the project in the

Debug window. This is shown in Figure 5.16.

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 87

Figure 5.15 Inserting a debug node

Figure 5.16 Displaying the state of the LED

5 .4 .1 Using a context variable to flash the LED

In the previous program, we used a trigger node together with an inject node and a rpi

gpio out node to flash the LED. In this section, we will learn how to use a function node

instead of the trigger node to flash the LED.

The function in this example will make use of context variables. A context variable is a static

storage variable in a node that does not lose its value between calls.

Figure 5.17 shows the flow program using a function. In this example, the inject node is

given the name Every second and it is configured to repeat every second. The function

node is given the name Toggle LED and its contents are as follows:

if(context.led == 0)

 context.led = 1;

else

 context.led = 0;

msg.payload = context.led;

return msg;

Figure 5.17 Flow program of the project

Programming with Node-RED

● 88

5 .5 Project 15 – Alternately flashing LEDs

Description: In this project, we will connect two LEDs to our Raspberry Pi GPIO port pins

and then flash these LEDs alternately every second.

Aim: The aim of this project is to show how more than one LED connected to GPIO port

pins and also how these LEDs can be flashed alternately using trigger nodes.

Circuit diagram: The LEDs are connected to Raspberry Pi port pins GPIO 2 and GPIO 3 as

shown in Figure 5.18.

Figure 5.18 Circuit diagram of the project

Node-RED flow program: Figure 5.19 shows the flow program. In this program an inject

node, two trigger nodes, and two rpi gpio out node are used, one for each LED.

Figure 5.19 Flow program of the project

The steps are as follows:

• Create an inject node which runs regularly every 2 seconds

• Create a trigger node to send out 1, wait for 1 second and then send out 0, with

the configuration as shown in Figure 5.14, name it as 1->0, and click Done.

• Create another trigger node to send out 0, wait for 1 second and then send out

1, name it as 0->1, and click Done.

• Create a rpi gpio out node as in the previous project and set the GPIO pin num-

ber to 2

• Create another rpi gpio out node as before, and set the GPIO pin number to 3

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 89

• Click Deploy

• Click the inject node's button. You should now see the two LEDs flashing alter-

nately every second.

In this project, the trigger node 1->0 outputs a falling signal level, while node 0->1 out-

puts a rising signal level. The result is that when one LED is ON, the other one id OFF, and

vice-versa. The inject node activates the trigger node every two seconds as before.

As in Project 13, you can create two debug nodes and attach to the outputs of the two

trigger nodes to display the state of the two LEDs.

5 .5 .1 Using context variables to flash the LEDs alternately

In the previous program, we used trigger nodes together with an inject node and two rpi

gpio out nodes to flash the two LEDs alternately. In this section, we will learn how to use

a function node instead of the two trigger nodes to flash the LEDs.

The function in this example is configured to have two outputs, and it will make use of two

context variables as was described in section 5.4.1.

Figure 5.20 shows the flow program using a function. In this example, the inject node is

given the name Every second and it is configured to repeat every second.

Figure 5.20 Flow program of the project

The function node is given the name Toggle LEDs and its contents are as follows (see

Figure 5.21):

if(context.led1 == 0)

{

 context.led1 = 1;

 context.led2 = 0;

}

else

{

 context.led1 = 0;

 context.led2 = 1;

}

var msg1 = {payload:context.led1};

var msg2 = {payload:context.led2};

return [msg1, msg2];

Programming with Node-RED

● 90

Figure 5.21 Function configuration

Click the inject node's button. You should see the two LEDs flashing alternately every

second.

Notice how the LED data for each LED is sent to the corresponding outputs of the function

in the return statement. Figure 5.22 shows the project constructed on a breadboard.

Figure 5.22 The project constructed on a breadboard

5 .6 Project 16 – Temperature alarm with buzzer

Description: This is a simple temperature alarm system. A small active buzzer is connect-

ed to one of the GPIO ports of the Raspberry Pi. The local temperature is read from the

weather site as in Project 9, and if it is above a pre-defined threshold value then the buzzer

is activated. The threshold value is taken to be 30ºC in this project, but it can be changed

any other value if desired. The temperature is checked at every minute.

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 91

Aim: The aim of this project is to show how a simple temperature alarm system can be

designed with Node-RED, using Raspberry Pi and a small buzzer as the hardware.

Background information: Small buzzers (also known as piezoelectric buzzers) are used

commonly in electronic alarm projects. These buzzers are operated with any voltage from

+3V to +5V. There are two types of buzzers: active buzzers, and passive buzzers. Active

buzzers have built-in electronic circuits and they sound at a fixed frequency when a DC

voltage is applied across their terminals. Usually, the sound frequency of these buzzers is

around 1kHz. It is very easy to use the active buzzers since they can easily be connected to

the output port pin of the Raspberry Pi. Passive buzzers, on the other hand, require a wave-

form (usually PWM or sinewave) to be applied across their terminals, and the frequency of

the generated sound depends on the frequency of the applied waveform. Although it may

be more difficult to use passive buzzers, they have the advantages that the sound frequen-

cy can easily be changed, for example, they can be used in simple electronic organ projects

to generate sounds at different frequencies. In this project, an active buzzer is used.

Block diagram: Figure 5.23 shows the block diagram of the project.

Figure 5.23 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 5.24. The buzzer is

connected directly to port pin GPIO 2 of the Raspberry Pi 4.

Figure 5.24 Circuit diagram of the project

Node-RED flow program: Figure 5.25 shows the flow program. In this program 4 nodes

are used: an inject node that repeats every minute, an openweathermap node that gets

the local weather report, a function node that extracts the current temperature from the

Programming with Node-RED

● 92

weather report and sends out 1 to the rpi gpio out node to activate the buzzer if the tem-

perature is greater than 30ºC, otherwise, 0 is sent to the rpi gpio out node to deactivate

the buzzer.

Figure 5.25 Flow program of the project

The steps are as follows:

• Create an inject node with the name 1m interval, and set the repeat interval

to 1 minute

• Create an openweathermap node with the name Local Temperature, enter

the API key (see Project 9), and set your local city name

• Create a function node with the name Check Temperature, and enter the

following statements into this node (see Figure 5.26). Here, if the temperature

is greater than 30ºC then the buzzer is activated, otherwise, the buzzer is deac-

tivated:

var T;

T = msg.payload.tempc;

if(T > 30)

 msg.payload = 1;

else

 msg.payload = 0;

return msg;

Figure 5.26 Configure the function node

• Create a rpi goio out node named Buzzer, and set the GPIO pin to 2

• Join all 4 nodes as in Figure 5.25, and click Deploy

• Click the inject node's button. The local temperature report will now be obtained

every minute and if it is greater than 30ºC then the buzzer will sound

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 93

You can modify the hardware easily, for example by replacing the buzzer with a relay so

that a heater can be turned ON or OFF, or an LED can be used to indicate visually when an

alarm condition occurs. Additionally, a debug node can be connected to the output of the

function node to display the status of the buzzer (1 or 0 will be displayed in the Debug

window)

5 .7 Project 17 – Controlling a GPIO port remotely using email

Description: In this project, we will control a Raspberry Pi GPIO port remotely by sending

an email. A small active buzzer is connected to one of the GPIO ports of the Raspberry

Pi. The buzzer is activated by sending the command ON by email. Similarly, the buzzer is

deactivated by sending the command OF by email.

Aim: The aim of this project is to show how a Raspberry Pi GPIO port can be controlled

remotely by sending an email.

Block diagram: The block diagram of the project is as shown in Figure 5.23.

Circuit diagram: The circuit diagram of the project is as shown in Figure 5.24, where the

buzzer is connected directly to port pin GPIO 2 of the Raspberry Pi 4.

Node-RED flow program: Figure 5.27 shows the flow program. In this program 3 nodes

are used: an email in node that gets emails at regular intervals, a function node that

sends 1 or 0 to its output depending on whether the user command is ON or OF respective-

ly, and a rpi gpio out node to control the buzzer.

Figure 5.27 Flow program of the project

The steps are as follows:

• Click, drag and drop the email in node to the workspace. Configure this node as

shown in Figure 5.28 and click Done. The node is configured to check for incom-

ing emails every 10 seconds. The emails are expected to come to the Gmail ac-

count with username: dogantest99@gmail.com, where the password should also

be specified (you will have to replace these to your own Gmail account details)

Programming with Node-RED

● 94

Figure 5.28 Configure the email in node

• Create a function node named ON/OF, having the following statements (see Fig-

ure 5.29). Here, function substr is used to extract the first two characters of the

received email command. If the command is ON, then 1 is returned to activate

the buzzer. Otherwise, if the command is OF, then 0 is returned to deactivate

the buzzer. Click Done:

var cmd = msg.payload.substr(0,2);

var On = {payload: "1"};

var Off = {payload: "0"};

if(cmd == "ON")

 return On;

else if(cmd == "OF")

 return Off;

Figure 5.29 Configuration of the function node

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 95

• Create a rpi gpio out node and set the port number to GPIO 2. Join the 3 nodes

and click Deploy

The program now should check the email account every 10 seconds. You should see the

words connecting and fetching displayed under the email in node just before the ac-

count is checked. In this project, the buzzer should sound when an email is sent to account

dogantest@gmail.com with the mail content having the word ON. Similarly, the buzzer

should stop sounding when the word OF (note it is OF and not OFF) is sent by email.

Just a reminder, if you are using a Gmail account, you will have to enable less secure

access via your Google account settings. Alternatively, enter the following to your web

browser:

 myaccount.google.com/u/1/lesssecureapps

The buzzer in this project can be replaced for example with a relay if desired so that elec-

trical equipment (e.g. home appliances) can be controlled remotely by sending emails from

anywhere in the world.

5 .8 Project 18 – Confirmation of the buzzer state

Description: In the previous project we have seen how to control a Raspberry Pi GPIO port

remotely by sending emails. The problem here is that when we send a command to the

Raspberry Pi we are not sure whether or not the GPIO port has taken the required value.

In this project, we read the state of the GPIO port and send an email to confirm the state

of the port pin. The confirmation is very important in some applications, for example, if we

wish to activate our home boiler using a relay, we want to make sure that the boiler has

actually been activated.

If the command ON is sent to activate the buzzer, then the message Buzzer is ON will be

sent to the specified email address when the buzzer is actually turned ON. If on the other

hand command OF is sent, then the message Buzzer is OFF will be sent to the specified

email address.

Aim: The aim of this project is to show how the state of a GPIO port pin can be read and

then a message can be sent to an email account to confirm the state of the GPIO port pin.

Block diagram: The block diagram of the project is as shown in Figure 5.23.

Circuit diagram: The circuit diagram of the project is as shown in Figure 5.30. Here, the

buzzer is connected directly to port pin GPIO 2 of the Raspberry Pi 4 as in the previous

project, and GPIO 2 is connected to GPIO 3 where GPIO 3 is configured as an input in

Node-RED. The state of the buzzer will be read by GPIO 3 and a message will be sent to

an email account.

Programming with Node-RED

● 96

Figure 5.30 Circuit diagram of the project

Node-RED flow program: Figure 5.31 shows the flow program. In this program 6 nodes

are used: 3 nodes to receive the email and control the buzzer accordingly, and 3 nodes to

send the state of the buzzer port to the specified email address.

Figure 5.31 Flow program of the project

The steps are as follows:

• The first 3 nodes used to receive emails is same as in the previous project and

are not repeated here again (only the name of the email in node is changed)

• The next 3 nodes are used to receive the state of port GPIO 3 and send an email

to the specified address.

• Click rpi gpio in node, drag and drop it to the workspace. Name this node as

GPIO 3 and set it to receive the state of port GPIO 3 as shown in Figure 5.32,

click Done. This port will receive the state of port pin GPIO 2 which is connected

to GPIO 3.

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 97

Figure 5.32 Configure the rpi gpio in node

• Create a function node, name it as Buzzer State, enter the following state-

ments, and click Done (Figure 5.33):

if(msg.payload == "1")

 msg.payload = "Buzzer is ON"

else

 msg.payload = "Buzzer is OFF"

return msg;

Figure 5.33 Configure the function node

• Click on email out node, drag and drop it in the workspace and name it as Send

Mail. Configure this node as shown in Figure 5.34. The state of the buzzer is sent

to email address: d.ibrahim@btinternet.com from email address: dogantest99@

gmail.com (you should enter your own email addresses and passwords)

Programming with Node-RED

● 98

Figure 5.34 Configure the email out node

• Join the nodes as in Figure 5.31, and click Deploy. To test the program, send

command ON to email address dogantest99@gmail.com, and the buzzer should

be activated. At the same time, the message Buzzer is ON will be sent to email

address d.ibrahim@btinternet.com (you should use your own email addresses

and passwords).

5 .9 Project 19 – Controlling multiple GPIO ports remotely using email

Description: In this project, we will control 4 Raspberry Pi GPIO ports remotely by sending

an email. Four LEDs are connected to the Raspberry Pi GPIO ports through current limiting

resistors. The LEDs are turned ON/OFF by sending email commands in the following form:

ON=1 turn ON LED1

ON=2 turn ON LED2

ON=3 turn ON LED3

ON=4 turn ON LED4

OF=1 turn OFF LED1

OF=2 turn OFF LED2

OF=3 turn OFF LED3

OF=4 turn OFF LED4

Aim: The aim of this project is to show how multiple GPIO ports of the Raspberry Pi can be

controlled remotely by sending Email messages.

Block diagram: Figure 5.35 shows the block diagram of the project.

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 99

Figure 5.35 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 5.36. The LEDs

are connected to the following Raspberry Pi port pins through 470 Ohm current limiting

resistors:

LED Raspberry Pi Port Name Raspberry Pi Port Pin Number

LED1 GPIO 2 3

LED2 GPIO 3 5

LED3 GPIO 4 7

LED4 GPIO 17 11

Port pin number 9 of the Raspberry Pi is the ground pin that is connected to the cathode

pins of all the LEDs.

Figure 5.36 Circuit diagram of the project

Node-RED flow program: Figure 5.37 shows the flow program. In this program 6 nodes

are used: an email in node to check and get the email at regular intervals, a function

node with 4 outputs to decode the user commands, and 4 rpi gpio out nodes to control

the 4 LEDs.

Programming with Node-RED

● 100

Figure 5.37 Flow program of the project

The steps are as follows:

• Create email in node as in the previous projects and name it as Receive Email

• Create a function node named ON/OFF with the following statements (see

Figure 5.38). Variable cmd extracts the first 3 characters of the command and

for valid commands, it has the value of ON= or OF=. Variable port extracts the

required LED number and for valid commands, it has the values of 1, 2, 3, or 4.

Notice how multiple outputs are handled in the function:

var cmd = msg.payload.substr(0,3);

var port = msg.payload.substr(3,1);

var On = {payload: "1"};

var Off = {payload: "0"};

if(cmd == "ON=")

{

 if(port == "1")

 return [On, null, null, null];

 else if(port == "2")

 return [null, On, null, null];

 else if(port == "3")

 return [null, null, On, null];

 else if(port == "4")

 return [null, null, null, On]

}

if(cmd == "OF=")

{

 if(port == "1")

 return [Off, null, null, null];

 else if(port == "2")

 return[null, Off, null, null];

 else if(port == "3")

 return [null, null, Off, null];

 else if(port == "4")

 return [null, null, null, Off]

}

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 101

Figure 5.38 Configuring the function (only part of the code is shown)

• Create 4 rpi gpio out nodes, one for each of the LEDs, LED1, LED2, LED3, and

LED4. Set the port pin names to GPIO 2, GPIO 3, GPIO 4 and GPIO 17 re-

spectively and clear the initial states of the ports to 0. An example for GPIO 17

is shown in Figure 5.39. Click Done for each node.

Figure 5.39 Configuring the port for LED4

Programming with Node-RED

● 102

• Join the nodes as shown in Figure 5.37 and click Deploy. To test the program,

connect the hardware as in Figure 5.36 and send an email for example with the

contents of ON=2. LED2 should turn ON. Send an email with OF=2 and this time

LED2 should turn OFF

The LEDs used in this project can be replaced with relays if desired so that electrical equip-

ment can easily be controlled remotely by sending emails.

Figure 5.40 shows the project constructed on a breadboard where the LEDs are connected

to the Raspberry Pi using jumper wires.

Figure 5.40 Constructing the project on a breadboard

Just a reminder, if you are using a Gmail account, you will have to enable less secure

access via your Google account settings as described in earlier projects using the email

nodes.

5 .10 Project 20 – Traffic lights simulator

Description: In this project, we will simulate a set of traffic lights. 3 LEDs are connected

to the GPIO ports of the Raspberry Pi: a Red LED, an Orange LED, and a Green LED. The

LEDs are turned ON and OFF as in the following PDL sequence:

DO FOREVER

Turn Red LED ON for 17 seconds

Turn Red and Orange LED ON for 3 seconds

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 103

Turn Green LED ON for 15 seconds

Turn Orange LED ON for 3 seconds

ENDDO

Aim: The aim of this project is to show how a simple traffic light simulator program can be

developed with Node-RED using 3 LEDs connected to a Raspberry Pi.

Block diagram: Figure 5.41 shows the block diagram of the project.

Figure 5.41 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 5.42. The LEDs

are connected to the following Raspberry Pi port pins through 470 Ohm current limiting

resistors:

LED Raspberry Pi Port Name Raspberry Pi Port Pin Number

Red GPIO 2 3

Orange GPIO 3 5

Green GPIO 4 7

Port pin number 9 of the Raspberry Pi is the ground pin that is connected to the cathode

pins of all the LEDs.

Figure 5.42 Circuit diagram of the project

Node-RED flow program: Figure 5.43 shows the flow program. In this program 11 nodes

are used: an inject node to start the simulation, 4 delay nodes to generate the required

timing delays, 3 trigger nodes, and 3 rpi gpio out nodes.

Programming with Node-RED

● 104

Figure 5.43 Flow program of the project

The steps are as follows:

• Create an inject node and name it as START

• Create 4 delay nodes as shown in Figure 5.43. These nodes will generate the

required delay timings. For example, when the Red LED is triggered to stay ON

for 20 seconds. After a delay of 17 seconds, the Orange LED is also turned ON

so that both the Red and Orange are ON for 3 seconds. After this time the Green

LED is triggered to stay ON for 15 seconds, and after this time the Orange LED is

turned ON for 3 seconds, and then back to the Red LED. This sequence is repeat-

ed forever. Figure 5.44 shows a typical delay node configuration.

Figure 5.44 17 seconds delay node

• Create 3 trigger nodes that send out 1, wait for the specified time, and then

send out 0. Figure 5.45 shows as an example of how the 20s trigger node is

configured.

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 105

Figure 5.45 Configuring a trigger node

• Create 3 rpi gpio out nodes for the GPIO pins GPIO 2, GPIO 3, and GPIO 4, and

name them as RED, ORANGE, and GREEN respectively. As an example, Figure

5.46 shows the configuration of node GREEN.

Figure 5.46 Configuration of node GREEN

• Join all the nodes as shown in Figure 5.43, and click Deploy. Click the button

of node inject to start the simulation. You should see the 3 LEDs simulating the

traffic lights with the timing as specified at the beginning of this project.

Programming with Node-RED

● 106

Notice that in this project the comment node is also introduced. This node helps us to write

comments about a project. In this example project, the contents of the comment node are

shown in Figure 5.47.

Figure 5.47 Contents of the comment node

This project was constructed on a breadboard as in the previous projects.

5 .11 Project 21 – Push-Button switch input

Description: This is a very simple project where a push-button switch (button for short)

and an LED are connected to the Raspberry Pi. The project turns ON the LED when the

button is pressed.

Aim: The aim of this project is to show how a button can be used in a Node-RED based

project.

Background information: Buttons are commonly used in microcontroller based projects

in order to change the state of an input port pin. The processor detects when the button is

pressed and then executes the required code.

Buttons can be used in two modes: Normally LOW, and normally HIGH. In a normally LOW

mode, the output state of the button is at logic 0 by default and goes to logic 1 when the

button is pressed. The output stays at this state until the button is released. The circuit

diagram in Figure 5.48 shows a normally LOW button.

Figure 5.48 Normally LOW button

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 107

In a normally HIGH button, the state of the button is at logic 1 by default and goes to logic

0 when the button is pressed. The output stays at this state until the button is released.

The circuit diagram in Figure 5.49 shows a normally HIGH button.

Figure 5.49 Normally HIGH button

The button used in this project is a small component having 4 pins as shown in Figure 5.50.

Actually, the button is a 2 pin device where the pins are paralleled for convenience.

Figure 5.50 Small button and its connection diagram

Mechanical switches have bouncing problems. This happens because when a switch is tog-

gled, its mechanical contacts bounce (move from one state to another state) until they

settle. Although this settling time may seem to be very small (around 10ms), it is actually

a very long time when the processing time of a microcontroller is considered. Special switch

debouncing circuits can be used to eliminate this bouncing effect. Luckily, the rpi gpio in

node provides a parameter to set the switch debouncing time so that the switch contacts

are not read until this time expires. This makes sure that the correct switch output state is

read by the microcontroller.

Block diagram: Figure 5.51 shows the block diagram of the project.

Figure 5.51 Block diagram of the project

Programming with Node-RED

● 108

Circuit diagram: The circuit diagram of the project is shown in Figure 5.52 where the LED

is connected to port pin GPIO 2. Port pin GPIO 3 is connected to one side of the button,

while the other side of the button is connected to the ground pin of Raspberry Pi.

Figure 5.52 Circuit diagram of the project

Node-RED flow program: Figure 5.53 shows the flow program. In this program 2 nodes

are used:

Figure 5.53 Flow program of the project

The steps are:

• Create a rpi gpio in node and mane it as BUTTON, set the pin name to GPIO 3,

and set the resistor to pulldown.

• Create a rpi gpio out node and name it as LED, set the pin name to GPIO 3, and

initialize the pin level to 0

• Join the two nodes as shown in Figure 5.51, and click Deploy.

You should see that the LED is ON, and pressing the button turns OFF the LED.

Notice that in this flow program we want the opposite. i.e. the LED should be OFF normally,

and pressing the button should turn it ON. A modified flow program that will work correctly

is shown in Figure 5.54

Figure 5.54 Modified flow program

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 109

This modification can be made as explained in the following steps:

• Create a rpi gpio in node as above and name it as BUTTON, set the pin name

to GPIO 3, and set the resistor to pulldown

• Create a switch node and name it as IF 1 or 0. Configure this node such that if

the input is 1, direct it to the top output, otherwise, direct it to the second out-

put. To direct to the second output, click add, and select otherwise as shown in

Figure 5.54. Click Done.

Figure 5.55 Configure the switch node

• Create a change node and name it as Set to 0. Configure this node to return 1

as shown in Figure 5.56. Click Done

Figure 5.56 Configure the change node

• Create another change node and name it as Set to 1 and set the output to 1.

Click Done

• Create a rpi gpio out node and name it as LED, set the pin name to GPIO 3, and

initialize the pin level to 0

• Join the 5 nodes as shown in Figure 5.54, and click Deploy.

You should now see that the LED is OFF, and pressing the button turns the LED ON.

Figure 5.57 shows the circuit constructed on a breadboard.

Programming with Node-RED

● 110

Figure 5.57 Circuit constructed on a breadboard

5 .12 Project 22 – Changing LED brightness – The PWM output

Description: This is a very simple project where the brightness of an LED is altered by

changing the average voltage and hence average current through the LED.

Aim: The aim of this project is to show how a PWM waveform can be generated using

Node-RED.

Background information: PWM (Pulse Width Modulation) is a technique used commonly

in electronic circuits in order to change the average voltage supplied to a load. For example,

the average voltage supplied to a heater can be changed by sending it a fixed amplitude

PWM voltage waveform and then changing the characteristics of this waveform.

A PWM waveform is basically a positive square waveform where the ON time (also called

the MARK) and the OFF time (also called the SPACE) can be changed. Figure 5.58 shows

a typical PWM waveform with a period of the T. The ratio of the ON time to the period is

known as the Duty Cycle of the waveform and by changing the duty cycle we can effectively

change the average voltage supplied to the load.

Figure 5.58 Typical PWM waveform

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 111

The duty cycle is commonly represented as a percentage. For example, a 50% duty cycle

corresponds to the situation where the ON time is equal to the OFF time. In a 100% duty

cycle, the waveform is always ON (i.e. there is no OFF time). Similarly, in a 25% duty cycle,

the duration of the ON time is a quarter of the period of the waveform. Figure 5.59 shows

PWM waveforms with different duty cycles.

Figure 5.59 PWM waveform with different duty cycles

Circuit diagram: The circuit diagram of the project is as in Figure 5.4 where an LED is

connected to port pin GPIO 2 of Raspberry Pi.

Node-RED flow program: Figure 5.60 shows the flow program. In this program, 6 nodes

are used: 5 inject nodes with different duty cycle settings and a rpi gpio out node.

Figure 5.60 Flow program of the project

The steps are:

• Create 5 inject nodes, set the payloads to numeric values of 2, 5, 10, 50, 100.

These will be the duty cycles of the PWM waveform. Name each inject node with

their corresponding duty cycles as shown in Figure 5.60. For example, the con-

figuration of the node with a 50% duty cycle is shown in Figure 5.61

Programming with Node-RED

● 112

Figure 5.61 Configuring for 50% duty cycle

• Create a rpi gpio out node and name it as LED, set the port name to GPIO 2, and

set the Type to PWM output as shown in Figure 5.61. Click Done

Figure 5.62 Configure the rpi gpio out node

Join the nodes as in Figure 5.60. Click inject node 2% and you should see that the LED is

very dim. Clicking higher duty cycles should make the LED brighter.

5 .13 Summary

In this chapter, we have learned how to connect external components to Raspberry Pi GPIO

ports and then how to access these components from Node-RED programs.

In the next chapter, we will be looking at how to connect an LCD to our Raspberry Pi and

we will also develop further projects using an LCD.

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 113

Chapter 6 • Using LCDs with Node-RED

6 .1 Overview

In microcontroller systems, the output of a measured variable is usually displayed using

LEDs, 7-segment displays, or LCD type displays. LCDs have the advantages that they can

be used to display alphanumeric or graphical data. Some LCDs have 40 or more character

lengths with the capability to display several lines. Some other LCD displays can be used to

display graphics images. Some modules offer colour displays while some others incorporate

backlighting so that they can be viewed in dimly lit conditions.

There are basically two types of LCDs as far as the interface technique is concerned: par-

allel LCDs and serial LCDs. Parallel LCDs (e.g. Hitachi HD44780) are connected to a micro-

controller using more than one data line and the data is transferred in parallel form. It is

common to use either 4 or 8 data lines. Using a 4 wire connection saves I/O pins but it is

slower since the data is transferred in two stages. One of the most commonly used parallel

LCD standard is the HD44780.

The programming of a parallel LCD is usually a complex task and requires a good under-

standing of the internal operation of the LCD controllers, including the timing diagrams.

Fortunately, most high-level languages provide special library commands for displaying

data on alphanumeric as well as on graphical LCDs. All the user has to do is connect the LCD

to the microcontroller, define the LCD connection in the software, and then send special

commands to display data on the LCD.

Serial LCDs are connected to the microcontroller using only a few data lines. Serial LCDs are

much easier to use but they cost more than the parallel ones. One of the most commonly

used serial LCDs makes use of the I2C bus protocol where only two wires are required for

communication, namely SDA (data) and SCL (clock). There is a master device on the bus

and there can be a number of slave devices where each device has a unique address so

that it can be identified. Figure 6.1 shows a typical I2C bus with a master and two slave

devices. Notice that the bus must be terminated with pull-up resistors to the power supply.

Interested readers should be able to find many articles, application notes, and data sheets

on the Internet on I2C. In this chapter, we will be using an I2C based LCD in Node-RED

based Raspberry Pi projects.

Figure 6.1 I2C Bus structure with a master and 2 slave devices

Programming with Node-RED

● 114

6 .2 Raspberry Pi I2C ports

Raspberry Pi provides two I2C ports SCL0 and SCL1 at the following GPIO pins:

I2C Name GPIO Port Pin Signal

SCL0 GPIO 0 SDA0

SCL0 GPIO 1 SCL0

SCL1 GPIO 2 SDA1

SCL1 GPIO 3 SDA2

It is recommended to use SCL1 in I2C based applications. The two I2C lines are internally

pulled-up to +3.3V power supply using 1.8K resistors.

The I2C on your Raspberry Pi 4 must be enabled using the raspi-config utility before it can

be used. The steps are:

• Start raspi-config on your Raspberry Pi 4 by entering the following command

pi@raspberrypi:~ $ sudo raspi-config

• Move down to item 5 Interfacing Options

• Move down to P5 I2C (see Figure 6.2) and press Enter

• Select Yes to enable the I2C interface, and click OK and exit from raspi-config

utility

Figure 6.2 Move to P5 I2C

Some of the I2C devices operate with +5V. It is important to be careful when connecting

such devices to your Raspberry Pi since the voltage at the I/O pins of the Raspberry Pi must

not exceed +3.3V, otherwise, the Raspberry Pi can be damaged. It is safe to connect an I2C

device that operates with +5V to your Raspberry Pi if the device does not have any internal

pull-up resistors on its I2C lines. If the I2C lines of the device are connected internally to

+5V, then you must not connect such a device to your Raspberry Pi without using voltage

level converters circuits to lower the voltage from +5V to +3.3V.

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 115

6 .3 I2C LCD

The commonly available I2C LCD consists of a standard HD44780 compatible 16x2 char-

acter display that is operated in 4-bit mode. A small board is plugged-in at the back of the

LCD board. This board has a PCF8574 chip that converts I2C serial data to parallel form for

the LCD display. Although the slave address of the LCD can be changed from 0x20 to 0x27,

its default value is 0x27. The LCD module operates with +5V and it has no internal pull-up

resistors on its I2C lines. The module can therefore directly be connected to the Raspberry

Pi I2C lines.

To test the LCD module and find its slave address follow the steps given below:

• Connect the SDA and SCL pins of the LCD modules to GPIO 2 and GPIO 3 port

pins of the Raspberry Pi respectively

• Connect the Vcc and GND pins of the LCD module to +5V and GND pins of the

Raspberry Pi respectively

• Enter the following command on your Raspberry Pi:

pi@raspberrypi:~ $ sudo i2cdetect –y 1

• You should get a display similar to the one shown in Figure 6.3. Notice in this

figure that the slave address of your LCD module is 0x27

Figure 6.3 Address of the LCD module is 0x27

• If the address of the LCD module is not displayed it means that there are some

errors. You should check your connections and try again. You may also have to

install the I2C tools by entering the following commands:

pi@raspberrypi:~ $ sudo apt-get install python-smbus

pi@raspberrypi:~ $ sudo apt-get install i2c-tools

6 .4 Installing the I2C LCD software on Node-RED

There are several I2C LCD devices. The one we will be using in this project is HD44780 com-

patible 16 characters by 2 rows display, which has a small board at its back with a PCF8574

chip (see Figure 6.4).

Programming with Node-RED

● 116

Figure 6.4 I2C LCD used in the project

A compatible I2C LCD node must be installed so that it is available in the Node-RED palette.

The steps to install it are as follows:

• Start Node-RED and click Menu -> Manage palette and then click Install

• Enter node-red-contrib-lcd20x4-i2c in the search path and click install

• You should now see a new node called LCD20x4 I2C

The LCD node can be used for LCDs having up to 4 lines, and it accepts an object msg .

payload .msgs. If the object passed does not contain 4 lines the difference is filled with

blank lines. The following points are important while using this LCD node:

• msg must be a string no more than 20 characters long. Scrolling will be done if

more than 20 characters are sent to the LCD.

• A position object can be specified between 1 and 20 (default is 1 if not specified)

which is used for offsetting the text (spaces can be inserted instead of using this

object)

• A center object is optional and it must be specified as a Boolean value, passed

as a string

If there is an error in the data sent to the LCD then an error message will be displayed on

the LCD screen.

An example is given below to show how the LCD node can be used.

Example

Develop a flow program to display the text Hello From at the top row and My LCD in the

second row.

Solution

The required flow program is shown in Figure 6.5.

Figure 6.5 Flow program of the example

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 117

The steps are as follows:

• Create an inject node and name it as Click

• Create a function node and name it as Display. Enter the following statements

inside this node (see Figure 6.6).

msg.payload={msgs:[

 {msg:"Hello From"},

 {msg:"My LCD"}

]};

 return msg;

The message in the first part of the statement enclosed with {} is sent to the top row, and

the second message enclosed with {} is sent to the bottom row of the LCD.

Figure 6.6 Contents of function node

• Click, drag and drop the LCD20x4 I2C node to the workspace and change its

name to LCD . Set the I2C address to 0x27 and click Done

• Join the nodes as shown in Figure 6.5, and click Deploy. You should see the text

displayed as shown in Figure 6.7

Figure 6.7 Text displayed on the LCD

The LCD object format for a two-row LCD (16 x 2) is as follows (see link: https://flows.

nodered.org/node/node-red-contrib-lcd20x4-i2c):

msg.payload = {

 msgs: [

 {

 msg: "string",

Programming with Node-RED

● 118

 pos: number,

 center: "boolean"

 },

 {

 msg: "string",

 pos: number,

 center: "boolean"

 },

]

};

The data to be displayed is entered after the keyword msg. The first message is for the top

row, and the second message is for the bottom row of the LCD.

6 .5 Project 23 – Displaying current time on the LCD

Description: In this project, the current time is displayed on the LCD every second in the

following format:

Current Time

Time=hh:mm:ss

Aim: The aim of this project is to show how the current time can be extracted and then

displayed on the LCD every second.

Circuit diagram: Figure 6.8 shows the circuit diagram of the project. The LCD is directly

connected to the I2C pins of the Raspberry Pi.

Figure 6.8 Circuit diagram of the project

Node-RED flow program: Figure 6.9 shows the flow program which consists of 3 nodes:

an inject node, a function node, and an LCD20x4 I2C node.

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 119

Figure 6.9 Flow diagram of the project

The steps are as follows:

• Create an inject node named Click, and set its interval to one second

• Create a function node named Display, and enter the following commands (see

Figure 6.10), click Done. Variable LocalTime extracts the current local time.

Variable Tim constructs the string Time=hh:mm:ss. The first row of the LCD

displays the text Current Time, and the second row displays the actual time:

var LocalTime = new Date();

var Tim = "Time=" + LocalTime.toLocaleTimeString();

msg.payload={msgs:[

 {msg:"Current Time"},

 {msg:Tim, pos:1}

]};

return msg;

Figure 6.10 Configure the function node

• Create an LCD20x4 I2C node named LCD and set the I2C Address to 0x27

• Join all 3 nodes as shown in Figure 6.9, click Deploy. Click the button of the in-

ject node. You should see the time displayed on the LCD every second as shown

in Figure 6.11

Figure 6.11 Displaying the time every second

Programming with Node-RED

● 120

6 .6 Project 24 – Displaying local temperature and humidity on the LCD

Description: In this project, the current weather forecast is received and the local temper-

ature and humidity are displayed on the LCD every 10 seconds.

Aim: The aim of this project is to show how the local temperature and humidity can be

displayed on the LCD.

Circuit diagram: The circuit diagram of the project is the same as in Figure 6.8.

Node-RED flow program: Figure 6.12 shows the flow program which consists of 4 nodes:

an inject node to request reading every 10 seconds, an openweathermap node to get

the local weather map, a function node to extract the local temperature and humidity, and

an LCD20x4 I2C node to display the temperature and humidity.

Figure 6.12 Flow diagram of the project

The steps are as follows:

• Create an inject node with an interval of 10 seconds and name it as Click

• Create an openweathermap node and name it as Temp & Hum. Set the API

key and set your local city and country names. Click Done

• Create an LCD20x4 I2C node and name it as LCD. Set the I2C address to 0x27

as before and click Done

• Join the 4 nodes and click Deploy.

• Click the button of the inject node. You should see the local temperature and

humidity displayed on the LCD as shown in Figure 6.13.

Figure 6.13 Displaying the local temperature and humidity

6 .7 Project 25 – Displaying dice numbers

Description: In this project, two random numbers are generated between 1 and 6 and

are displayed on the LCD every time the button of the inject node is clicked. The numbers

are displayed for 5 seconds. After this time the display is cleared and message Ready is

displayed. At this point, the user can click the button of the inject node to generate two new

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 121

random numbers. This project can be used in games that are played with dice.

Aim: The aim of this project is to show how two random numbers can be generated and

then combined and displayed on the LCD.

Circuit diagram: The circuit diagram of the project is the same as in Figure 6.8.

Node-RED flow program: Figure 6.14 shows the flow program which consists of 8 nodes:

an inject node to start generating two random numbers, 2 random nodes to generate

two random numbers between 1 and 6, a join node to join the two generated numbers, a

function node to format the numbers for displaying on the LCD, a delay node to generate

5 seconds of delay so that the message Ready can be displayed after 5 seconds, and a

function node which actually displays the message Ready.

Figure 6.14 Flow program of the project

The steps are as follows:

• Create an inject node and name it as START

• Create two random nodes and name them as Random 1 and Random 2. Set

the nodes to generate random numbers between 1 and 6, click Done

• Create a join node and configure it as shown in Figure 6.15. This node will join

the two random numbers into an array. Click Done.

Figure 6.15 Configure the join node

• Create a function node and name it as Display. Enter the following statements

into this node (see Figure 6.16). These statements extract the two numbers from

the array and combine them into a single variable called disp. The contents of

disp are then displayed on the first row of the LCD. Click Done.

Programming with Node-RED

● 122

var first = msg.payload[0];

var second = msg.payload[1];

var disp = first + " " + second;

msg.payload={msgs:[

 {msg:disp}

]};

return msg;

• Create an LCD20x4 I2C node and name it as LCD. Set the I2C address to 0x27

as before and click Done

• Create a 5-second delay node

• Create a function node and name it as Ready . Enter the following statements

into this node. This node will display the message Ready on the LCD:

msg.payload={msgs:[

 {msg:"Ready"}

]};

return msg;

• Join all the nodes as shown in Figure 6.14 and click Deploy.

• Click the button of the inject node. You should see two numbers generated be-

tween 1 and 6. After 5 seconds the display will clear and message Ready will be

displayed so that clicking the button again will generate a new set of numbers.

Figure 6.16 shows an example output on the LCD.

Figure 6.16 Example output on the LCD

6 .8 Project 26 – Event counter with LCD

Description: This is an event counter project. Events are assumed to occur when port pin

GPIO 15 of Raspberry Pi goes from logic 1 to logic 0. In the project, events are simulated

by connecting a push-button switch to GPIO 15 and by pressing the button. The program

counts the events occurring and displays the total at any time on the LCD.

Aim: The aim of this project is to show how a simple event counter program can be devel-

oped using Node-RED.

Circuit diagram: The two-button pins are connected to GPIO 15 and to ground respec-

tively.

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 123

Node-RED flow program: Figure 6.17 shows the flow program which consists of 3 nodes:

a rpi gpio in node to receive the button inputs, a function node to update the counts, and

an LCD20x4 I2C node to display the count.

Figure 6.17 Flow program of the project

The steps are as follows:

• Create a rpi gpio in node and name it as BUTTON. Set the pin number GPIO 15,

set Resistor to pullup and Debounce to 25ms. Notice that Debounce is set to

25ms to eliminate the contact bouncing problems associated with the mechanical

switches as described in Chapter 5. Click to read the initial state of the pin. Click

Done

• Create a function node and name it as Display. Enter the following statements

inside this node (see Figure 6.18). Notice that we are using a context variable

here. The statement:

var count=context.get('count') || 0;

means that if count does not exist in the context object, then make variable

count zero, otherwise assign the stored value to count. The value of count is in-

cremented every time the button is pressed (i.e. msg.payload goes to 0). Count

is then converted into string and sent to the LCD:

var count=context.get('count') || 0;

if(msg.payload == 0)

{

 count++;

 context.set('count',count);

 var cnt = "Events = " + count.toString();

 msg.payload={msgs:[

 {msg:cnt}

]};

 return msg;

}

else

 return null;

Programming with Node-RED

● 124

Figure 6.18 Configure function node

• Create an LCD20x4 I2C node and name it as LCD. Set the I2C address to 0x27

and click Done

• Join all the nodes as in Figure 6.17 and click Deploy. Every time the button is

pressed, the event count will be incremented by one and the total value will be

displayed on the screen as shown in Figure 6.19.

Figure 6.19 Displaying the total events at any time

6 .9 Project 27 – DHT11 temperature and humidity sensor with LCD Display

Description: In this project, we use the popular DHT11 digital sensor to measure the am-

bient temperature and humidity and display them on the LCD every 5 seconds.

Aim: The aim of this project is to show how the DHT11 temperature and humidity sensor

can be used in a Node-RED project.

Block diagram: Figure 6.20 shows the block diagram of the project.

Figure 6.20 Block diagram of the project

Background information: DHT 11 (or DHT22) is one of the popular and most commonly

used digital temperature and humidity sensors. The sensor basically has 3-pins as shown

in Figure 6.21. Although some sensor versions have 4 pins, one of the pins is not used. The

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 125

DHT11 is made up of two parts: a capacitive humidity sensor, and a thermistor temperature

sensor. Because the output is digital, the chip also includes an ADC to convert the analog

signals into digital.

The basic specifications of DHT11 are:

• 3V to 5V power supply

• Low cost

• 2.5mA max current (during conversion)

• 20 - 80% humidity range with 5% accuracy

• 0 - 50°C temperature range with ±2°C accuracy

• 1 Hz sampling rate (once every second)

DHT22 is similar to DHT11, it has the same size and shape, but it offers wider measurement

ranges and is also more accurate than the DHT11. In this project, we will be using a DHT11.

Figure 6.21 The DHT11 sensor

Installing the DHTxx Node-RED node: The steps to install the DHTxx (i.e. DHT11 and

DHT22) Node-RED node are as follows:

• Click Menu -> Manage palette and click Install

• Enter node-red-contrib-dht-sensor and click install (see Figure 6.22)

• You should see a new node called rpi-dht22 in the Node Palette

We are now ready to develop our flow-program to read and display the ambient tempera-

ture and humidity.

Programming with Node-RED

● 126

Figure 6.22 Install the DHTxx node

Circuit diagram: The circuit diagram of the project is shown in Figure 6.23. The I2C LCD is

connected to Raspberry Pi as in the earlier projects in this Chapter. The DHT11 is connected

to the Raspberry Pi as follows:

DHT11 Pin Raspberry Pi Pin

Data (S) GPIO 15

Vcc +3.3V

Gnd (-) GND

Figure 6.23 Circuit diagram of the project

Node-RED flow program: Figure 6.24 shows the flow program which consists of 3 nodes:

a rpi gpio in node to receive the button inputs, a function node to update the counts, and

an LCD20x4 I2C node to display the count.

Figure 6.24 Flow program of the project

The steps are as follows:

• Create an inject node with the name Click and set the interval to 5 seconds

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 127

• Create a rpi-dht22 node and configure it as shown in Figure 6.25. Set the Sen-

sor model to DHT11, Pin numbering to BCM GPIO, and the pin number to 15

(GPIO 15), click Done

Figure 6.25 Configure the rpi-dht22 node

• Create a function node and name it as Display. Enter the following statements

inside the function (see Figure 6.26). Variables T and H receive the temperature

and humidity readings respectively from the DHT11 every 5 seconds. Temper-

ature is displayed at the top row, while the humidity is displayed at the bottom

row of the LCD:

T = msg.payload;

H = msg.humidity;

Temp = "T = " + T + "C";

Hum = "H = " + H + "%";

msg.payload={msgs:[

 {msg: Temp},

 {msg: Hum}

]};

return msg;

Figure 6.26 Configure the function node

Programming with Node-RED

● 128

• Create the LCD node as before, join all the nodes and click Deploy.

• Click the button of the inject node. You should see the temperature and humidity

updated and displayed every 5 seconds (see Figure 6.27)

Figure 6.27 Displaying the temperature and humidity

Notice that if you connect a debug node to the output of node rpi-dht22, you will only see

the temperature displayed in the payload. If, however, you set the Output of the debug

node to complete msg object, you will see both the temperature and the humidity dis-

played as shown in Figure 6.28

Figure 6.28 Debug node output

Figure 6.29 shows the circuit built on a breadboard and connected to the Raspberry Pi using

jumper wires.

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 129

Figure 6.29 Circuit built on a breadboard

6 .10 Project 28 – Ultrasonic distance sensor with LCD display

Description: In this project, an ultrasonic distance sensor module is used and the distance

to any obstacle in front of the sensor is displayed on the LCD.

Aim: The aim of this project is to show how an ultrasonic sensor can be used in a Node-

RED project.

Background information: Ultrasonic distance sensor modules are used applications

where it is required to measure the distance to an object (e.g. an obstacle) in-front of the

sensor module. The most commonly used ultrasonic sensor is the HC-SR04 (see Figure

6.30). This is a 4-pin module with the following pins:

Echo: echo pin

Trig: trigger pin

Vcc: Power supply pin (+5V)

GND: power supply ground pin

Figure 6.30 The HC-SR04 ultrasonic distance sensor module

Programming with Node-RED

● 130

The measurement range of the HC-SR04 sensor is 2cm to 400cm. The basic principle of

operation of the ultrasonic sensor module is as follows (see Figure 6.31):

• A 10µs trigger pulse is sent to the module

• The module then sends eight 40kHz square wave signals to the target and sets

the echo pin HIGH

• The program starts a timer

• The signal hits the target and echoes back to the module

• When the signal is returned to the module the echo pin goes LOW

• The timer is stopped

• The duration of the echo signal is calculated and this is proportional to the dis-

tance to the target

The distance to the object is calculated as follows:

Distance to object (in metres) = (duration of echo time in seconds * speed

of sound) / 2

The speed of sound is 340 m/s, or 0.034 cm/µs

Therefore,

Distance to object (in cm) = (duration of echo time in µs) * 0.034 / 2

or,

Distance to object (in cm) = (duration of echo time in µs) * 0.017

For example, if the duration of the echo signal is 294 microseconds then the distance to the

object is calculated as follows:

Distance to object (cm) = 294 * 0.017 = 5cm

Figure 6.31 Operation of the ultrasonic sensor module

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 131

Installing the ultrasonic sensor Node-RED node: The steps to install the HC-SR04

sensor Node-RED node are as follows:

• Click Menu -> Manage palette and click Install

• Enter node-red-node-pisrf and click install

• You should see a new node called rpi srf in the Node Palette

• We are now ready to develop our flow-program to read and display the distance

Block diagram: The block diagram of the project is shown in Figure 6.32.

Figure 6.32 Block diagram of the project

Circuit diagram: Figure 6.33 shows the circuit diagram. Raspberry Pi port pins GPIO 15

and GPIO 18 are connected to the Trig and Echo pins of the sensor respectively. Notice

that the sensor operates with +5V and its Echo output voltage level goes up to +5V. This

is too high for the Raspberry Pi inputs and as a result, a resistive potential divider circuit is

used to lower the sensor output voltage to +3.3V. The VCC and GND pins of the sensor are

connected to +5V and GND pins of Raspberry Pi respectively.

Figure 6.33 Circuit diagram of the project

Node-RED flow program: Figure 6.34 shows the flow program which consists of 3 nodes:

a rpi srf node to read the distance from the sensor, a function node to format the data to

be displayed, and an LCD node.

Programming with Node-RED

● 132

Figure 6.34 Flow program of the project

The steps are as follows:

• Click, drag and drop the rpi srf node into the workspace. Configure it as shown

in Figure 6.35. Note that by default the distance is measured every 0.5 seconds,

but this can be changed if desired. Set the pin numbers to where the Trig and

Echo pins are connected on the Raspberry Pi. It is important to be careful here

since the pin numbers required here are the physical pin numbers of the header

and not the GPIO pin names. In this project, Trig and Echo pins are connected to

GPIO pins 15 and 18 respectively, which correspond to physical pin numbers 10

and 12 respectively.

Figure 6.35 Configure the rpi srf node

• Create a function node and mane it as Distance. Enter the following state-

ments into this node (see Figure 6.36). Here, variable Distance is loaded with

the actual measured distance in centimeters. The first row of the LCD displays

a heading, while the second row displays the measured distance. Click Done:

var Distance = msg.payload;

msg.payload={msgs:[

 {msg:"Distance (cm)"},

 {msg: Distance}

]};

return msg;

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 133

Figure 6.36 Configure the function node

• Create the LCD node as before, join all 3 nodes and click Deploy . You should see

the distance displayed on the LCD. Place something in front of the sensor and you

should see the distance changing (see Figure 6.37)

Figure 6.37 Displaying the distance

Figure 6.38 shows the circuit built on a breadboard (notice in this figure that the author had

no 2K resistors and used 2x1K resistors instead).

Figure 6.38 The circuit built on a breadboard

Programming with Node-RED

● 134

6 .11 Project 29 – Ultrasonic distance alarm with buzzer

Description: In this project, an ultrasonic distance sensor module is used, as in the previ-

ous project. Additionally, an active buzzer is used such that if the distance to any obstacle

is less than 20cm then the buzzer is activated. This project can be used in mobile robotic

applications or to aid while parking your car.

Aim: The aim of this project is to show how an ultrasonic sensor can be used together with

a buzzer in a Node-RED project.

Block diagram: Figure 6.39 shows the project block diagram.

Figure 6.39 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 6.40, where an

active buzzer is connected to port pin GPIO 23. The remainder of the circuit is the same as

in Figure 6.33.

Figure 6.40 Circuit diagram of the project

Node-RED flow program: Figure 6.41 shows the flow program which consists of 3 nodes:

a rpi srf node to read the distance from the sensor, a function node to format the data to

control the buzzer, and a rpio gpio out node which is connected to the buzzr.

Figure 6.41 Flow program of the project

The steps are as follows:

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 135

• Create a rpi srf node as in the previous project, but set the Repeat interval to a

lower value, e.g. 0.25 second

• Create a function node and enter the following statements. If the distance to

any obstacle is less than 20cm then the output is set to 1 to activate the buzzer:

var Distance = msg.payload;

if(Distance < 20)

 msg.payload = 1;

else

 msg.payload = 0;

return msg;

• Create a rpi gpio out node and name it as Buzzer. Set the Pin to GPIO 23, and

initialize the pin state to 0

• Join all 3 nodes, and click Deploy. Place an object close to the ultrasonic module

and you will hear the buzzer sounding. When the object is removed, the buzzer

should stop sounding.

6 .12 Project 30 – Ultrasonic car parking system with buzzer

Description: In this project, it is assumed that two ultrasonic distance sensor modules are

attached to the front and rear of a vehicle. Additionally, an active buzzer is used such that

if the distance to any obstacle at the front or rear of the vehicle is less than 20cm then the

buzzer is activated. This project can be used to aid while parking your car.

Aim: The aim of this project is to show how two ultrasonic distance sensor modules can be

used together with a buzzer in a Node-RED project.

Block diagram: Figure 6.42 shows the project block diagram.

Figure 6.42 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 6.43. One of the

ultrasonic sensor modules and the buzzer are connected as in the previous project. The Trig

and Echo pins of the second ultrasonic buzzer module are connected to Raspberry Pi port

pins GPIO 24 and GPIO 25 respectively (physical pins 18 and 22).

Programming with Node-RED

● 136

Figure 6.43 Circuit diagram of the project

Node-RED flow program: Figure 6.44 shows the flow program which consists of 5 nodes:

2 rpi srf nodes, one for each ultrasonic distance sensor module, a join node to join the two

outputs into an array, a function node to format the output for the buzzer, and a rpi gpio

out node to control the buzzer.

Figure 6.44 Flow program of the project

The steps are as follows:

• Create the two rpi srf nodes and set their pins to 10,12 and 18,22. Set the

Repeat times to 0.25 second in each one

• Create a join node and configure as shown in Figure 6.45. This node joins the

two inputs into an array that can be manipulated in the function node

Figure 6.45 Configure the join node

• Create a function node and enter the following statements inside this node, click

Done:

var Distance1 = msg.payload[0];

var Distance2 = msg.payload[1];

if(Distance1 < 20 || Distance2 < 20)

 msg.payload = 1;

else

 msg.payload = 0;

return msg;

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 137

• Create a rpi gpio out node and set the pin number to GPIO 23

• Join all the nodes as in Figure 6.44, click Deploy. Place objects close to either

sensor and you should hear the buzzer sounding.

Figure 6.46 shows the circuit built on a breadboard ready for testing.

Figure 6.46 Circuit built on a breadboard

6 .13 Using a parallel LCD

In the previous projects in this chapter, we have used I2C based LCDs. In these projects,

the actual LCD was an HD44780 type parallel LCD, but a small board was plugged at the

back of the LCD so that the LCD can communicate using the SDA and SCL I2C lines. Par-

allel LCDs have the advantages that they are much cheaper than the I2C versions. Their

disadvantage is that their control requires at least 6 pins, instead of 2 pins required for the

I2C versions. Parallel LCDs also require an external potentiometer to adjust their contrast.

In the remaining parts of this chapter, we will see how an HD44780 type parallel LCD can

be used with Node-RED projects.

HD44780 LCD module

HD44780 is one of the most popular alphanumeric LCD modules used in industry and also

by hobbyists. This module is monochrome and comes in different sizes. Modules with 8,

16, 20, 24, 32, and 40 columns are available. Depending on the model chosen, the number

of rows varies between 1, 2 or 4. The display provides a 14-pin (or 16-pin) connector to

a microcontroller. Table 6.1 gives the pin configuration and pin functions of a 14-pin LCD

module. Below is a summary of the pin functions:

Pin no Name Function

1 VSS Ground

2 VDD + ve supply

3 VEE Contrast

4 RS Register Select

Programming with Node-RED

● 138

5 R/W Read/Write

6 E Enable

7 D0 Data bit 0

8 D1 Data bit 1

9 D2 Data bit 2

10 D3 Data bit 3

11 D4 Data bit 4

12 D5 Data bit 5

13 D6 Data bit 6

14 D7 Data bit 7

15 A Anode (light)

16 K Cathode (light)

Table 6.1 Pin configuration of HD44780 LCD module

VSS is the 0V supply or ground. The VDD pin should be connected to the positive supply.

Although the manufacturers specify a 5V D.C supply, the modules will usually work with as

low as 3V or as high as 6V.

Pin 3 is named VEE and this is the contrast control pin. This pin is used to adjust the con-

trast of the display and it should be connected to a variable voltage supply. A potentiometer

is normally connected between the power supply lines with its wiper arm connected to this

pin so that contrast can be adjusted.

Pin 4 is the Register Select (RS) and when this pin is LOW, data transferred to the display

is treated as commands. When RS is HIGH, character data can be transferred to and from

the module.

Pin 5 is the Read/Write (R/W) line. This pin is pulled LOW in order to write commands or

character data to the LCD module. When this pin is HIGH, character data or status informa-

tion can be read from the module.

Pin 6 is the Enable (E) pin which is used to initiate the transfer of commands or data be-

tween the module and the microcontroller. When writing to the display, data is transferred

only on the HIGH to LOW transition of this line. When reading from the display, data be-

comes available after the LOW to HIGH transition of the enable pin and this data remains

valid as long as the enable pin is at logic HIGH.

Pins 7 to 14 are the eight data bus lines (D0 to D7). Data can be transferred between the

microcontroller and the LCD module using either a single 8-bit byte or as two 4-bit nibbles.

In the latter case, only the upper four data lines (D4 to D7) are used. 4-bit mode has the

advantage that four fewer I/O lines are required to communicate with the LCD.

A simple project is given below for completeness, which illustrates how a parallel LCD can

be used in a Node-RED based project.

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 139

6 .14 Project 31 – Displaying message on a parallel LCD

Description: In this project, a parallel LCD is connected to the Raspberry Pi and the mes-

sage Hello There is displayed on the LCD.

Aim: The aim of this project is to show how a parallel LCD can be used in a Node-RED

based project.

Circuit diagram: Figure 6.47 shows the circuit diagram of the project. The LCD is connect-

ed to Raspberry Pi as follows:

LCD Pin Raspberry Pi GPIO Pin Raspberry Pi Physican Pin no

D4 GPIO 15 10

D5 GPIO 18 12

D6 GPIO 23 16

D7 GPIO 24 18

RS GPIO 25 22

E GPIO 8 24

R/W GND 6

GND GND 20

Vcc +5V 2

Figure 6.47 Circuit diagram of the project

Notice that a 10K potentiometer must be connected to the VEE (or Vo) pin to set the LCD

contrast.

Installing the parallel LCD node: The steps to install the parallel LCD node to Node-RED

palette are given below:

• Click Menu -> Manage palette and then click Install

• Enter node-red-node-pilcd into the search pad and click install

Programming with Node-RED

● 140

• You should see a new node named rpi lcd in the Node Palette

• The node rpi lcd requires to specify where the following LCD pins are connected

to:

RS, E, D4, D5, D6, D7

Node-RED flow program: Figure 6.48 shows the flow program which consists of 4 nodes:

an inject node, 2 function nodes, where each one sends text to each line of the LCD, and

the rpi lcd control node.

Figure 6.48 Flow program of the project

The steps are as follows:

• Create an inject node

• Create two function nodes and name them as Row 1 and Row 2. These func-

tions contain the text to be displayed on the LCD. Row 1 sends the text for the

top row of the LCD, while Row 2 sends the text for the second row of the LCD.

The contents of Row 1 function is:

var first = "1:This is Line 1";

msg.payload = first;

return msg;

 Similarly, the contents of Row 2 function is:

 second="2:This is Line 2";

msg.payload=second;

return msg;

• Data to the LCD must be sent as strings. For Row 1, start the data with 1:, for

Row 2 start the data with 2: and so on. String clr: clears the screen.

Interested readers can get more information from the following link:

 https://flows.nodered.org/node/node-red-node-pilcd

• Create the rpi lcd node. Configure the node as shown in Figure 6.49.

Chapter 5 • Node-RED based Raspberry Pi projects using Gpio

● 141

Figure 6.49 Configure node rpi lcd

• Join all the nodes and click Deploy. Click the button of the inject node and you

should see the following texts displayed on the LCD:

This is Line 1

This is Line 2

6 .15 Summary

In this chapter, we have learned how to use an LCD in Node-RED based Raspberry Pi pro-

jects.

In the next chapter, we will be looking at the Analog-to-Digital Converters (ADC) and see

how we can use ADCs in Node-RED based projects.

Programming with Node-RED

● 142

Chapter 7 • Using ADC in Raspberry Pi Node-RED projects

7 .1 Overview

Most sensors in real life have analog outputs and such outputs cannot be connected direct-

ly to computer input ports. Analog-to-digital converters (ADC) are used to convert these

analog signals to digital form so that they can be read by a computer. Unfortunately, Rasp-

berry Pi computer has no built-in ADC ports and it is not possible to interface it to analog

outputs unless an external ADC circuit is used.

There are many types of ADCs that can be used in projects. Some important ADC parame-

ters that one should take into account before using one are as follows:

Word length: Most ADCs used to be 8 bits wide, having only 256 quantization levels. Such

ADCs are not accurate since only 256 levels are used to represent the input voltage. The

general-purpose ADCs nowadays are usually 10 or 12-bits. A 10-bit ADC has 1024 quan-

tization levels, and a 12-bit ADC has 4096 quantization levels. Considering an 8-bit ADC,

with a reference voltage of +3.3V, each bit corresponds to 12.89mV. This means that input

voltages less than 12.89mV cannot be differentiated. With a 10-bit ADC, each bit repre-

sents 3.22mV, and with a 12-bit converter, each bit represents 0.80mV.

In this chapter, we will be using an external ADC on our Raspberry Pi to read data from

sensors using Node-RED.

7 .2 The MCP3002 ADC

The ADC we will be using in our projects in this Chapter is the MCP3002. This is an 8-pin

DIL chip (see Figure 7.1), with the following features:

• 10-bit resolution

• 2 input channels

• Successive approximation converter

• On-chip sample and hold circuit

• SPI interface to host computer

• +2.7 to +5.5V operation

• 200ksps sampling rate (at +5V)

• 5nA standby current

Figure 7.1 MCP3002 pin diagram

MCP3002 incorporates on-chip sample and hold circuitry which is required while converting

fast analog input signals. The pin functions are:

Chapter 7 • Using ADC in Raspberry Pi Node-RED projects

● 143

CS/SHDN: Chip select input

CH0: analog input channel 0

CH1: analog input channel 1

Vss: power supply ground

Din: SPI data input

Dout: SPI data output

CLK: SPI clock

Vdd/Vref: power supply and reference voltage

Installing the MCP3002 node: Before using the MCP 3002 in a Node-RED application, we

have to install the MCP3002 node in the Node Palette (the following steps install MCP 3xxx

nodes, which includes other ADC chips in the same family). The steps are given below:

• Click Menu -> Manage palette and click Install

• Enter node-red-node-pi-mcp3008 in the search pad and click install

• When the installation is finished, you should see a new node called A/D con-

verter

You can also run the following command from your default Node-RED directory of ~/ .node-

red

npm install node-red-node-pi-mcp3008

We must also enable the SPI interface on our Raspberry Pi 4. The steps are:

• pi@raspberrypi:~ $ sudo raspi-config

• Move down to 5 . Interfacing options

• Move to P4 SPI, click on it and enable SPI interface

Raspberry Pi has the two SPI ports with the following pins:

SPI Port SPI Function Raspberry Pi Pin Name Physical Port number

SPI0 MOSI GPIO 10 19

SPI0 MISO GPIO 9 21

SPI0 CLK GPIO 11 23

SPI0 CE0 GPIO 8 24

SPI0 CE1 GPIO 7 26

SPI1 MOSI GPIO 20 38

SPI1 MISO GPIO 19 35

SPI1 CLK GPIO 21 40

SPI1 CE0 GPIO 18 12

SPI1 CE1 GPIO 17 11

Programming with Node-RED

● 144

SPI communication requires a minimum of 3 pins: MOSI (Master Out Slave In), MISO (Mas-

ter In Slave Out), and CLK (Clock). In some applications, it may also be necessary to enable

the SPI device using one of the CE (Chip Enable) pins.

A project is given in the next section that shows how the MCP 3002 can be used in a project.

7 .3 Project 32 – Voltmeter with LCD output

Description: This is a voltmeter project. The voltage to be measured is applied to the input

terminals. The measured value is displayed in millivolts on an LCD. In this project, please

make sure that the input voltage is not greater than 3300mV.

Aim: The aim of this project is to show how an ADC can be used in a Node-RED project

with Raspberry Pi.

Block diagram: The block diagram of the project is shown in Figure 7.2.

Figure 7.2 Block diagram of the project

Circuit diagram: Figure 7.3 shows the circuit diagram of the project. The MCP 3002 ADC

is connected to Raspberry Pi as follows:

MCP302 Pin Raspberry Pi Port Raspberry Pi Physical Pin No

CLK GPIO 11 (CLK) 23

Dout GPIO 9 (MISO) 21

Din GPIO 10 (MOSI) 19

CS/SHDN GPIO 7 (CE1) 26

Vss GND 6

Vdd +3.3V 1

Figure 7.3 Circuit diagram of the project

Chapter 7 • Using ADC in Raspberry Pi Node-RED projects

● 145

Node-RED flow program: Figure 7.4 shows the flow program which consists of 4 nodes:

an inject node, an A/D converter node, function node, and an LCD20x4 I2C node.

Figure 7.4 Flow program of the project

The steps are as follows:

• Create an inject node with an interval of 1 second

• Create an A/D converter node and configure it as shown in Figure 7.5. Here,

set the Device to mcp3002, Input pin to A0 since we are using channel CH0,

the Device ID to CE1, and SPI bus to 0, click Done

Figure 7.5 Configure the A/D converter node

• Create a function node and name it as Calculate mV, and enter the following

statements into this node. Here, the digital value read by the port is converted

into physical millivolts by multiplying with 3300.0 / 1024.0 The floating-point

result is then formatted using function toFixed() so that only 3 digits after the

decimal point are left:

var mV = msg.payload * 3300.0 / 1024.0;

var V = mV.toFixed(3) + " mV";

msg.payload={msgs:[

 {msg: V}

]};

return msg;

• Create an LCD20x4 I2C node as in the projects in Chapter 6. Join all the nodes

and click Deploy.

Programming with Node-RED

● 146

• Connect the CH0 input of the ADC to an external voltage between 0V and +3.3V.

The value of the voltage will be displayed on the LCD in millivolts as shown in the

example in Figure 7.6.

Figure 7.6 Example display of the voltage

7 .4 Project 33 – Temperature measurement using analog sensor

Description: In this project, an analog temperature sensor chip is used to measure the

ambient temperature and display it every second on the LCD.

Aim: The aim of this project is to show how an analog sensor chip can be interfaced with

Raspberry Pi through an ADC in a Node-RED project.

Background information: In this project, the popular TMP36 type analog sensor chip is

used. This is a 3-pin chip (Figure 7.7), having the following features:

• 2.7 to 5.5V operation

• ±2ºC accuracy

• ±0.5ºC linearity

• -40ºC to +125ºC measurement range

• Very low current operation

The relationship between the measured temperature and the output voltage is expressed

as follows:

T = (Vo – 500) / 10

Where T is the temperature in ºC, and Vo is the sensor output voltage in millivolts. For

example, if the sensor output voltage is 800mV then the measured temperature is (800 –

500) / 10 = 30ºC and so on.

Figure 7.7 TMP36 temperature sensor chip

Chapter 7 • Using ADC in Raspberry Pi Node-RED projects

● 147

Circuit diagram: Figure 7.8 shows the circuit diagram of the project. The output pin of

the TMP36 sensor chip is connected to analog input CH0 if the MCP 3002. The connections

between the MCP3002 and Raspberry Pi are as in the previous project.

Figure 7.8 Circuit diagram of the project

Node-RED flow program: The flow program is exactly same as in Figure 7.4, except that

the contents of the function node is different and it should contain the following state-

ments. Here, the temperature is calculated by subtracting 500 from the read value in milli-

volts and dividing by 10. The output is formatted to have two digits after the decimal point:

var mV = msg.payload * 3300.0 / 1024.0;

T = (mV - 500.0) / 10.0;

DegreeSymbol = String.fromCharCode(0xDF);

var Temp = T.toFixed(2) + DegreeSymbol +"C";

msg.payload={msgs:[

 {msg: Temp}

]};

return msg;

Figure 7.9 shows an example display of the ambient temperature. Notice here that the de-

gree sign is also displayed after the temperature. For convenience, Figure 7.10 shows the

LCD characters set. The degree sign has the ASCII value 0xDF.

Figure 7.9 Example display on the LCD

Programming with Node-RED

● 148

Figure 7.10 LCD character set

7 .5 Project 34 – ON/OFF temperature control

Description: This is an ON/OFF temperature control project of a room. The project consists

of a temperature sensor chip, a relay, a heater, an LED, and an LCD. The project controls

the heater through the relay so that the temperature in the room is at the desired setpoint

value. If the temperature in the room is below the setpoint, then the relay is activated to

turn ON the heater. At the same time, the LD is turned ON to indicate that the heater is ON.

If on the other hand, the temperature in the room is above the setpoint, then the relay is

deactivated so that the heater is turned OFF to bring the room temperature to the required

setpoint value. At the same time, the LED is turned OFF to indicate that the heater is OFF.

The top row of the LCD shows the setpoint temperature, while the actual room temperature

is displayed in the second row of the LCD.

Aim: The aim of this project is to show how an ON/OFF type temperature control project

can be developed using Node-RED with a Raspberry Pi.

Background information: An ON/OFF temperature controller, also known as a bang-

bang controller, will turn OFF the heater whenever the temperature is above a pre-defined

setpoint (i.e. the required value). Similarly, if the temperature is below the setpoint then

the heater is turned ON. ON/OFF controllers are used for simplicity since there is no need

to know the model of the plant to be controlled. The only parameter that needs to be set is

the setpoint value. ON-OFF control is suitable when the response delay of the plant to be

Chapter 7 • Using ADC in Raspberry Pi Node-RED projects

● 149

controlled is short and the output rate of rise time is small. If precision temperature control

is required, then it may be more appropriate to use professional PID (Proportional+Inte-

gral+Derivative) type controller algorithms with negative feedback or to use an intelligent

fuzzy-based controller. The problem with most professional controllers is that an accurate

model of the plant to be controlled is normally required before a suitable control algorithm

can be derived. ON/OFF type controller has the disadvantage that the relay used to turn the

heater ON and OFF has to operate many times and this may shorten the life of the relay.

Block diagram: Figure 7.11 shows the block diagram of the project.

Figure 7.11 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 7.12. Most parts of

the circuit are similar to Figure 7.8, but here additionally a relay, a heater, and an LED are

connected to the system. Note that some relays operate only with +5V and if you have one

of these relays, then you will need to have a +3.3V to +5V logic level converter chip to drive

the relay (see the Internet for a suitable converter). The connections between Raspberry Pi

and external components are as follows:

Raspberry Pi Port Component

GPIO 2 LCD SDA

GPIO 3 LCD SCL

GPIO 17 LED anode

GPIO 27 Relay

GPIO 11 MCP 3002 CLK

GPIO 10 MCP 3002 Din

GPIO 9 MCP 3002 Dout

GPIO 7 MCP 3002 CS

Programming with Node-RED

● 150

Figure 7.12 Circuit diagram of the project

Node-RED flow program: Figure 7.13 shows the flow program which consists of 6 nodes:

an inject node, an A/D converter node to read the room temperature, a function node

as the ON/OFF controller, and a LCD20x4 I2C node to display the setpoint and the actual

temperatures, a rpi gpio out node connected to the LED, and another rpi gpio out node

connected to the relay.

Figure 7.13 Flow program of the project

The steps are as follows:

• Create an inject node with an interval of 1 second

• Create an A/D converter node and configure it as shown in Figure 7.5

• Create a function node with 2 outputs, and name it as ON/OFF Control (see

Figure 7.14). Enter the following statements into this node. In this example, the

setpoint temperature is set to 22ºC. Variable T is loaded with the actual temper-

ature every second. The setpoint temperature is displayed at the top row of the

LCD. Similarly, the actual measured temperature is displayed in the second row

of the LCD. If the actual measured temperature is less than the setpoint value,

then the LED and the relay are turned ON. If on the other hand, the actual meas-

ured temperature is equal or greater than the setpoint value, then the LED and

the relay are turned OFF. Click Done:

Chapter 7 • Using ADC in Raspberry Pi Node-RED projects

● 151

var setpnt = 22.0;

var DegreeSymbol = String.fromCharCode(0xDF);

var Setpoint = "Setpoint= " + setpnt.toFixed(2) + DegreeSymbol;

var mV = msg.payload * 3300.0 / 1024.0;

var T = (mV - 500.0) / 10.0;

var Temp = "Actual = " + T.toFixed(2) + DegreeSymbol +"C";

msg.payload={msgs:[

 {msg: Setpoint},

 {msg: Temp}

]};

if(T < setpnt)

{

 var msg1 = {payload: "1"};

 return [msg, msg1];

}

else

{

 var msg2 = {payload: "0"};

 return [msg, msg2];

}

Figure 7.14 Configure node function

• Create an LCD20x4 I2C node and configure it as before

• Create a rpi gpio out node and name it as LED. Set the port name to GPIO 17,

and initialize to 0

• Create another rpi gpio out node name it as RELAY. Set the port name to GPIO

27, and initialize to 0

• Connect all the nodes as in Figure 7.13 and click Deploy. The program should

now control the room temperature as required.

Figure 7.15 shows an example display on the LCD where the setpoint temperature is 22ºC

Figure 7.15 Example display

Programming with Node-RED

● 152

7 .6 Summary

In this chapter, we have learned how to use an external analog-to-digital converter chip in

a Node-RED based Raspberry Pi project. In the next chapter, we will be installing and using

the Dashboard to create live dynamic dashboards in Node-RED projects.

Chapter 8 • The dashboard palette

● 153

Chapter 8 • The dashboard palette

8 .1 Overview

In the last chapter, we have learned how to use an analog-to-digital converter in a Node-

RED based Raspberry Pi project. In this chapter, we will be installing and using the Dash-

board palette.

The Dashboard palette provides a set of nodes in Node-RED to quickly create a live data

dashboard It is an optional module and not installed by default.

8 .2 Installing the dashboard

The instructions to install the Dashboard on Node-RED are as follows:

• Click Menu -> Manage palette, and click Install

• Enter node-red-dashboard and click install (see Figure 8.1)

Figure 8.1 Installing the Dashboard

• You will see many new nodes added to the Node Palette under the heading dash-

board as shown in Figure 8.2

Figure 8.2 The dashboard nodes

Programming with Node-RED

● 154

We are now ready to use the Dashboard nodes. Some examples are given in the next sec-

tions.

8 .3 Project 35 – Using a gauge to display the temperature

Description: In the last chapter we have seen how to read and display the temperature

on an LCD. In this project, we will read the ambient temperature every second and display

it on a gauge node.

Aim: The aim of this project is to show how a gauge node can be used in a Node-RED

project

Circuit diagram: The circuit diagram of the project is as in Figure 7.8 where a TMP36 type

temperature sensor chip is connected to an MCP 3002 type ADC.

Node-RED flow program: Figure 8.3 shows the flow program which consists of 4 nodes:

an inject node, an A/D converter node, a function node, and a gauge node.

Figure 8.3 Flow program of the project

The steps are as follows:

• Create an inject node with an interval of 1 second

• Create an A/D converter node as described in Chapter 7

• Create a function node and name it as ConvTemp. Enter the following state-

ments into this node to read the temperature and convert to degrees Centigrade

var mV = msg.payload * 3300.0 / 1024.0;

var T = (mV - 500.0) / 10.0;

msg.payload = T.toFixed(1);

return msg;

• Create a gauge node and connect all the nodes together as shown in Figure 8.3.

Configure the node as follows:

• Double click the gauge node

Chapter 8 • The dashboard palette

● 155

• Click the Group field button to add and configure a dashboard. You should see

the dashboard group edit form. Configure it as shown in Figure 8.4. Click Update

Figure 8.4 Edit the dashboard group name

• Configure the gauge node as shown in Figure 8.5. Here, the Label is set to

Temperature, Units to Degrees C, min value to 0 and the max value to 40. Click

Done

Figure 8.5 Configure the gauge node

• Click the button of the inject node. To see the temperature on the gauge display,

go to the following site with your browser:

http://192.168.1.202:1880/ui/

where 192.168.1.202 is the IP address of your Raspberry Pi. The display in this

project is shown in Figure 8.6.

Programming with Node-RED

● 156

Figure 8.6 Displaying the temperature

The default Tab option is Home, and it allows you to specify which tab of the UI page you

will see the UI element on (here our chart). The Name field is the Node-RED node name.

The Group field allows you to group UI elements.

8 .4 Using a Line Chart to display the temperature

In the last project, we used a gauge to display the ambient temperature. In this section,

we will display the temperature using a line chart. The circuit diagram of the project is as

in Figure 7.8.

The flow program is the same as in Figure 8.3, but the gauge node is replaced with a chart

node and a Line chart is chosen as shown in Figure 8.7.

Figure 8.7 Flow program of the example

To configure the chart node, double click on it and configure as shown in Figure 8.8

Figure 8.8 Configure the chart node

Chapter 8 • The dashboard palette

● 157

The display in this example is shown in Figure 8.9.

Figure 8.9 Displaying the temperature

8 .5 Using a Bar Chart to display the temperature

In the last project, we used a line chart to display the ambient temperature. In this section,

we will display the temperature using a bar chart. Since there is only one item to be dis-

played, the bar chart will have only one column.

The flow program is the same as in Figure 8.3, but the gauge node is replaced with a chart

node and a Bar chart is chosen as shown in Figure 8.10.

Figure 8.10 Flow program of the example

 To configure the chart node, double click on it and configure as shown in Figure 8.11

Figure 8.11 Configure the chart node

The display in this example is shown in Figure 8.12.

Programming with Node-RED

● 158

Figure 8.12 Displaying the temperature

You have the other chart options such as Horizontal Bar chart, Pie chart, Polar chart, and

Radar chart. Figure 8.13 shows the temperature displayed using a Horizontal bar chart.

Figure 8.13 Displaying the temperature using a horizontal bar chart

8 .6 Project 36 – Using gauges to display the temperature and humidity

Description: In the last examples we displayed only one item using the Dashboard. In this

project, we will read the current temperature and humidity from the weather report and

then display them using two gauges.

Aim: The aim of this project is to show how two variables can be displayed using two sep-

arate gauges.

Node-RED flow program: Figure 8.14 shows the flow program which consists of 5 nodes:

an inject node, an openweathermap node that reads the weather report, a function

node with 2 outputs that formats the data, and two gauge nodes, one to display the tem-

perature and the other one to display the humidity.

Chapter 8 • The dashboard palette

● 159

Figure 8.14 Flow program of the project

The steps are as follows:

• Create an inject node to repeat every second

• Create an openweathermap node and name it as Temp & Hum, enter your

API key and click Done

• Create a function node and enter the following statements into this node. Var-

iables T and H extract the temperature and humidity from the current weather

report:

T = msg.payload.tempc;

H = msg.payload.humidity;

var1 = {payload: T};

var2 = {payload: H};

return [var1, var2];

• Create a gauge node and set its Label to Temperature, Units to Degrees C, min

to 0 and max to 30, click Done

• Create another gauge node and set its Label to Humidity, Units to %, min to

0 and max to 100, click Done

• Join all the nodes as in Figure 8.14 and click Deploy

You should see both the temperature and the humidity displayed in two separate gauges

as in Figure 8.15.

Programming with Node-RED

● 160

Figure 8.15 Display both the temperature and humidity

8 .7 Project 37 – Using multiple gauges

Description: In this project, we will read the local weather forecast and display the fol-

lowing using gauges: minimum temperature, current temperature, maximum temperature,

humidity, and atmospheric pressure.

Aim: The aim of this project is to show how multiple gauges can be used in a Node-RED

program.

Node-RED flow program: Figure 8.16 shows the flow program which consists of 8 nodes.

Figure 8.16 Flow program of the project

The steps are as follows:

• Create an inject node to repeat every second as in the previous project

• Create an openweathermap node as in the previous project

• Create a function node with the following statements:

Chapter 8 • The dashboard palette

● 161

Tmin = msg.payload.temp_minc;

Tmax = msg.payload.temp_maxc;

T = msg.payload.tempc;

H = msg.payload.humidity;

P = msg.payload.pressure;

varTmin = {payload: Tmin};

varT = {payload: T};

varTmax = {payload: Tmax};

varH = {payload: H};

varP = {payload: P};

return [varTmin,varT,varTmax,varH,varP];

• Create 5 gauge nodes for the minimum temperature, current temperature,

maximum temperature, humidity, and atmospheric pressure. The configuration

of these nodes are as described in the previous project

• Join all the nodes and click Deploy.

• Display the Dashboard by entering (enter the IP address of your own Raspberry

Pi):

 http://192.168.1.202:1880/ui/

You should see the displays as in Figure 8.17 (note that the gauges are displayed vertically,

and they are cut and pasted horizontally in this figure)

Figure 8.17 Display the gauges

8 .8 Project 38 – Using a slider to change LED brightness

Description: In this example, an LED is connected to one of the Raspberry Pi ports. The

brightness of the LED is changed by using a slider node to change the duty cycle of the PWM

voltage waveform sent to the LED.

Aim: The aim of this project is to show how a slider node can be used.

Programming with Node-RED

● 162

Circuit diagram: The circuit diagram of the project is the same as in Figure 5.4 where the

LED is connected to port pin GPIO 2 through a current limiting resistor.

Node-RED flow program: Figure 8.18 shows the flow program which consists of 3 nodes:

a slider node to change the duty cycle of the PWM waveform (hence the brightness of the

LED), a rpio gpio out node to control the LED, and a gauge node to display the current

value of the duty cycle.

Figure 8.18 Flow program of the project

The steps are as follows:

• Create a slider node and name it as PWM Setting. Configure this node as

shown in Figure 8.19, click Done

Figure 8.19 Configure the slider node

• Create a rpio gpio out node and name it as LED. Set the pin to GPIO 2, and the

Type to PWM, click Done

• Create a gauge node with name LED Brightness and configure it as shown in

Figure 8.20, click Done

Chapter 8 • The dashboard palette

● 163

Figure 8.20 Configure the gauge node

• Join all the nodes and click Deploy.

• Display the Dashboard by entering (enter the IP address of your own Raspberry

Pi):

 http://192.168.1.202:1880/ui/

• Move the slider at the bottom part of the gauge (see Figure 8.21). You should see

the brightness of the LED changing as the slider is moved from 0% to 100% (it

is set to 41% in the figure).

Figure 8.21 Move the slider to change the LED brightness

8 .9 Project 39 – Using button nodes to control an LED

Description: In this example, an LED is connected to one of the Raspberry Pi ports as in

the previous project. The LED is turned ON and OFF using button nodes from the Dashboard

Aim: The aim of this project is to show how the Dashboard button nodes can be used

Programming with Node-RED

● 164

Circuit diagram: The circuit diagram of the project is the same as in Figure 5.4 where the

LED is connected to port pin GPIO 2 through a current limiting resistor.

Node-RED flow program: Figure 8.22 shows the flow program which consists of 3 nodes:

a button node to turn ON the LED, a button node to turn OFF the LED, and a rpi gpio out

button connected to the LED.

Figure 8.22 Flow program of the project

The steps are as follows:

• Create a button node and set its Label to ON, and the Payload to 1 so that

the output of the node becomes 1 when clicked in the Dashboard. Configure this

node as shown in Figure 8.23, click Done

Figure 8.23 Configure the button node

• Create another button node and set its Label to OFF, and the Payload to 0 so

that the output of the node becomes 0 when clicked in the Dashboard

• Create a rpi gpio out node and set the Pin to GPIO, Type to Digital output, and

initialize to 0

• Join all the nodes and click Deploy and display the Dashboard as shown in Figure

8.24. Click ON to turn ON the LED, and OFF to turn OFF the LED

Chapter 8 • The dashboard palette

● 165

Figure 8.24 Turn the LED ON and OFF

8 .10 Project 40 – Using switch and text nodes to control an LED

Description: In this example, an LED is connected to one of the Raspberry Pi ports as in

the previous project. The LED is turned ON and OFF by clicking a switch. Additionally, a text

is displayed on top of the switch to tell the user what to do

Aim: The aim of this project is to show how the Dashboard switch and text nodes can be

used in a project.

Circuit diagram: The circuit diagram of the project is the same as in Figure 5.4 where the

LED is connected to port GPIO 2 of Raspberry Pi.

Node-RED flow program: Figure 8.25 shows the flow program which consists of 3 nodes:

a switch node to turn ON/OFF the LED, a text node to display a message, and a rpi gpio

out button connected to the LED.

Figure 8.25 Flow program of the project

The steps are as follows:

• Create a switch node and set the On Payload to 1, and Off Payload to 0, as

shown in Figure 8.26, click Done

Programming with Node-RED

● 166

Figure 8.26 Configure the switch node

• Create a text node and set the Label to Click switch to turn ON/OFF

• Create a rpi gpio out node and set the Pin to GPIO, Type to Digital output, and

initialize to 0

• Join all the nodes and click Deploy and display the Dashboard as shown in Figure

8.27. Click the switch to turn ON/OFF the LED

Figure 8.27 Turn the LED ON and OFF

8 .11 Project 41 – Talking weather forecast

Description: This is an interesting talking weather project. In this project the local weather

report is received using the openweathermap node and the data is decoded and then

sent to the PC speakers using the Dashboard audio output node. As a result, you can

hear the weather forecast on your PC speakers. The weather forecast is repeated after 30

seconds when it stops.

Aim: The aim of this project is to show how the Dashboard audio output node can be

used in a project.

Node-RED flow program: Figure 8.28 shows the flow program which consists of 12

nodes: an inject node to start and repeat the weather forecast, an openweathermap

node to get the local weather forecast, a function node that extracts the various local

weather parameters and sends them to delay nodes, 7 delay nodes that insert delays

between the messages, a join node that joins the messages, and a Dashboard audio out

Chapter 8 • The dashboard palette

● 167

node that generates sound on the PC speakers.

Figure 8.28 Flow program of the project

The steps are as follows:

• Create an inject node and set the repeat interval to 54 seconds

• Create an openweathermap node and name it as Weather. Enter the API key,

the local city and country names (see Figure 8.29)

Figure 8.29 Configure the openweathermap node

• Create a function node with 7 outputs and name it as Decode (see Figure

8.30). Enter the following statements inside this node. Here, L is the location, T

is the local temperature in Degrees Centigrade, H is the local humidity in %, P is

the local atmospheric pressure in millibars, W is the local wind speed in metres

per second:

L = msg.payload.location;

T = msg.payload.tempc;

H = msg.payload.humidity;

P = msg.payload.pressure;

W = msg.payload.windspeed;

TT = {payload: "The temperature is "+T+" degrees centigrade"};

HH = {payload: "The humidity is "+H+" percent"};

PP = {payload: "The atmospheric pressure is "+P+" millibars"};

WW = {payload: "The wind speed is "+W+" metres per second"};

Programming with Node-RED

● 168

Head = {payload: "This is the weather forecast for " + L + " today"};

if(T < 15)

 MD = {payload: "The weather is very cold and you are advised to

wear a thick coat"};

else

 MD = {payload: "The weather is mild and no need for a thick

coat"};

Nxt = {payload: "The next weather forecast will be in 30 seconds

time"};

return [Head, TT, HH, PP, WW, MD, Nxt];

An example weather forecast spoken on the speakers is as follows:

This is the weather forecast for London today. The temperature is 7.1 degrees centigrade.

The humidity is 53%. The atmospheric pressure is 1020 millibars. The wind speed is 3.2

meters per second. The weather is very cold and you are advised to wear a thick coat. The

next weather forecast will be in 30 seconds time.

Figure 8.30 Configure node function

• Create a join node and configure it as shown in Figure 8.31

Chapter 8 • The dashboard palette

● 169

Figure 8.31 Configure node join

• Click the audio out node in the Dashboard palette, drag and drop in the work-

space. Configure this node as shown in Figure 8.32

Figure 8.32 Configure node audio out

• Join all the nodes as shown in Figure 8.28 and click Deploy.

• Start your Dashboard (enter your own IP address):

 http://192.168.1.202:1880/ui/

• Click the button of the inject node. You should hear the weather forecast re-

peating on your speakers. You might have to increase the volume control of your

speakers

8 .12 Configuring the dashboard

The appearance of the dashboard can easily be configured. Click Menu -> View -> Dash-

board and you will see the Dashboard window displayed at the right-hand side of the

screen. Click the Theme tab to set the style as Dark, Light, or Custom. You can also set

the Dashboard colour and the font.

8 .13 Summary

In this chapter, we have learned how to use some of the Dashboard nodes in projects.

In the next chapter, we will be using some of the network nodes to control the devices

attached to our Raspberry Pi from a smart mobile phone

Programming with Node-RED

● 170

Chapter 9 • Wi-Fi UDP/TCP Network-Based projects

9 .1 Overview

In the last chapter, we have learned how to use the Dashboard to create some interesting

projects. In this chapter, we will be creating Wi-Fi network-based projects.

UDP (User Datagram Protocol) and TCP (Transmission Control Protocol) are two of the most

commonly used communications protocols in Wi-Fi-based applications to send and receive

data packets over a network. TCP/IP is a reliable protocol that includes handshaking and

thus guarantees the delivery of packets to the required destination. UDP, on the other hand,

is not so reliable but is a fast protocol. Table 9.1 shows a comparison of the UDP and TCP/

IP type communications.

TCP/IP UDP

Connection-oriented protocol Connectionless protocol

Slow Fast

Highly reliable data transmission Not so reliable

Packets arranged in order No ordering of packets

20-byte header size 8-byte header size

Error checking and re-transmission No error checking

Data received acknowledgment No acknowledgment

Used in HTTP, HTTPS, FTP etc Used in DNS, DHCP, TFTP etc

Table 9.1 Comparison of UDP and TCP/IP

UDP and TCP/IP protocol based programs are server-client based where one node sends

data and the other node receives it and vice-versa. Data is transferred through ports where

the server and the clients must use the same port numbers.

Developing UDP and TCP based programs require good programming knowledge. Luckily,

Node-RED provides nodes that simplify this task considerably. In this Chapter, we will be

developing Node-RED based projects to establish communication between a Raspberry Pi

and smart mobile phone.

9 .2 Project 42 – Controlling an LED from a mobile phone –

UDP based communication

Description: In this example, an LED is connected to one of the Raspberry Pi ports as in

the previous Chapter, in Project 40. The LED is turned ON and OFF by sending messages

from a mobile phone using the UDP protocol. Valid commands are:

 ON turn ON the LED

 OFF turn OFF the LED

Chapter 9 • Wi-Fi UDP/TCP Network-Based projects

● 171

Aim: The aim of this project is to show how UDP based network communication can be

established using Node-RED.

Block diagram: Figure 9.1 shows the block diagram of the project.

Figure 9.1 Block diagram of the project

Circuit diagram: The circuit diagram of the project is the same as in Figure 5.4 where an

LED is connected to port GPIO 2 of Raspberry Pi.

Node-RED flow program: Figure 9.2 shows the flow program which consists of 3 nodes:

a udp in node to receive UDP packets from the mobile phone, a function node to format

the received data to control the LED, and a rpi gpio out node that is connected to the LED.

Figure 9.2 Flow program of the project

The steps are as follows:

• Create a udp in node and configure it as shown in Figure 9.3. Here, the Port

number is set to 5000, and Output is set to string, click Done

Figure 9.3 Configure node udp in

• Create a function node and name it as ON/OFF. Enter the following statements

into this function. Here, the output is set to 1 if the command is ON, and it is set

to 0 if the command is OFF. Click Done:

Programming with Node-RED

● 172

var md = msg.payload.substr(0, 3);

if(md == "ON")

 msg.payload = 1;

else if(md == "OFF")

 msg.payload = 0;

return msg;

• Create a rpi gpio out node and set the pin to GPIO 2, name the node as LED,

set it to digital output, and initialize the pin to 0. Click Done

• Join all 3 nodes and click Deploy.

The flow program is now complete and it waits to receive UDP commands from a mobile

phone to control the LEDs. In this project, an Android-based mobile is used for testing the

project. There are many free of charge UDP apps in the Play Store that can be used to send

and receive messages. The one used in this project is called UDP RECEIVE and SEND by

Wezzi Studios (v 3.3), as shown in Figure 9.4

Figure 9.4 UDP RECEIVE and SEND apps

The steps to use this app is as follows:

• Start the apps on your mobile phone

• Set the IP address to the address of your Raspberry Pi (in this project it is

192.168.1.202)

• Set the Port number to 5000

• Enter message ON and click SEND UDP MESSAGE as shown in Figure 9.5 and you

should see the LED to turn ON

Chapter 9 • Wi-Fi UDP/TCP Network-Based projects

● 173

Figure 9.5 Enter ON to turn ON the LED

Enter message OFF and click SEND UDP MESSAGE as shown in Figure 9.6 and you should

see the LED to turn OFF

Figure 9.6 Enter OFF to turn OFF the LED

Although in this project we controlled a simple LED, there is no reason why we cannot use

for example a relay so that electrical equipment (e.g. a boiler, a lamp, etc) can be controlled

remotely.

9 .3 Project 43 – Controlling multiple LEDs from a mobile phone –

UDP based communication

Description: In the previous project we controlled only one LED. There are applications

where we may want to control a number of devices remotely. In this project, we will be

controlling 3 LEDs from a mobile phone. Valid commands are:

 1=ON turn ON LED 1

 2=ON turn ON LED 2

 3=ON turn ON LED3

 1=OFF turn OFF LED 1

 2=OFF turn OFF LED 2

 3=OFF turn OFF LED 3

Aim: The aim of this project is to show how multiple devices can be controlled remotely

using a Node-RED UDP node.

Block diagram: Figure 9.7 shows the block diagram of the project.

Programming with Node-RED

● 174

Figure 9.7 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 9.8. The LEDs are

connected to GPIO ports GPIO 2, GPIO 3 and GPIO 4.

Figure 9.8 Circuit diagram of the project

Node-RED flow program: Figure 9.9 shows the flow program which consists of 5 nodes:

a udp in node to receive UDP packets from the mobile phone, a function node with 3 out-

puts to format the received data to control the 3 LEDs, and 3 rpi gpio out nodes that are

connected to the LEDs.

Figure 9.9 Flow program of the project

The steps are as follows:

• Create a udp in node as in the previous project

Create a function node with 3 outputs and enter the following

statements inside this node:

var no = msg.payload.substr(0, 1);

Chapter 9 • Wi-Fi UDP/TCP Network-Based projects

● 175

var md = msg.payload.substr(2, 3);

var var1 = null;

var var2 = null;

var var3 = null;

if(md == "ON")

{

 if(no == "1")

 {

 var1 = {payload: 1};

 }

 else if(no == "2")

 {

 var2 = {payload: 1};

 }

 else if(no == "3")

 {

 var3 = {payload: 1};

 }

 }

 else if(md == "OFF")

 {

 if(no == "1")

 {

 var1 = {payload: 0};

 }

 else if(no == "2")

 {

 var2 = {payload: 0};

 }

 else if(no == "3")

 {

 var3 = {payload: 0};

 }

 }

return [var1, var2, var3];

• Create 3 rpi gpio out nodes with the following pins:

LED1: GPIO 2

LED2: GPIO 3

LED3: GPIO 4

• Join all the nodes as in Figure 9.9 and click Deploy.

Programming with Node-RED

● 176

To test the project, you can use the apps UDP RECEIVE and SEND described in the pre-

vious project. For example, enter 2=ON and LED2 should turn ON, enter 2=OFF and the

same LED should turn OFF and so on.

As suggested in the previous project, the LEDs can be replaced with relays to control elec-

trical equipment remotely.

9 .4 Project 44 – Sending the temperature and humidity to the mobile phone –

UDP based communication

Description: In the previous projects we sent data from the mobile phone to Raspberry Pi.

In this project, we will be doing the opposite. i.e. we will be sending data from Raspberry

Pi to the mobile phone. The program will wait to receive the command weather from the

mobile phone. When this command is received, the local weather forecast will be received

and the temperature and humidity will be sent to the mobile phone using the UDP protocol.

The operation of the program is as follows:

Mobile phone: Sends command weather to Raspberry Pi

Raspberry Pi: Gets local weather report and sends temperature and humidity data to

mobile phone

Aim: The aim of this project is to show how data can be sent from Raspberry Pi to the

mobile phone using the UDP protocol.

Block diagram: Figure 9.10 shows the block diagram of the project.

Figure 9.10 Block diagram of the project

Node-RED flow program: Figure 9.11 shows the flow program which consists of 6 nodes:

a udp in node to receive UDP packets from the mobile phone, a function node which

checks when command weather is received, a switch node which activates the open-

weathermap node to get the local weather report, a function node to extract the local

temperature and humidity data from the weather report, and a udp out node to send the

temperature and humidity data to the mobile phone.

Chapter 9 • Wi-Fi UDP/TCP Network-Based projects

● 177

Figure 9.11 Flow program of the project

The steps are as follows:

• Create a udp in node as in the previous project and name it as Receive UDP

• Create a function node and name it as ON/OFF. Enter the following statement

inside this function will return 1 when command weather is received from the

UDP:

var md = msg.payload;

if(md == "weather")

 msg.payload = 1;

else

 msg.payload = 0;

return msg;

• Create a switch node that activates the openweathermap node when 1 is

received. Configure this node as shown in Figure 9.12. Notice that the second

output of this node is not used.

Figure 9.12 Configure node switch

• Create an openweathermap node and name it as Temp and Hum, enter the

API key, set your city (London in this project), and country (the UK in this pro-

ject)

• Create a function node and name it as Get T, H, enter the following statements

inside this function. This function extracts and returns the temperature and hu-

midity from the weather report:

T = "Temperature=" + msg.payload.tempc + "C";

H = "Humidity=" + msg.payload.humidity + "%";

Programming with Node-RED

● 178

D = T + " " + H;

msg.payload = D;

return msg;

• Create a udp out node, name it as SEND UDP, and configure it as shown in

Figure 9.13. Here, the IP address of your mobile phone must be entered into the

Address field (in this project this was 192.168.1.178)

Figure 9.13 Configure node udp out

• Join all the nodes as shown in Figure 9.11 and click Deploy

You can test the program using the apps UDP RECEIVE and SEND described in the previ-

ous projects. Enter the Port number as 5000. Then, enter the command weather and click

SEND UDP MESSAGE. The local temperature and humidity data will be displayed on your

mobile phone as shown in Figure 9.14.

Figure 9.14 Displaying the local temperature and humidity

9 .5 Project 45 – Controlling an LED from a mobile phone –

TCP based communication

Description: TCP is a reliable connection-based communication protocol . In this example,

an LED is connected to one of the Raspberry Pi ports as in the previous Chapter, in Project

42. The LED is turned ON and OFF by sending messages from a mobile phone using the TCP

protocol. Valid commands are:

Chapter 9 • Wi-Fi UDP/TCP Network-Based projects

● 179

 ON turn ON the LED

 OFF turn OFF the LED

Aim: The aim of this project is to show how TCP based reliable network communication can

be established using Node-RED.

Block diagram: The block diagram of the project is the same as in Figure 9.1.

Circuit diagram: The circuit diagram of the project is the same as in Figure 5.4 where an

LED is connected to port GPIO 2 of Raspberry Pi.

Node-RED flow program: Figure 9.15 shows the flow program which consists of 3 nodes:

a tcp in node to receive TCP packets from the mobile phone, a function node to format

the received data to control the LED, and a rpi gpio out node that is connected to the LED.

Figure 9.15 Flow program of the project

The steps are as follows:

• Create a tcp in node and configure it as shown in Figure 9.16. A TCP node can

be configured either as a server or as a client. When configured as a server, the

node listens for a connection on a specified port. When configured as a client,

the node connects to a specified remote IP address. In this example, the node is

configured as a server and the port number is set to 5000

Figure 9.16 Configure node tcp in

• Create a function node and name it as ON/OFF as in Project 41. Enter the fol-

lowing statements into this function.

var md = msg.payload.substr(0, 3);

if(md == "ON")

 msg.payload = 1;

else if(md == "OFF")

 msg.payload = 0;

return msg;

Programming with Node-RED

● 180

• Create a rpi gpio out node and set the pin to GPIO 2 as in Project 41

• Join all 3 nodes and click Deploy.

The flow program is now complete and it waits to connect to a TCP client. In this project,

an Android-based mobile is used for testing the project as before. There are many free of

charge TCP apps in the Play Store that can be used to send and receive TCP messages. The

one used in this project is called Simple TCP Socket Tester by Armando Jesus Gomez

Parra, as shown in Figure 9.17

Figure 9.17 Simple TCP Socket Tester apps

The steps to use this app are as follows:

• Start the apps on your mobile phone

• Click tab CLIENT

• Enter the IP address of your Raspberry Pi (in this project it is 192.168.1.202)

• Set the Port number to 5000

• Enter message ON and click SEND as shown in Figure 9.18 and you should see

the LED to turn ON

Figure 9.18 Enter ON to turn ON the LED

Chapter 9 • Wi-Fi UDP/TCP Network-Based projects

● 181

• Enter message OFF and click SEND as shown in Figure 9.19 and you should see

the LED to turn OFF

Figure 9.19 Enter OFF to turn OFF the LED

9 .6 Project 46 – Controlling Multiple LEDs From a Mobile Phone –

TCP Based Communication

Description: In this project, we will control 3 LEDs from a mobile phone as in Project 43,

but now we will be using the reliable connection-based TCP protocol.

As before, the valid commands are:

 1=ON turn ON LED 1

 2=ON turn ON LED 2

 3=ON turn ON LED3

 1=OFF turn OFF LED 1

 2=OFF turn OFF LED 2

 3=OFF turn OFF LED 3

Aim: The aim of this project is to show how multiple devices can be controlled remotely

using the TCP protocol.

Block diagram: The block diagram of the project is as shown in Figure 9.7.

Circuit diagram: The circuit diagram of the project is as shown in Figure 9.8, where the

LEDs are connected to GPIO ports GPIO 2, GPIO 3 and GPIO 4.

Node-RED flow program: Figure 9.20 shows the flow program which consists of 5 nodes:

a tcp in node to receive TCP packets from the mobile phone, a function node with 3 out-

puts to format the received data to control the 3 LEDs, and 3 rpi gpio out nodes that are

connected to the LEDs.

Programming with Node-RED

● 182

Figure 9.20 Flow program of the project

The steps are the same as in Project 43, but the udp in node must be replaced with the

tcp in node. The tcp in node must be configured as in Figure 9.16, and the function node

must be configured as in Project 43.

To test the project, you can use the apps Simple TCP Socket Tester described in the pre-

vious project. For example, enter 2=ON and LED2 should turn ON, enter 2=OFF and the

same LED should turn OFF and so on.

9 .7 Project 47 – Sending the temperature and humidity to the mobile phone –

TCP based communication

Description: This is very similar to Project 44 . In this project, we will be sending data from

Raspberry Pi to the mobile phone. The program will wait to receive the command weather

from the mobile phone. When this command is received, the local weather forecast will be

received and the temperature and humidity will be sent to the mobile phone using the TCP

protocol.

The operation of the program is as described in Project 44.

Aim: The aim of this project is to show how data can be sent from Raspberry Pi to the

mobile phone using the TCP protocol.

Block diagram: The block diagram of the project is as in Figure 9.10.

Node-RED flow program: Figure 9.21 shows the flow program which consists of 6 nodes:

a tcp in node to receive TCP packets from the mobile phone, a function node which

checks when command weather is received, a switch node which activates the open-

weathermap node to get the local weather report, a function node to extract the local

temperature and humidity data from the weather report, and a tcp out node to send the

temperature and humidity data to the mobile phone.

Figure 9.21 Flow program of the project

Chapter 9 • Wi-Fi UDP/TCP Network-Based projects

● 183

The steps are the same as in Project 43, except that here the TCP node is used instead of

the UDP node. The tcp in node at the beginning of the program should be configured as

shown in Figure 9.22.

Figure 9.22 Configure the tcp in node

The configuration of the remaining nodes is the same as in Project 43, except the tcp out

node which is the last node in the flow program. This node should be configured as shown

in Figure 9.23, where the Type is set to Reply to TCP.

Figure 9.23 Configure the tcp out node

After joining all the nodes as shown in Figure 9.21, click Deploy. You can now use the apps

Simple TCP Socket Tester to test the program. The steps are:

• Start the apps

• Click the CLIENT tab

• Enter the Raspberry Pi IP address

• Enter the port number as 5000

• Enter command weather and click SEND

The current local temperature and humidity values will be displayed on your mobile phone

as shown in Figure 9.24

Programming with Node-RED

● 184

Figure 9.24 Displaying the local temperature and humidity

9 .8 Project 48 – Chat program – Mobile phone to Raspberry Pi chat

Description: Chat programs are very common in almost all social media sites. Such pro-

grams enable two or more people to communicate in real-time. Chat messages are gener-

ally short to enable the participants to respond to each other quickly. Some chat programs

also offer video links where the participants can see each other while communicating by

text. Most of the chat programs are based on the UDP protocol.

In this project, we develop a simple chat program that enables a person using a mobile

phone to chat with another person using a Raspberry Pi. Node-RED Dashboard nodes are

used in this program to display the message sent between the two parties.

Aim: The aim of this project is to show how a simple chat program can be developed using

the UDP protocol on a Raspberry Pi.

Node-RED flow program: The development of a chat program using Node-RED is rela-

tively easy. What is required is a udp in node to receive the messages, a udp out node

to send out messages, and a tool to display the received and sent messages. Therefore, a

chat program is basically a two-way communication between two devices over the Internet.

Figure 9.25 shows the flow program of our chat program. The program consists of 4 nodes:

a udp in node to receive TCP messages from the mobile phone, a Dashboard text node to

display the received messages, a Dashboard text input node to receive the message to be

sent to the mobile phone, and a udp out node to send the message to the mobile phone.

Figure 9.25 Flow program of the project

Chapter 9 • Wi-Fi UDP/TCP Network-Based projects

● 185

The steps are as follows:

• Create a udp in node as shown in Figure 9.26

Figure 9.26 Configure the udp in node

• Create a Dashboard text node and configure as in Figure 9.27

Figure 9.27 Configure the text node

• Create a Dashboard text input form and configure as in Figure 9.28. Notice that

the Delay parameter is set to 0 so that messages are sent out only after the En-

ter key is pressed (otherwise each key will be sent out as soon as it is pressed)

Figure 9.28 Configure the text input node

• Create a udp out node and configure it as shown in Figure 9.29

Programming with Node-RED

● 186

Figure 9.29 Configure the udp out node

• Join the nodes as in Figure 9.25 and click Deploy. To test the program, use the

apps UDP RECEIVE and SEND as described earlier in this Chapter. Start the

Dashboard by entering the following at your web browser (replace the IP address

with your own Raspberry Pi IP address). Example output on the Dashboard is

shown in Figure 9.30. The corresponding display on the mobile phone is shown

in Figure 9.31:

 http://192.168.1.202:1880/ui/

Figure 9.30 Display on the Dashboard

Figure 9.31 Display on the mobile phone

Chapter 9 • Wi-Fi UDP/TCP Network-Based projects

● 187

Modified program flow

In the program flow in Figure 9.25, the message sent to the mobile phone (Msg To Send:

in Figure 9.30) remains in the text box. As a result, in order to send a new message, we

have to delete the existing message. This can be changed so that the message is delet-

ed automatically after 5 seconds of pressing the Enter key. The modified flow program is

shown in Figure 9.32.

Figure 9.32 Modified flow program

In this modified program, a 5 seconds delay node is inserted at the output of the text.

Also, a change node is inserted with no data in it (see Figure 9.33). The result is that the

message is deleted after 5 seconds of pressing the Enter key so that a new message can

be written.

Figure 9.33 Create an empty change node

9 .9 Project 49 – Using the ping

Description: Ping is a network utility program used to test the reachability of a computer

on a network. Ping measures the round trip time for messages sent from a computer to

a destination computer. Basically, a message is sent out and the time for the message

to echo back is measured and displayed. Ping works if both computers are available on

a network (e.g. Internet or Wi-Fi). In this project, we will send a ping message from our

Raspberry Pi to our mobile phone and display the round trip time.

Aim: The aim of this project is to show how the ping utility can be used in a Node-RED

application.

Node-RED flow program: The network group of nodes includes a pin node that can be

used in an application. The easiest setup is to enter the IP address of the destination com-

puter in node ping and connect a debug node to the output of this node. This way, the ping

return data will be displayed in the Debug window. In this project, we will use a Dashboard

text node to display the ping return data dynamically. Figure 9.34 shows the flow program

of the project.

Programming with Node-RED

● 188

Figure 9.34 Flow program of the project

The steps are as follows:

• Create a ping node by clicking, dragging and dropping it from the network pal-

ette. Double click to configure this node as shown in Figure 9.35. Here, the node

is configured to output every 5 seconds. The IP address of the author's mobile

phone is given as the Target (you should choose your own IP address). Note that

you can also enter a valid web address, e.g. www.bbc.co.uk

Figure 9.35 Configure the ping node

• Create a text node by clicking, dragging and dropping it from the Dashboard.

Configure this node as shown in Figure 9.36

Figure 9.36 Configure the text node

• Join the two nodes and click Deploy. Start your dashboard. You should see the

round trip time as shown in Figure 9.37

Figure 9.37 Example display of the round trip time

Chapter 9 • Wi-Fi UDP/TCP Network-Based projects

● 189

9 .10 Summary

In this chapter, we have learned how to use UDP and TCP nodes in Node-RED based appli-

cations to communicate with a mobile phone.

In the next chapter, we will be looking at storage nodes and learn how we can store data

in a file.

Programming with Node-RED

● 190

Chapter 10 • Storage Nodes

10 .1 Overview

In the last chapter, we have learned how to use Node-RED nodes for UDP and TCP based

network communication. In this chapter, we will be looking at the important topic of how to

store data in files on a Raspberry Pi SD card, using Node-RED nodes.

Data on Raspberry Pi is normally stored on the SD card which is also loaded with the oper-

ating system. The default user folder is /home/pi. In this chapter, we will be creating files

in the default directory and then store data in these files.

10 .2 Project 50 – Storing timestamped temperature and

humidity data in a file

Description: In this project, we will be reading the local weather report every minute us-

ing the openweathermap node and then extract the temperature and the humidity data.

This data will then be stored in a file called temphum .txt on the Raspberry Pi SD card

together with the time that the data was extracted.

Node-RED flow program: Figure 10.1 shows the flow program which consists of 5 nodes:

an inject node which repeats every minute, an openweathermap node which gets the

local weather report, a function node which formats the data, a change node which spec-

ifies the name of the file, and a file node which stores (appends) the data into the specified

file.

Figure 10.1 Flow program of the project

The steps are as follows:

• Create an inject node, name it as Click, and set it to repeat every minute

• Create an openweathermap node and name it as Weather. Enter the API key

• Create a function node, name it as Format, and enter the following statements

inside this node. Variable first is initialized to 0 as a context variable. This is

done so that we can insert a heading to the data the first time the function is

run. Thereon, the first is non-zero and the actual data is stored in the file. The

local time is extracted and stored in a variable called Tim which is stored in the

file with every data item.

Chapter 10 • Storage Nodes

● 191

var first = context.get('first') || 0;

if(first == "0")

{

 context.set('first',1);

 All = " Time Temperature Humidity";

}

var LocalTime = new Date();

var Tim = LocalTime.toLocaleTimeString();

Temp = msg.payload.tempc;

Hum = msg.payload.humidity;

if(first != "0")

 All = Tim + " " + Temp + "C " + Hum + "%";

msg.payload = All

return msg;

• Create a change node and set msg .filename to the name of the file where we

want the data to be stored, i.e. /home/pi/temphum.txt. Note that we could have

set the filename in the node file as well. If msg.filename is used then the file will

be closed after every write. Configure this node as shown in Figure 10.2

Figure 10.2 Configure node change

• Create a file node and configure it as shown in Figure 10.3. Notice that the Ac-

tion is set to Append to file, and a new line is to be added after each record

Figure 10.3 Configure node file

• Join all the nodes as shown in Figure 10.1, and click Deploy.

• Click the button of the inject node. A new file called temphum.txt will be created

in folder /home/pi and the local temperature and humidity data will be stored in

the file every minute.

Programming with Node-RED

● 192

Figure 10.4 shows the files (using command ls) in the default user folder /home/pi. Notice

that file temphum.txt is in this folder. The contents of file temphum.txt (command cat

temphum .txt) are shown in Figure 10.5.

Figure 10.4 Files in folder /home/pi]

Figure 10.5 Contents of file temphum.txt

10 .3 Project 51 – Reading contents of a file

Description: In the previous project we have seen how to store data in a file. In this pro-

ject, we will read the contents of the file that we created in the previous project.

Node-RED flow program: Node file in is used to read the contents of a file either as a

string or as a binary buffer. Figure 10.6 shows the flow program which consists of 3 nodes:

an inject node, a file in node to read the contents of the file, and a debug node that dis-

plays the contents of the file.

Figure 10.6 Flow program of the project

The steps are as follows:

• Create an inject node, name it as Click

• Create a file in node and configure it as shown in Figure 10.7. The Filename is

set to /home/pi/temphum.txt, and the Output is set to a string

Chapter 10 • Storage Nodes

● 193

Figure 10.7 Configure the file in node

• Create a debug node and set its Output to debug window. Join the nodes and

click Deploy

• Click the button of the inject node. You should see the contents of the file dis-

played in the Debug window as shown in Figure 10.8. Notice here that all the

contents of the file are displayed and the text is not aligned properly.

Figure 10.8 Contents of the file displayed in the Debug window

• Now, double click on the debug node and change the Output to the system

console. Click the button of the inject node. The system console is the Raspberry

Pi command mode display and you should see that the contents of the file are

displayed correctly as shown in Figure 10.9

Figure 10.9 Displaying the file on the system console

Programming with Node-RED

● 194

• The file can be read in different formats. Double click on node file in and change

the Output to a msg per line. Also, change the debug node to output to the

Debug window. Now, click the button of the inject node and you should see the

contents of the file displayed on the Debug window as shown in Figure 10.10

Figure 10.10 Displaying the file contents in msg per line mode

• The file can also be displayed in binary format by setting the Output of node file

into a single Buffer object. In this mode, the output is shown in Figure 10.11.

This display may not seem to have much meaning. Click on the numbers and you

should see the contents of the file displayed correctly as shown in Figure 10.12.

Figure 10.11 Displaying the file contents in single Buffer object mode

Chapter 10 • Storage Nodes

● 195

Figure 10.12 Displaying the file correctly in the Debug window

In summary, reading a file has four options:

utf-8 string: the entire file is converted into a string and read and presented as a

text string, and the file cannot be processed before it is completed. Here, the data

must contain text data.

one msg per line: the data is read and presented as lines of text, and the file can

be processed while reading it

a single Buffer object: the data is read as sequence of raw bytes and the com-

plete data is read, it cannot be processed before it is completed

a stream of buffers: the data is read and presented as a sequence of raw bytes,

and it can be processed while reading it

We can easily convert the binary data into string format using function toString(). For ex-

ample, in the following function code, we can set the file in format to a stream of buffers

and convert the data into string format:

var data = msg.payload;

srng = data.toString();

msg.payload = srng;

return msg;

10 .4 Project 52 – Reading a file line by line

Description: In the previous project we have seen how to read the contents of a file us-

ing the file in node. The problem was that the entire contents of the file were read and

therefore it was not possible to process the file while it was being read. In this project, we

will read the file created in Project 50 and extract and display the temperature field only.

Node-RED flow program: Node file in is used to read the contents of the file as in the

Programming with Node-RED

● 196

previous project. Figure 10.13 shows the flow program which consists of 5 nodes: an inject

node, a file in node to read the contents of the file, a delay node to output one message

per second, a function node to extract the temperature field of the data, and a debug

node that displays the extracted data in the Debug window.

Figure 10.13 Flow program of the project

The steps are as follows:

• Create an inject node, name it as Click

• Create a file in node and set the Filename to /home/pi/temphum.txt, and the

Output to a msg per line

• Create a delay node set its Action to Rate limit with 1 msg per second. Config-

ure this node as shown in Figure 10.14

Figure 10.14 Configure the delay node

• Create a function node named Temp Field and enter the following statements

inside this node. This node will extract and output the temperature field of the

data:

T = msg.payload.substr(12,4);

msg.payload = T;

return msg;

• Create a debug node to display the output in the Debug window

• Join the nodes and click Deploy. Click the button of the inject node. You should

see the temperature displayed in the Debug window as shown in Figure 10.15

Chapter 10 • Storage Nodes

● 197

Figure 10.15 Displaying the temperature

10 .5 Summary

Files in Raspberry Pi are normally stored on the SD card that also stores the operating

system. In this chapter, we have learned how to use file nodes to write to and also read

from files.

In the next chapter, we will be looking at the nodes that are used for serial communication,

and develop projects that use serial communication.

Programming with Node-RED

● 198

Chapter 11 • Serial communication

11 .1 Overview

In the last chapter, we have learned how to write and read from files using Node-RED, and

we have developed several projects on this topic. This chapter is about serial communica-

tion where we will learn how two devices can communicate using serial communication.

Serial communication has been one of the earliest methods of establishing communication

between two devices. Nowadays, this type of communication is not used much, especially

after the invention of USB.

In its simplest form, serial communication between two devices requires only 3 wires: TX

(or TXD, transmit), RX (or RXD, receive), and GND (ground). Figure 11.1 shows the sim-

plest form of serial communication between two devices where the TX and RX lines are

crossed between the devices.

Figure 11.1 Serial communication lines

In serial communication, data bytes are broken down into bits and these bits are sent and

received with the correct timings. Data is sent or received as frames where a frame consists

of the following bits:

• Start bit

• 7 or 8 data bits

• Optional parity bit

• Stop bit

The parity bit is used for one-bit error checking and this bit is not used very often. Data is

normally sent with 8 bits. Therefore, a data frame consists of 10 bits, where a device that

wishes to communicate with another device sends out a start bit, followed by 8 data bits,

and a stop bit.

The bit timing, also known as the Baud rate, is very important in serial communication and

both sides must have exactly the same Baud rates. Typical Baud rates are 9600, 19200,

38400, and so on. The Baud rate effectively determines the number of bytes that can be

sent in a second. For example, at 9600 Baud we can send or receive 960 bytes (or charac-

ters) per second.

Older serial communications devices used ±12V as the signal levels, where -12 was known

as Mark and +12 as Space. These signal levels were specified by the standard RS232 pro-

tocol. Two types of connectors were used in RS232 applications: 25-way D-type connector

(you can see these connectors on very old computers), and 9-way D-type connector (usu-

ally found on old laptops). Nowadays, most microcontrollers operate with either +5V or

Chapter 11 • Serial communication

● 199

+3.3V. Therefore, serial communication signal levels have changed to be compatible with

the present-day microcontroller inputs. Sometimes the new levels are also called to be TTL

compatible. It is important to be careful and not to connect an RS232 based line to a mi-

crocontroller input as the high voltage will damage the microcontroller circuitry.

In this chapter, we will be using the serial in and serial out nodes provided by Node-RED to

communicate with the external world over the Raspberry Pi serial port.

11 .2 Project 53 – Communicating with Arduino over serial line

Description: In this project, we use an Arduino Uno and a Raspberry Pi. An analog tem-

perature sensor is connected to one of the analog inputs of the Arduino. The Arduino reads

the ambient temperature every 5 seconds and sends it to the Raspberry Pi over the serial

line. The Raspberry Pi reads the temperature from the serial line and displays it in the De-

bug window.

Aim: The aim of this project is to show how the serial communication can be established

using the Node-RED serial in node.

Background information: The Arduino computer can be programmed to use either its

dedicated hardware serial communication port (GPIO port pins 0 and 1) or any of its port

pins can be used in what is known as software serial communication. In software serial

communication, all the timing is done in software. The only disadvantage of using software

instead of hardware in serial communication is that the maximum Baud rate is rather lim-

ited. In this application, we shall be using 9600 as the Baud rate, and there are no timing

problems at this low Baud rate.

Raspberry Pi computers have two built-in hardware UARTs: a PL011 and a mini UART. These

are implemented using different hardware blocks, so they have slightly different charac-

teristics. Since both are 3.3V devices, extra care must be taken when connecting to other

serial communication lines. On Raspberry Pis which are equipped with Wireless/Bluetooth

modules (e.g. Raspberry Pi 3, Zero W, 4, etc), the PL011 UART is by default connected to

the Bluetooth module, while the mini UART is the primary UART with the Linux console on

it. In all other models, the PL011 is used as the primary UART. By default, /dev/ttyS0 refers

to the mini UART and /dev/ttAMA0 refers to the PL011. The Linux console uses the primary

UART which depends on the Raspberry Pi model used. Also, if enabled, /dev/serial0 refers

to the primary UART (if enabled), and if enabled, /dev/serial1 refers to the secondary UART

By default, the primary UART (serial0) is assigned to the Linux console. Using the serial port

for other purposes requires this default configuration to be changed. On startup, systemd

checks the Linux kernel command line for any console entries and will use the console de-

fined therein. To stop this behaviour, the serial console setting needs to be removed from

the command line. This is easily done by using the raspi-config utility by selecting option

5 (Interfacing Options) and then P6 (Serial) and select No. Exit raspi-config and re-start

your Raspberry Pi. You should now be able to access the serial port (Don't forget to re-en-

able the console setting after you finish).

Programming with Node-RED

● 200

In Raspberry Pi 3 and 4, the serial port (/dev/ttyS0) is routed to two pins GPIO 14 (TXD)

and GPIO 15 (RXD) on the header. Models earlier than model 3 uses this port for Bluetooth.

Instead, a serial port is created in software (/dev/ttyS0).

We can easily search for the available serial ports by entering the following console com-

mand:

dmesg | grep tty

The last line in the output below indicates that the console is enabled on serial port ttyS0.

console [ttyS0] enabled

In this book, we are using Raspberry Pi 4. The serial port is: /dev/ttyS0. If you are using

earlier than model 3, use the serial port named: /dev/ttyAMA0

Block diagram: Figure 11.2 shows the block diagram of the project, where the tempera-

ture sensor is connected to the Arduino Uno.

Figure 11.2 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 11.3. In this project,

an LM35DZ type analog temperature chip is used and its output pin is connected to analog

input A0 of the Arduino Uno. This is a 3-pin device operating with +5V, and its pin configu-

ration is shown in Figure 11.3. The output voltage of LM35DZ is directly proportional to the

temperature and is given by the relationship:

T = Vo / 10

Where, T is the measured temperature in degrees Centigrade, and Vo is the output voltage

of the sensor in millivolts. For example, if the output voltage is 200mV, then the measured

voltage is 20ºC and so on.

Figure 11.3 Circuit diagram of the project

Chapter 11 • Serial communication

● 201

Figure 11.4 LM35DZ pin configuration

The serial connection between the Arduino Uno and Raspberry Pi are as follows. Notice here

that GPIO pins 2 and 3 of the Arduino Uno are used for serial communication (pin 2 for RX

and pin 3 for TX):

Raspberry Pi Raspberry Pi Physical Pin No Arduino Uno

GPIO 14 (TXD) – Not used 8 -

GPIO 15 (RXD) 10 3

Ground 6 GND

Raspberry Pi TXD output is not used in this project. The digital output high voltage of the

Arduino Uno is +5V and as a result, we cannot connect the TX output of Arduino Uno di-

rectly to the Raspberry Pi RXD input. A resistive potential divider circuit is used to lower the

voltage from +5V to +3.3V as shown in Figure 11.3.

Arduino Uno Program: The Arduino program (File: ArduinoTemp) listing is shown in

Figure 11.5. At the beginning of the program, port pins 2 (not used) and 3 are defined as

the software serial communication port lines. Inside the setup routine, the Baud rate is set

to 9600. The remainder of the program runs in the main program loop. Here, analog data

is received from port A0, is stored in variable sensor as a digital value. This value is then

converted into physical voltage in millivolts and stored in floating-point variable mV. The

temperature is then calculated by dividing this number by 10 and storing in floating-point

variable T. Built-in function dtostrf() is used to convert the floating-point value to a string

so that it can be displayed by the Raspberry Pi. This function has the following parameters:

dtostrf(floating variable, min string width, number of vars after dec point,

character buffer)

After converting the temperature value into a string, it is sent through the serial line TX to

the Raspberry Pi every 5 seconds. The data is sent in the following format:

T=nn.mmC

Programming with Node-RED

● 202

/*---

 * This program received the ambient temperature from a

 * LM35DZ tye analog temperature sensor connected to pin

 * A0 of the Arduino Uno. The temperature is sent to

 * port 3 in serial form at 9600 Baud

 *

 * File: ArduinoTemp

 ---/

#include <SoftwareSerial.h>

SoftwareSerial MySerial(2, 3); // RX, TX

float mV, T;

char Temp[10];

void setup()

{

 MySerial.begin(9600);

}

void loop()

{

 int sensor = analogRead(A0); // Read temperature

 mV = sensor * 5000.0 / 1024.0; // in mV

 T = mV / 10.0; // in Centigrade

 dtostrf(T, 4,2,Temp); // Convert to string

 MySerial.print("T="); // Display T=

 MySerial.print(Temp); // Display Value

 MySerial.println("C"); // Display C

 delay(5000); // Wait 5 secs

}

Figure 11.5 Arduino Uno program

We can use the Arduino IDE Serial Monitor to confirm that the program is working as ex-

pected, and the temperature is converted into Degrees Centigrade correctly.

Node-RED flow program: Remove the serial console setting as described earlier in this

Chapter. Figure 11.6 shows the flow program which consists of just 2 nodes: a serial in

node which receives serial data, and a debug node that is used to display the received

data.

Figure 11.6 Flow program of the project

Chapter 11 • Serial communication

● 203

The steps are as follows:

• Create a serial in node and configure as shown in Figure 11.7 (Click the pen

after Serial Port), click Update and Done. The Serial Port is set to /dev/ttyS0,

Baud rate is set to 9600, 8 data bits, no parity, and 1 stop bit (these settings

must be same as the settings of the transmitting side)

Figure 11.7 Configure the node serial in

• Create a debug node, join the nodes and click Deploy. You should see the tem-

perature received from the Arduino Uno displayed in the Debug window as shown

in Figure 11.8

Figure 11.8 Temperature displayed in the Debug window

Modified flow program 1

We can modify the flow program given in Figure 11.6 so that the received temperature is

displayed using a Dashboard text node. The new flow program is shown in Figure 11.9

Figure 11.9 Modified flow program

Programming with Node-RED

● 204

Set the Label field of your text node to string Temperature: You should start your Dash-

board. Figure 11.10 shows the temperature displayed with the text node.

Figure 11.10 Displaying the temperature using a text node

Modified flow program 2

We can modify the flow program again so that the received temperature is spoken on the

PC speakers by using a Dashboard audio out node. The new flow program is shown in Fig-

ure 11.11.

Figure 11.11 Modified flow program

The steps are as follows:

• Create a serial in node as before

• Create a function node and enter the following statements inside this function.

If for example, the temperature is 20.00ºC, then this function will send the text

The temperature now is twenty point zero degrees centigrade to node

audio out so that it can be heard on the PC speakers

var T = msg.payload.substr(2, 5);

md = {payload: "The temperature now is " + T + "Degrees Centigrade"};

return [md];

• Create an audio out node and tick box: Play audio when window not in focus

• Join the nodes, click Deploy and start your Dashboard. You should hear the cur-

rent temperature spoken through your PC speakers

11 .3 Project 54 – Receiving serial data – Receiving GPS data

Description: In this project, a GPS receiver module is connected to the serial input of the

Raspberry Pi. The serial in node is used to receive and display the GPS sentences in the

Debug window.

Aim: The aim of this project is to show how serial data can be received using node serial

in.

Chapter 11 • Serial communication

● 205

Background information: GPS receivers receive geographical data from the GPS satel-

lites and they provide accurate information about the position of the user on Earth. These

satellites circle the Earth at an altitude of about 20,000 km and complete two full orbits

every day. In order for a receiver to determine its position, it is necessary for the receiver

to communicate with at least 3 satellites. Therefore, if the receiver does not have a clear

view of the sky then it may not be possible to determine its position on Earth. In some

applications, external antennas are used so that even weak signals can be received from

the GPS satellites.

The data sent out from a GPS receiver is in text format and is known as the NMEA Sentenc-

es. Each NMEA sentence starts with a $ character and the values in a sentence are separat-

ed by commas. Some of the NMEA sentences returned by a GPS receiver are given below:

$GPGLL: This sentence returns the local geographical latitude and longitude

$GPRMC: This sentence returns the local geographical latitude and longitude,

speed, track angle, date, time, and magnetic variation.

$GPVTG: This sentence true track, magnetic track, and the ground speed.

$GGGA: This sentence returns the local geographical latitude and longitude, time,

fix quality, number of satellites being tracked, horizontal dilution of position, alti-

tude, the height of geoid, and DGPS data

$GPGSV: There are 4 sentences with this heading. These sentences return the

number of satellites in view, satellite number, elevation, azimuth, and SNR.

In this project, the GPS Click board (www.mikroe.com) is used. This is a small GPS receiver

(see Figure 11.12) which is based on the LEA-6S type GPS. This board operates with +3.3V

and provides two types of outputs: I2C or serial output. In this project, the default serial

output is used which operates at 9600 Baud rate. An external dynamic antenna can be at-

tached to the board in order to improve its reception for indoor use or in for use in places

where there may not be a clear view of the sky.

Programming with Node-RED

● 206

Figure 11.12 GPS Click board

Figure 11.13 shows the complete list of the NMEA sentences output from the GPS Click

board every second.

Figure 11.13 NMEA sentences output from the GPS Click board

GPS Click board is a 2x8 pin dual-in-line module and it has the following pin configuration

(pin 1 is the top left pin of the module):

1: No connection 16: No connection

2: Reset 15: No connection

3: No connection 14: TX

4: No connection 13: RX

5: No connection 12: SCL

6: No connection 11: SDA

7: +3.3V 10: No connection

8: GND 9: GND

Chapter 11 • Serial communication

● 207

In serial operation, only the following pins are required: +3.3V, GND, TX. In this project,

an external dynamic antenna is attached to the GPS Click board as it was used indoors.

Circuit diagram: Figure 11.14 shows the circuit diagram of the project. The TX serial out-

put pin of the GPS Click board is connected to RXD input of the Raspberry Pi. Since both TX

and RXD pins operate with +3.3V, there is no need to lower the voltage for the Raspberry

Pi input.

Figure 11.14 Circuit diagram of the project

Node-RED flow program: Remove the serial console setting as described earlier in this

Chapter. Figure 11.15 shows the flow program which consists of just 2 nodes: a serial in

node which receives serial GPS data, and a debug node that is used to display the received

data.

Figure 11.15 Flow program of the project

Configure the serial in node and the debug node exactly as in the previous project. You

should see the NMEA sentences displayed in the Debug window as shown in Figure 11.16.

Notice that only some of the NMEA sentences are shown in this Figure.

Programming with Node-RED

● 208

Figure 11.16 Displaying the NMEA sentences in the Debug window

$GPGLL is one of the commonly used NMEA sentences. This sentence is displayed in Figure

11.16 as follows:

$GPGLL,5127.37032,N,00003.12782,E,221918.00,A,A*61

The fields in this sentence can be decoded as follows:

GLL Geographic position, latitude and longitude

5127.37032 Latitude 51 deg, 27.3702 min. North

00003.12782 Longitude 0 deg, 3.12782 min. East

221918 Fix taken at 22L19L18 UTC

A Data active (or V for void)

*61 checksum data

Notice that the fields are separated by commas. The validity of the data is shown by letters

A or V in the data, where A shows that the data is valid, and V indicates that the data is

not valid.

11 .4 Project 55 – Receiving GPS data – Extracting the latitude and longitude

Description: This project is similar to the previous project, but here the latitude, its direc-

tion, longitude, and its direction are extracted and displayed in the Debug window.

Aim: The aim of this project is to show how the latitude and longitude values can be

extracted from an NMEA sentence. The $GPGLLsentence is used in this example which

includes both the latitude and longitude information.

Chapter 11 • Serial communication

● 209

Circuit diagram: The circuit diagram of the project is the same as in Figure 11.14.

Node-RED flow program: Remove the serial console setting as described earlier in this

Chapter. Figure 11.17 shows the flow program which consists of 4 nodes: a serial in node

which receives serial GPS data, a switch node to extract only the $GPGLL sentence from

the NMEA sentences, a function node to extract the latitude and longitude from the $GP-

GLL, and a debug node which is used to display the data in the Debug window.

Figure 11.17 Flow program of the project

The steps are as follows:

• Configure the serial in node as before

• Create a switch node and configure it a shown in Figure 11.18. This node ex-

tracts only the $GPGLL sentences

Figure 11.18 Configure the switch node

• Creata a function node and name it as Lat/Lon. Enter the following statements

inside this node. This node extracts the latitude and longitude information and

their directions:

var nmea=msg.payload.split(",");

var lat=nmea[1];

var latdir = nmea[2];

var lon = nmea[3];

var londir = nmea[4];

T = "Lat="+lat+latdir+" Lon="+lon+londir;

msg.payload=T;

return msg;

• Create a debug node to display the result in the Debug window. Click Deploy.

You should see the latitude, longitude, and directions displayed as shown in Fig-

ure 11.19.

Programming with Node-RED

● 210

Figure 11.19 Displaying the latitude and longitude information

Modified program

The flow program given in Figure 11.17 displays the latitude and longitude as degrees

and minutes. For example, Lat = 5127.3610N means that the latitude is 51 degrees and

27.3610 minutes and it is in the Northern Hemisphere. Similarly, Lon = 00003.12748E

means that the longitude is 0 degrees 03.12748 minutes east of Greenwich (where the zero

degrees longitude is). In most applications, the latitude and longitude are represented as

decimal degrees and if the point is in the Southern Hemisphere (i.e. direction is S), then a

negative sign is added to the value. Similarly, if the point is on the west side of Greenwich

(i.e. direction is W), then a negative sign is added to the value.

In this section, we will modify the displayed values so that they are displayed as degrees

with the correct signs.

The process is as follows. Consider the example where the Lat = 5127.3610S:

• Take the integer part of the value and divide by 100 to give 51

• Take away 51x100 from the original value to find the minutes value, 5127.3610

– 51x100 = 27.361

• Divide the minutes' value by 60 to convert to degrees, 27.361/60 = 0.45601

• Add to the degrees value found earlier, 51 + 0.45601 = 51.45601 degrees

• Since the direction is W, insert a negative sign, -51.45601 degrees

Node-RED flow program: The flow program is the same as in Figure 11.17, where only

the contents of the function node changes. The flow program is repeated in Figure 11.20

below so that the exported flow program can be loaded from Figure 11.20.

Figure 11.20 Flow program of the project

Chapter 11 • Serial communication

● 211

Enter the following statements inside the function node:

var nmea=msg.payload.split(",");

var lat=nmea[1];

var latdir = nmea[2];

var lon = nmea[3];

var londir = nmea[4];

//

// Process Latitude

//

var Lat = Number(lat);

var Latint = parseInt((parseInt(Lat)) / 100);

var mins = Lat - 100*Latint;

var degrees = mins / 60;

var LatValue = (Latint + degrees).toFixed(5, 2);

if(latdir == "S")

 LatValue = -LatValue;

//

// Process Longitude

//

var Lon = Number(lon);

var Lonint = parseInt((parseInt(Lon)) / 100);

mins = Lon - 100*Lonint;

degrees = mins / 60;

var LonValue = (Lonint + degrees).toFixed(5, 3);

if(londir == "W")

 LonValue = -LonValue;

msg.payload="Lat="+LatValue+" Lon="+LonValue;

return msg;

Figure 11.21 shows the latitude and longitude in degree format.

Figure 11.21 Displaying latitude and longitude in degree format

Programming with Node-RED

● 212

11 .5 Project 56 – Displaying our location on a map

Description: In this project we receive and decode the GPS coordinates as in Project 55

with the latitude and longitude converted into degrees. We then plot our location on a map

using the Dashboard node called worldmap.

Aim: The aim of this project is to show how our location can be plotted on a map using a

node called worldmap.

Circuit diagram: The circuit diagram of the project is the same as in Figure 11.14, where

a GPC Click board receives our position data and passes it to the Raspberry Pi.

Node-RED flow program: In this project, we use a Dashboard node called worldmap.

You must install this node in your Node-RED before it can be used. The steps are:

• Click Menu -> Manage palette, and click Install

• Enter node-red-contrib-web-worldmap and click install

• When the installation is complete, you should see the node worldmap in your

Node Palette.

The flow program of this project is shown in Figure 11.22. It consists of 4 nodes: a serial in

node to receive the GPS data in real-time, a switch node to extract the $GPGLL sentences,

a function node to extract the latitude and longitude in degrees format, and a worldmap

node to show our position on a map.

Figure 11.22 Flow program of the project

The steps to develop the flow program are:

• Create a serial in node as before

• Create a switch node as in Figure 11.18

• Create a function node, name it as Lat/Lon and enter teh following statements

inside this node. Notice how the latitude and longitude should be specified by

variable msg .payload:

var nmea=msg.payload.split(",");

var lat=nmea[1];

var latdir = nmea[2];

Chapter 11 • Serial communication

● 213

var lon = nmea[3];

var londir = nmea[4];

//

// Process Latitude

//

var Lat = Number(lat);

var Latint = parseInt((parseInt(Lat)) / 100);

var mins = Lat - 100*Latint;

var degrees = mins / 60;

var LatValue = (Latint + degrees).toFixed(5, 2);

if(latdir == "S")

 LatValue = -LatValue;

//

// Process Longitude

//

var Lon = Number(lon);

var Lonint = parseInt((parseInt(Lon)) / 100);

mins = Lon - 100*Lonint;

degrees = mins / 60;

var LonValue = (Lonint + degrees).toFixed(5, 3);

if(londir == "W")

 LonValue = -LonValue;

msg.payload = {"name":"Home", "lat":LatValue, "lon":LonValue};

return msg;

• Create a worldmap node and configure it as shown in Figure 11.23. Make the

following settings (assuming you are in the UK):

Base map: UK OS Opendata

Zoom: 16 (this can be changed)

Lock map: False

Auto-pan: Enable

Coordinates: Degrees

Lock Zoom: False

Right Click: Disable

Graticule: Visible

By setting Auto-pan to Enable, we enabling panning of the map. By setting the

Lock Zoom to False we can change the zoom level of the map by clicking the +

and – signs on the top left-hand side of the map. You should try changing these

parameters and see their effects.

Programming with Node-RED

● 214

Figure 11.23 Configure node worldmap

• Join all the nodes as in Figure 11.22 and click Deploy.

• Start the Dashboard by entering your own IP:

 http://192.168.1.202:1880/ui/

• You should see your position marked on the map as shown in figure 11.24. Notice

that here the map is zoomed to show the street level.

Figure 11.24 Your position shown on the map

Chapter 11 • Serial communication

● 215

You can change the zoom level easily. Figure 11.25 shows the map after zooming out.

Figure 11.25 Zooming out the map

You can also change the Base map easily by double-clicking on the worldmap node. Figure

11.26 shows our position with the Base map set to terrain.

Figure 11.26 Base map set to Terrain

Node worldmap includes many features that are not covered in this project as this topic

is beyond the scope of this book. Interested readers can look at the following web site for

very detailed information:

Programming with Node-RED

● 216

 https://flows.nodered.org/node/node-red-contrib-web-worldmap

11 .6 Project 57 – Sending out serial data to arduino

Description: In this project, we will receive the weather report using node openweath-

ermap and then send the temperature and humidity readings to the Arduino Uno every 5

seconds on a serial line. The Arduino will display the temperature at the top row and the

humidity at the bottom row of an LCD.

Aim: The aim of this project is to show how serial data can be outputted from Raspberry

Pi using the serial out node.

Block diagram: The block diagram of the project is shown in Figure 11.27.

Figure 11.27 Block diagram of the project

Circuit diagram: Figure 11.28 shows the circuit diagram of the project. The serial output

pin of the Raspberry Pi is connected to pin 3 of the Arduino Uno, where this pin is configured

as serial input. A standard HD44780 compatible parallel LCD is connected to the Arduino

Uno as shown in the figure. The output HIGH voltage of a Raspberry Pi pin is maximum

+3.3V and this is not enough to drive the input of the Arduino Uno. A logic level converter

module (Figure 11.29) is used to increase the output voltage level of Raspberry Pi to +5V.

As shown in Figure 11.30, the one used in this project is a 2-channel module. A MOSFET

transistor is used to convert +3.3V to +5V, and a resistive potential divider circuit is used

to convert from +5V to +3.3V.

Figure 11.28 Circuit diagram of the project

Chapter 11 • Serial communication

● 217

Figure 11.29 Logic level converter module

Figure 11.30 Circuit diagram of the logic level converter

Arduino Uno program: Figure 11.31 shows the Arduino Uno program (program: ar-

duinolcd). At the beginning of the program, the software library and the LCD libraries are

included in the program. The interface between the LCD and the Arduino Uno is defined.

Here, the pins should be defined as follows: RS, E, D4, D5, D6, D7. The software library

pins are defined such that pin 2 is input and pin 3 is output (not used in this project). In-

side the setup routine, the serial line Baud rate is set to 9600, the LCD is initialized to 16

characters by 2 lines. The text Arduino is then displayed on the LCD.

The remainder of the program runs inside the main program loop. Here, the program

checks if there is data at the serial port, and if so, function readStringUntil() is used to read

a string of data until the terminating character '#' is detected (this character is sent by

Raspberry Pi to indicate the end of its data) and the received data is stored in string varia-

ble s1 in the form: nn .n,mm#. Then functions indexOf() and substring() is used to extract

the temperature and humidity from string s1. The temperature is displayed at the top row

as T=nn.nC and the humidity is displayed at the bottom row as H=mm%.

/*---

 * This program receives the temperature and humidity data

 * from the Raspberry Pi over teh serial line at 9600 Baud.

 * The temperature and humidity are displayed on an LCD

 *

 * File: Arduinolcd

 ---/

#include <SoftwareSerial.h> // Serial library

#include <LiquidCrystal.h> // LCD library

LiquidCrystal lcd(8,9,4,5,6,7); // LCD connections

SoftwareSerial MySerial(2, 3); // RX, TX

Programming with Node-RED

● 218

void setup()

{

 MySerial.begin(9600); // Start serial

 lcd.begin(16,2); // Init LCD

 lcd.print("Arduino"); // Display Arduino

 delay(1000); // Wait 1 second

}

void loop()

{

 if(MySerial.available() > 0) // Data available?

 {

 lcd.clear(); // Clear LCD

 String s1 = MySerial.readStringUntil('#');

 int comma = s1.indexOf(','); // Position of comma

 String Temperature = s1.substring(0, comma);

 String Humidity = s1.substring(comma+1);

 lcd.setCursor(0,0); // Cursor at 0,0

 lcd.print("T="); // Display T=

 lcd.print(Temperature); // Display Temp

 lcd.print("C"); // Display C

 lcd.setCursor(0,1); // Cursor at 0,1

 lcd.print("H="); // Display H=

 lcd.print(Humidity); // Display humidity

 lcd.print("%"); // Display %

 }

}

Figure 11.31 Arduino Uno program

Node-RED flow program: Figure 11.32 shows the flow program of this project. In this

project there are 4 nodes: an inject node to start the flow, an openweathermap node

to get the local weather report, a function node to extract the temperature and humidity

from this report, and a serial out node to send data to the Arduino Uno over the serial line.

Figure 11.32 Flow program of the project

Chapter 11 • Serial communication

● 219

The steps are as follows:

• Create an injection node to repeat every 5 seconds

• Create an openweathermap node as before and enter the API key

• Create a function node named T and H, and enter the following statements in-

side this node. This node extracts the temperature and humidity, separates them

with a comma and inserts the terminator character '#', click Done:

var T=msg.payload.tempc;

var H = msg.payload.humidity;

All = T + ","+H + "#";

msg.payload = All;

return msg;

• Create a serial out node and configure it as shown in Figure 11.33, click Update

and then Done

Figure 11.33 Configure node serial out

• Join the nodes and click Deploy.

• Build your circuit as shown in Figure 11.28, turn ON the Arduino Uno. You should

see the temperature and humidity displayed on the LCD as shown in Figure 11.34

Figure 11.34 Displaying the temperature and humidity

Don't forget, after you finish working with your serial port, you may want to give this port

back to the console. This is easily done by using the raspi-config utility by selecting option

5 (Interfacing Options) and then P6 (Serial) and select Yes. Exit raspi-config and restart

your Raspberry Pi.

Programming with Node-RED

● 220

11 .7 Project 58 – Connecting Raspberry Pi and Arduino Uno using USB ports

Description: In the previous project we had to connect the serial output port of our Rasp-

berry Pi to the serial input of Arduino Uno. In this project, we just connect the USB port of

the Arduino to one of the USB ports of the Raspberry Pi. As in the previous project we get

and display the local temperature and humidity on the Android Uno.

Aim: The aim of this project is to show how serial communication can be established using

one of the USB ports of Raspberry Pi.

Block diagram: The block diagram of the project is shown in Figure 11.35. The Arduino

is connected to the Raspberry Pi using a USB cable. There is no other connection between

the two computers.

Figure 11.35 Block diagram of the project

Raspberry Pi USB port device name: Before using the Raspberry Pi USB ports, we have

to know their device names. Perhaps the easiest way is to display the serial device list with-

out the Arduino, and then connect Arduino to Raspberry Pi and display the device list again.

This way, the device name of the Raspberry Pi can be found very easily. The command to

display the serial devices is:

pi@raspberrypi:~ $ ls /dev/tty*

Figure 11.36 shows the serial devices on the author's Raspberry Pi before Arduino Uno was

connected.

Figure 11.36 Raspberry Pi serial devices

The device list after connecting the Arduino Uno to the Raspberry Pi with a USB cable is

shown in Figure 11.37.

Chapter 11 • Serial communication

● 221

Figure 11.37 Serial devices after Arduino Uno is connected

Comparing the two figures, it is obvious that the USB port device name is: /dev/ttyACM0 .

Now that we know the device name, we can modify our Arduino and Node-RED flow pro-

grams accordingly.

Arduino Uno program: The Arduino Uno USB port is connected to hardware serial port

pins 0 (RX) and 1 (TX) and is named just Serial. Therefore, the only changes required in

Figure 11.31 is to remove the software serial ports and replace MySerial with Serial. The

modified program (program: arduinousb) listing is shown in Figure 11.38.

/*---

 * This program receives the temperature and humidity data

 * from the Raspberry Pi over a USB link at 9600 Baud.

 * The temperature and humidity are displayed on an LCD

 *

 * File: Arduinousb

 ---/

#include <LiquidCrystal.h> // LCD library

LiquidCrystal lcd(8,9,4,5,6,7); // LCD connections

void setup()

{

 Serial.begin(9600); // Start serial

 lcd.begin(16,2); // Init LCD

 lcd.print("Arduino"); // Display Arduino

 delay(1000); // Wait 1 second

}

void loop()

{

 if(Serial.available() > 0) // Data available?

 {

 lcd.clear(); // Clear LCD

 String s1 = Serial.readStringUntil('#');

 int comma = s1.indexOf(','); // Position of comma

 String Temperature = s1.substring(0, comma);

 String Humidity = s1.substring(comma+1);

 lcd.setCursor(0,0); // Cursor at 0,0

Programming with Node-RED

● 222

 lcd.print("T="); // Display T=

 lcd.print(Temperature); // Display Temp

 lcd.print("C"); // Display C

 lcd.setCursor(0,1); // Cursor at 0,1

 lcd.print("H="); // Display H=

 lcd.print(Humidity); // Display humidity

 lcd.print("%"); // Display %

 }

}

Figure 11.38 Modified Arduino Uno program

Node-RED Flow program: The only change required in the flow program in Figure 11.32

is to change the serial port name from /dev/ttyS0 to /dev/ttyACM0 in node serial out,

everything else remains the same. That's all. Click Deploy and you should see the temper-

ature and humidity displayed on the LCD as in Figure 11.34.

11 .8 Project 59 – Sending serial data from Raspberry Pi to Arduino over RF

Radio

Description: In the previous projects we sent data from the Raspberry Pi using a direct

connection to the Arduino, either by connecting the Raspberry Pi transmit pin to Arduino

receive pin, or by connecting the two devices together using a USB cable.

In this project, we use a pair of RF radio modules to send serial data from the Raspberry Pi

to the Arduino Uno. As in the previous project, the temperature and humidity data are sent

to the Arduino Uno which displays them on the LCD.

Aim: The aim of this project is to show how RF radio modules can be used to send (or re-

ceive) serial data from a Raspberry Pi.

Background information: RF radio communication modules are used in projects where

there are no other means of establishing communication between two devices. e.g. there

is no Wi-Fi, Internet, or Bluetooth connectivity. In this project the medium-range tRF Click

module (see Figure 11.39) is used, one for Raspberry Pi, and one for Arduino Uno. tRF

Click is a short-range RF communication module, operating at the 868MHz ISM license-free

frequency band. This module is based on the LE70-868RF module from Telit. The module

offers full AT command compatibility. An on-board UART is provided so that the host com-

puter can send and receive messages via the UART. The module can operate with +3.3V to

+5V, and it provides 500mW transmit power, and -117dBm receive sensitivity. The range of

the tRF Click is quoted to be around 10 kilometers. An external antenna must be used with

the module in order to achieve the maximum quoted range. Full details of the tRF module

can be obtained from the link: https://www.mikroe.com/trf-click.

Chapter 11 • Serial communication

● 223

Figure 11.39 tRF Click module

tRF is a 2x8 pin module with the following pin names (pin 1 is at the top left corner, NC =

No Connection):

1: STB 16: STS

2: RST 15: ACK

3: NC 14: TXD

4: NC 13: RXD

5: NC 12: NC

6: NC 11: NC

7: +3.3V 10: NC

8: GND 9: GND

Normally, only the following pins are used in most applications: +3.3V, GND, TXD, RXD

Block diagram: The block diagram of the project is shown in Figure 11.40. Two tRF Click

modules are used to establish the RF radio communication between the devices.

Figure 11.40 Block diagram of the project

Programming with Node-RED

● 224

Circuit diagram: The circuit diagram of the project is shown in Figure 11.41. On the Rasp-

berry Pi side, the serial output pin TXD (GPIO 14) is connected to the RXD input of the tRF

module.

On the Arduino side, the TXD pin of tRF module is connected to serial input 2 of the Arduino

through a logic level converter (see Figure 11.29) since the output HIGH level of tRF is only

+3.3V (you may find that there may not be a need for a logic level converter here).

Figure 11.41 Circuit diagram of the project

Arduino Uno program: The Arduino Uno program is exactly the same as the one given

in Figure 11.31 (program: arduinolcd), except that the Baud rate must be set to 19200

which is the default Baud rate of the tRF module.

Node-RED flow program: The Node-RED flow program for Raspberry Pi is exactly the

same as the one given in Figure 11.32, where /dev/ttyS0 is used as the serial port pin of

the Raspberry Pi, and the Baud rate must be set to 19200.

Build the Arduino and Raspberry Pi circuits as shown in Figure 11.41. You should see the

temperature and the humidity displayed on the LCD as shown in Figure 11.34.

11 .9 Summary

In this chapter, we have learned how to use Node-RED serial in and serial out nodes with

several projects.

In the next chapter, we will be learning how to use Raspberry Pi Sense HAT in projects with

Node-RED.

Chapter 12 • Using Sense HAT

● 225

Chapter 12 • Using Sense HAT

12 .1 Overview

Sense HAT is an add-on board for Raspberry Pi containing a number of useful sensors and

an LED array. HAT is an acronym for Hardware Attached on Top. Sense HAT was an im-

portant component of the Astro Pi project, which was an educational Raspberry Pi sent to

the International Space Station with the British astronaut Tim Peake to run code developed

by children. The actual Astro Pi had some modifications and had metal casing to make it

suitable for use in space.

Sense HAT includes sensors to measure temperature, humidity, pressure, accelerometer,

gyroscope, and a magnetometer. In addition, an 8 x 8 independently programmable LED

array is included on the board that can be programmed to display text and small images.

In this chapter, we will be designing various projects using the Node-RED Sense HAT node

with the Sense HAT board. Before that, it is worthwhile to look at the features of the Sense

HAT board. Detailed information on Sense HAT can be obtained from the link: magpi.

cc/AstroPiGuide. Also from the Essentials_SenseHAT_v1 (MagPi Essentials series), and

from many other Internet sources.

12 .2 The Sense HAT board

Figure 12.1 shows the Sense HAT board. We can identify the following components on the

board:

• 8 x 8 LED array, having a 15-bit colour resolution

• Accelerometer, +/- 2/4/8/16 G

• Gyroscope, +/- 245/500/2000 DPS

• Magnetometer, +/- 4/8/12/16 Gauss

• Barometer, 260 – 1260 hPa absolute pressure

• Temperature sensor, +/-2ºC accuracy, 0 - 65ºC range

• Humidity sensor, +/- 4.5% accuracy, 20 – 80% range

• Graphics controller chip

• Five-button joystick with left, right, up, down, and enter movements

Programming with Node-RED

● 226

Figure 12.1 Sense HAT board

The LED matrix is very useful as it enables you to display text and also data from various

sensors, to play games, etc. We will in later sections of this Chapter how to use display

various items on the LED matrix.

A Node-RED simulator is available that can be downloaded from the Internet free of charge.

The simulator allows you to create flows and interact with a virtual Sense HAT, without

having the actual hardware. The simulator is useful to first try a project on the simulator

before purchasing the hardware.

12 .3 Node-RED Sense HAT nodes

Two Sense HAT nodes are available in Node-RED under the Raspberry Pi palette. As shown

in Figure 12.2, these are the Sense HAT input node, and Sense HAT output node.

Figure 12.2 Sense HAT nodes

Sense Hat input node

Sense HAT input node reads the values of various sensors on the Sense HAT board and

sends these readings. The sensors are grouped into three: motion events, environment

events, and joystick events.

The motion events are the readings from the accelerometer, gyroscope, magnetometer,

and compass heading, which are sent approximately 10 per second. The payload is the

values of the sensors, and the topic is the motion. The sensor values are returned with the

following units:

Chapter 12 • Using Sense HAT

● 227

• Accelerometer (x,y,x) in Gs

• Gyroscope (x.y.z) in radians/s

• Orientation (roll, pitch, yaw) in degrees

• Compass heading in direction of North in degrees

The environmental events are readings from the following sensors: temperature,

humidity, and pressure. The payload is the value returned by a sensor and the topic is the

environment. The values are returned with the following units:

• The temperature in degrees Centigrade

• Humidity in percentage relative humidity

• Pressure in millibars

The joystick events are sent when the joystick is moved. The payload is the value returned

and the topic is the joystick. The following values are returned:

• Key can be: UP, DOWN, LEFT, RIGHT, ENTER

• State of the key can be: 0 if the key has been released, 1 if the key has been

pressed, and 2 if the key is being held down

For example, to get temperature, humidity, and pressure, we can create a function with 3

outputs, and enter the following statement inside the function:

 var temperature = {payload: msg.payload.temperature};

 var humidity = {payload: msg.payload.humidity};

 var pressure = {payload: msg.payload.pressure};

 return [temperature, humidity, pressure];

Sense HAT output node

This node sends commands to the 8x8 LED matrix on the Sense HAT hardware. msg.pay-

load is loaded with the commands to be sent. We will see in later sections how to use the

output node in projects.

Example projects are given in the following sections to show how Sense HAT nodes can be

used in Raspberry Pi projects. Make sure that the Sense HAT board is plugged on top of

your Raspberry Pi board before using the projects.

12 .4 Project 60 - Displaying the temperature, humidity,

and pressure (environmental events)

Description: In this project, we will get temperature, humidity, and pressure from the

Sense HAT board and display them in the form of gauges and charts.

Aim: The aim of this project is to show how the Environmental Events can be read and

displayed.

Programming with Node-RED

● 228

Node-RED flow program: Figure 12.3 shows the flow program which consists just 8

nodes: a Sense HAT node to get the environmental variables, a function node to extract

the temperature, humidity, and pressure, and 3 gauge nodes to display the temperature,

humidity, and pressure, and 3 chart nodes to display the same variables.

Figure 12.3 Flow program of the project

The steps are as follows:

• Create a Sense HAT node and set Outputs to Environmental Events

• Create function node, name it as Format and enter the following statements

inside this node:

var temperature = {payload: msg.payload.temperature};

var humidity = {payload: msg.payload.humidity};

var pressure = {payload: msg.payload.pressure};

return [temperature, humidity, pressure];

• Create 3 gauge nodes and 3 chart nodes with the following configurations:

Gauge Node Group Label Range Units

Temperature [Home]Ambient Temperature gauge 0 to 35 C

Humidity [Home]Ambient Humidity gauge 0 to 100 %

Pressure [Home]Ambient Pressure gauge 900 to 1100 hPa

Chart Node Group Label min-max

Temperature [Home]Ambient Temperature Temperature 0 to 35

Humidity [Home]Ambient Humidity Humidity 0 to 100

Pressure [Home]Ambient Pressure Pressure 900 to 1100

Join all nodes and click Deploy. You should see the temperature, humidity, and pressure

displayed in the Dashboard. Notice that by default the gauges and charts are displayed

vertically. We can, however, group the gauges and charts so that they are displayed hori-

zontally, with the gauges and their corresponding charts displayed vertically together as

shown in Figure 12.4. Grouping of the gauges and charts is shown in Figure 12.5.

Chapter 12 • Using Sense HAT

● 229

Figure 12.4 Displaying in Dashboard

Figure 12.5 Grouping the gauges and charts

Notice that temperature is not displayed correctly. This is because the temperature sensor

on the Sense HAT board is very close to the Raspberry Pi CPU and as a result of this the

reading is not the correct ambient temperature reading. A correct reading can be obtained

if the Sense HAT board is connected to Raspberry Pi using a ribbon cable so that the sensor

is not close to the CPU.

12 .5 Project 61 - Displaying the compass heading (motion events)

Description: In this project, we will display the compass heading continuously.

Aim: The aim of this project is to show how the compass heading can be displayed.

Programming with Node-RED

● 230

Node-RED flow program: Figure 12.6 shows the flow program which consists of just

3 nodes: a Sense HAT node to get the motion variables, a function node to extract the

compass heading, and a Dashboard text node to display the heading dynamically.

Figure 12.6 Flow program of the project

The steps are as follows:

• Create a Sense HAT node and set Outputs to Motion Events

• Create a function node, name it as Format and enter the following statements

inside this node:

var CompassHead = {payload: msg.payload.compass};

return [CompassHead];

• Create a Dashboard text node, name it as Compass Heading (Degrees):,

create a new group called [Home]Sense HAT

• Join the groups, click Deploy, and start your Dashboard. You should see the

compass heading from North displayed dynamically as shown in Figure 12.7

Figure 12.7 Displaying the compass heading

12 .6 Project 62 - Displaying the acceleration (motion events)

Description: The acceleration (amount of G force) can be obtained in three dimensions

of x, y, and z. In this project, we will display the acceleration continuously in all three di-

mensions.

Aim: The aim of this project is to show how acceleration can be displayed.

Node-RED flow program: Figure 12.8 shows the flow program which consists of 5 nodes:

a Sense HAT node to get the motion variables, a function node with 3 outputs to extract

the acceleration in 3 dimensions, and 3 Dashboard text nodes to display the acceleration

in each direction.

Chapter 12 • Using Sense HAT

● 231

Figure 12.8 Flow program of the project

• Create a Sense HAT node and set Outputs to Motion Events

• Create a function node with 3 outputs, name it as Format and enter the fol-

lowing statements inside this node. This function returns the acceleration in 3

dimensions:

var accx = {payload: msg.payload.acceleration.x};

var accy = {payload: msg.payload.acceleration.y};

var accz = {payload: msg.payload.acceleration.z};

return [accx, accy, accz];

• Create 3 Dashboard text nodes, name them as Acceleration (x):, Accelera-

tion(y):, and Acceleration (z):, use previously created Group [Home]Sense

HAT

• Join the nodes and click Deploy. You should see the acceleration displayed in

your Dashboard as shown in Figure 12.9

Figure 12.9 Displaying the acceleration in 3 dimensions

12 .7 Project 63 - Displaying the orientation (motion events)

Description: In this project, we will display pitch, roll, and yaw dynamically.

Aim: The aim of this project is to show how the orientation can be displayed dynamically.

Background information: It is important to understand the difference between pitch,

roll, and yaw. Perhaps the easiest way to understand these terms is to look at the move-

ments of an aeroplane. Figure 12.10 shows an aeroplane with the terms pitch, roll, and

Programming with Node-RED

● 232

yaw explained graphically.

Figure 12.10 Pitch, roll, and yaw of an aeroplane

In Figure 12.11, the terms pitch, roll, and yaw as applied to Sense HAT are shown.

Figure 12.11 Pitch, roll, and yaw of Sense HAT

Node-RED flow program: The flow program is exactly the same as Figure 12.8, but the

contents of function node and the 3 text nodes are modified. Figure 12.12 shows the flow

program.

Figure 12.12 Flow program of the project

• Enter the following statements inside the function node:

var accx = {payload: msg.payload.orientation.pitch};

var accy = {payload: msg.payload.orientation.roll};

var accz = {payload: msg.payload.orientation.yaw};

return [accx, accy, accz];

Chapter 12 • Using Sense HAT

● 233

• Change the Labels of the text nodes as shown in Figure 12.12. Figure 12.13

shows the pitch, roll, and yaw displayed in the Dashboard.

Figure 12.13 Displaying the pitch, roll, and yaw

12 .8 Using the joystick

The joystick is in the Joystick Events group of Sense HAT. As described earlier in section

12.3, Joystick Events are sent when the joystick is moved. The payload is the value re-

turned and the topic is the joystick. The returned values are UP, DOWN, RIGHT, LEFT, EN-

TER. The states of the keys are:

 0: key has been released

 1: key has been pressed

 2: key is being held down

Perhaps the easiest way to understand the operation of the joystick is to set the Outputs

of the Sense HAT node to Joystick events and connect a debug node to it (Figure 12.14).

By moving or pressing the joystick the Debug window will show the action performed.

Figure 12.14 Flow program to test the joystick

For example, moving the joystick left and holding it down generates the message shown

in Figure 12.15.

Programming with Node-RED

● 234

Figure 12.15 Moving the joystick left and holding it

12 .9 Using the LED matrix

The Sense HAT output node is used to control the LED matrix on Sense HAT hardware.

The commands to control the LED matrix are sent to msg.payload (multiple commands can

be sent in a single message by separating them with a newline character).

Most of the LED matrix control statements are based on the LED coordinates (x, y) on the

Sense HAT board. Figure 12.16 shows the LED co-ordinates in relation to the board.

Figure 12.16 LED co-ordinates

Perhaps the easiest way to understand how the LED matrix operates is to create an LED

matric test flow program by connecting an inject node and a function node to the Sense

HAT output node as shown in Figure 12.17, and then examining the LED matrix by writing

statements inside function node.

Figure 12.17 LED matrix test flow program

Chapter 12 • Using Sense HAT

● 235

LED colours

The colour of an individual LED can be set using the statement:

"x,y,colour"

Where x and y must either be from 0 to 7 or a * to indicate the entire row or column. The

colour can be one of the following:

HEX colour name (e.g. #aa991e)

RGB triple (e.g. 255, 180, 0)

HTML colour name

off

Example 1

Set the LED at co-ordinate 0,0 (i.e. at the top left corner when the USB sockets of Raspber-

ry PI are facing the right-hand side) to red and turn ON the LED as shown in Figure 12.18.

Figure 12.18 LED pattern for Example 1

Solution 1

Enter the following statement into the function:

msg.payload = "0,0,red";

return msg;

Example 2

Set all LEDs to a blue colour.

Solution 2

Enter the following statement into the function:

msg.payload = "*,*,blue";

return msg;

Programming with Node-RED

● 236

Example 3

Set LEDs at four corners to blue, red, green, and yellow as shown in Figure 12.19

Figure 12.19 LED pattern for Example 3

Solution 3

Enter the following statement into the function:

msg.payload = "0,0,blue,0,7,red,7,0,green,7,7,yellow"

return msg;

Example 4

Set LEDs in a 4-pixel wide column to blue as shown in Figure 12.20.

Figure 12.20 LED pattern for Example 4

msg.payload = "0-3,*,blue";

return msg;

Example 5

Set all LEDs in the second row to blue as shown in Figure 12.21.

Chapter 12 • Using Sense HAT

● 237

Figure 12.21 LED pattern for Example 5

Solution 5

Enter the following statement into the function:

msg.payload = "*,1,blue";

return msg;

Example 6

Set the diagonal LEDs to red as shown in Figure 12.22.

Figure 12.22 LED pattern for Example 6

Solution 6

Enter the following statement into the function:

msg.payload = "0,0,red,1,1,red,2,2,red,3,3,red,4,4,red,5,5,red,6,6,red,7,7,

red";

return msg

We could have also written the following function to set the diagonal LEDs to red:

Programming with Node-RED

● 238

var L="";

for(i=0; i <= 7; i++)

{

 if(i != 7)

 L = L + String(i)+","+String(i)+",red,";

 else

 L = L + String(i)+","+String(i)+",red";

}

msg.payload = String(L);

return msg;

12 .10 Project 64 – Random flashing LED lights having random colours

Description: In this project, we will flash LEDs on the LED matrix randomly. The colours

are also random.

Aim: The aim of this project is to show how random numbers can be used to flash LEDs

randomly, having random colours.

Node-RED flow program: The flow program is shown in Figure 12.23, and it consists of

11 nodes: an inject node that repeats every second, 5 random number nodes. Two of

these nodes generate numbers between 0 and 7 that correspond to the LED co-ordinates,

the other 3 nodes generate numbers from 0 to 255 to correspond to the RGB colours, a join

node that joins all the random numbers and passes them to a function node. The function

node outputs strings to flash the LEDs randomly having random colours. A delay node is

also used to turn OFF all the LEDs every second so that only one LED is ON at any time.

Figure 12.23 Flow program of the project

The steps are as follows:

• Create an inject node to repeat every second

• Create two random nodes named X and Y and configure them to generate ran-

dom numbers between 0 and 7.

• Create three more random numbers named COLOUR1, COLOUR2 and COL-

OUR3 and configure them to generate random numbers between 0 and 255

Chapter 12 • Using Sense HAT

● 239

• Create a join node and configure it as shown in Figure 12.24

Figure 12.24 Configure node join

• Create a function node named ON and enter the following statements inside

this node:

var x = msg.payload[0];

var y = msg.payload[1];

var c1 = msg.payload[2]

var c2 = msg.payload[3];

var c3 = msg.payload[4];

msg.payload = x + "," + y + "," + c1 + "," + c2 + "," + c3;

return msg;

• Create another function node names OFF and enter the following statements:

msg.payload = "*,*,off";

return msg;

• Create a Sense HAT output node and join all the nodes. You should see LEDs

turning ON and OFF randomly in different colours.

12 .11 Project 65 – Display of temperature by LED count

Description: We have seen earlier in this Chapter how to control LEDs on the LED matrix.

In this project, we will be displaying the temperature in real-time by turning the correct

number of LEDs ON.

There are 64 LEDs in the LED matrix. For simplicity, we will assign each LED to 0.5ºC so

that the temperature can be displayed from 0ºC (corresponding to no LEDs ON) to up to

32ºC (corresponding to all the 64 LEDs ON). Therefore, by counting the number of LEDs

that are ON and dividing the number by 2 we find the temperature.

Aim: The aim of this project is to show how the Sense HAT board can be used to read the

ambient temperature and to display the temperature by turning ON the correct number of

LEDs.

Programming with Node-RED

● 240

Node-RED flow program: The flow program is shown in Figure 12.25, and it consist of

4 nodes: a Sense HAT input node to read the ambient temperature, a function node

with two outputs to format the readings and also to turn OFF the screen so that it can be

updated, a delay node to limit the messages, and a Sense HAT output node to turn the

appropriate number of LEDs ON.

Figure 12.25 Flow program of the project

The steps are as follows:

• Create a Sense input node and set Outputs to Environment events

• Create a function node named Format with two outputs, and enter the fol-

lowing statements inside this node. Variable T extracts the temperature from

Sense HAT. Variable OnCount calculates the number of LEDs that must be ON.

For example, if the temperature is 22ºC then 44 LEDs must be turned ON. The

remainder of the code is executed if the temperature is below or equal to 32ºC.

Variable rows is the number of rows of LEDs that must be ON. For example, if

the temperature is 22ºC, then rows is equal to 5 so rows: 0, 1, 2, 3, 4 should be

ON. cols is the remaining LEDs that should be ON. For example, if the tempera-

ture is 22ºC then cols is equal to 4. i.e. 4 more LEDs must be turned ON. Three

for loops are used in the function. The outer loop iterates from 0 to rows, the

inner loop iterates 8 times so that all the LEDs in a given row are turned ON. The

last loop turns ON the remaining LEDs. Variable L stores the pattern that will be

output from the node.

The second output of the function sends text off to the display to clear the screen

so that the display can be updated. When a new LED is turned ON or OFF, the

ones already ON remain ON. For example, if the temperature is 22ºC, then we

have 44 LEDs ON. If the temperature goes down to 20ºC, then the ON count

does not go down to 40. Although a command is sent to turn ON only 40 LEDs,

the ones already ON do not go OFF. Therefore, we clear the screen by turning all

LEDs OFF and then update with the new data.

Chapter 12 • Using Sense HAT

● 241

If the temperature is greater than 32ºC, then the middle LED (at co-ordinate 4,

4) is turned red to indicate that the temperature is outside the limit:

var L="";

var T = msg.payload.temperature;

var OnCount = parseInt(2*T);

if(T <= 32)

{

 var rows = parseInt(OnCount / 8);

 var cols = OnCount-rows*8;

 for(i = 0; i < rows; i++)

 {

 for(j = 0; j <= 7; j++)

 {

 L = L + String(i)+","+String(j)+",red,";

 }

 }

 for(j=0; j < cols; j++)

 {

 L = L + String(rows)+","+String(j)+",red,";

 }

 var l = L.length;

 msg.payload=L.substr(0,l-1);

 }

 else

 msg.payload = "4,4,red";

 var f = {payload: "*,*,off"};

 return [msg, f];

• Create a delay node with the Action set to Rate limit and configure it to send 1

message every 30 seconds. This node is connected to the second output of node

function so that the screen is cleared by sending the text off.

• Create a Sense HAT output node and join all the node, click Deploy. You should

see that the temperature displayed on the LED matrix with the number of LEDs

turned ON. In the example shown in Figure 12.26, 51 LEDs are turned ON.

Therefore, the temperature is 51 / 2 = 25.5ºC. Note that, as described earlier,

the temperature reading of Sense HAT is not accurate since the sensor is close

to the Raspberry Pi CPU.

Programming with Node-RED

● 242

Figure 12.26 Displaying temperature 25.5ºC

12 .12 Displaying and scrolling data on LED Matrix

Data can easily be displayed and scrolled on the LED matrix by loading it to msg.payload.

For example, to display and scroll text Hello, enter the following command into a function:

msg.payload = "Hello";

return msg;

We can specify the background colour, text colour, and scroll speed by specifying: back-

ground, color, and speed respectively. Speed can take values 1 to 5, where 1 is slow and

5 is fast (default is 3). An example is shown below which specifies the background colour

as yellow, text colour as red, and the speed as 2:

var txt = {payload: "Hello"};

txt.background = "yellow";

txt.color = "red";

txt.speed = 2;

return txt;

If the text is a single character, it will be displayed without scrolling. To scroll a single char-

acter, append a blank space after it, e.g. "X ".

12 .13 Project 66 – Scrolling the pressure readings on the LED matrix

Description: In this project, we will scroll the pressure readings on the LED matrix. The

background colour will be set to white, text colour to red, and the speed to 1.

Aim: The aim of this project is to show how the data can be scrolled on the LED matrix.

Node-RED flow program: The flow program is shown in Figure 12.27, and it consists of 3

nodes: a Sense HAT input node to read the ambient pressure, a function node to format

the readings, a delay node to limit the rate of the messages to 1 every 5 seconds, and a

Sense HAT output node to display the data on the LED matrix.

Chapter 12 • Using Sense HAT

● 243

Figure 12.27 Flow program of the project

The steps are as follows:

• Create a Sense input node as in the previous project

• Create a function node and enter the following statements:

var T = {payload: msg.payload.pressure};

T.color = "red";

T.background = "white";

T.speed = 1;

return T;

• Create a delay node and set the Action to Rate limit to limit 1 message every

5 seconds. This node is required to slow down the messages coming from Sense

HAT.

• Create a Sense HAT output node as before. Join all the nodes and click Deploy.

You should see the ambient pressure displayed and scrolled on the LED matrix.

Some other useful Sense HAT commands are:

Rotate screen

To rotate the screen, enter command R followed by the angle. The angle must be 0, 90, 80,

or 270. In the following example the screen is rotated 180 degrees:

var T = "Hello";

msg.payload = "R90\n" + T;

return msg;

Flip the screen

To flip the screen enter command F followed by V (vertical) or H (horizontal).

Set the screen brightness

To set the screen brightness, enter the command D followed by the level. The level must

be 0 (low) or 1 (high).

Programming with Node-RED

● 244

12 .14 Summary

In this chapter, we have learned how to use Sense HAT input and output nodes in various

projects.

In the next chapter, we will be learning how to use Node-RED with the Arduino and develop

several projects with the Arduino.

Chapter 13 • Node-RED with Arduino Uno

● 245

Chapter 13 • Node-RED with Arduino Uno

13 .1 Overview

Arduino Uno is one of the most commonly used microcontroller development boards cur-

rently. There are hundreds of projects available on the Internet using the Arduino Uno with

sensors, actuators, and display devices.

This Chapter is about using Node-RED with the Arduino Uno. The hardware details of the

Arduino Uno are not given in this chapter as it is assumed that the readers are familiar with

the Arduino Uno and have developed programs using this development board. Interested

readers can find many tutorials, application notes, datasheets, and projects for the Arduino

Uno on the Internet. The chapter describes how to install and use Node-RED for the Arduino

Uno. Several projects are described in the chapter using Node-RED.

13 .2 Installing Node-RED For Arduino Uno

Before using Node-RED on our Arduino Uno, we have to install it on our Windows computer.

The steps are as follows:

• Install node .js (64-bit or 32-bit according to your computer) from the following

site:

 https://nodejs.org/en/download

• Open the Command prompt on your computer as an administrator and enter

the following command (see Figure 13.1):

 C:\Windows\system32> npm install –g –unsafe-perm node-red

Figure 13.1 Install Node-RED

• To test the installation, enter the following command:

 C:\Windows\system32> node-red

Programming with Node-RED

● 246

• You should see messages displayed similar to the ones shown in Figure 13.2. If

you can see these messages, it means that Node-RED is installed correctly on

your PC

Figure 13.2 Testing your Node-RED installation

• Now start your web browser and enter the following address to start your Node-

RED in your browser (do not close your command window):

 http://127.0.0.1:1880

• You should now see the Node-RED startup screen as shown in Figure 13.3 (only

part of the screen is shown here).

Figure 13.3 Node-RED startup screen

• Install the Arduino node. Click Menu -> Manage palette and click Install

• Enter node-red-node-arduino and click install

• You should see two nods added to the Node Palette: arduino in and arduino

out

The Arduino must be connected to the host computer via USB serial connection. We cannot

use both the Arduino IDE and Arduino nodes at the same time as they will conflict. We will

have to exit from the Arduino IDE in order to use Node-RED. Alternatively, we must stop

Node-RED if we wish to program the Arduino using the IDE.

Chapter 13 • Node-RED with Arduino Uno

● 247

The Firmata protocol is used for communicating between an Arduino and the host com-

puter, providing direct access to the GPIO pins. Before developing our programs, we have

to load the Firmata into our Arduino Uno. The steps are as follows:

• Stop Node-RED

• Connect your Arduino to the PC via the USB cable

• Start Arduino IDE

• Select Arduino/Genuino Uno as the target board

• Make a note of the serial port name (e.g. COM5)

• Click Files -> Examples -> Firmata -> Standard Firmata

• Click Sketch -> Verify/Compile and then click Sketch -> Upload

• Exit Arduino IDE

You should now start Node-RED on your Windows, and then start the dashboard on your

web browser:

 C:\Windows\system32> node-red

 http://127.0.0.1:1880

We are now ready to develop Arduino programs using Node-RED. A simple example pro-

gram is given in the next section to show how Node-RED can be used with the Arduino Uno.

13 .3 Project 67 – Flashing LED

Description: This is a very simple program where the LED on the Arduino Uno board at

port 13 is flashed every second.

Aim: The aim of this project is to show how the on-board LED at port pin 13 can be flashed

every second.

Node-RED flow program: Figure 13.4 shows the flow program which consists of just 3

nodes: an inject node that repeats every second, a function node that toggles its output,

and an Arduino out node.

Figure 13.4 Flow program of the project

Programming with Node-RED

● 248

The steps are as follows:

• Create an inject node, name it as 1 second and configure it to repeat every

second

• Create a function node, name it as Toggle LED and insert the following state-

ments inside this node. In this node, a context variable is toggled so that its value

changes between 0 and 1. Remember that context variables keep their values

inside the node:

context.led = !context.led || 0;

msg.payload = context.led;

return msg;

• Create an arduino out node and configure it as shown in Figure 13.5. Notice

that the serial port number found earlier (COM5) is used in this node.

Figure 13.5 Configure node arduino out

• Join all the nodes as shown in Figure 13.4 and click Deploy.

• You should see the on-board LED flashing every second

13 .4 Project 68 – Displaying the ambient temperature in the debug window

Description: In this project, the ambient temperature is measured using an analog tem-

perature sensor chip.

Aim: The aim of this project is to show how arduino in node can be used to read analog

input data.

Circuit diagram: An LM35DZ type analog temperature sensor chip is used in this project.

The sensor is connected to +5V and its output is connected directly to analog input A0 of

the Arduino Uno. Figure 13.6 shows the circuit diagram of the project.

Chapter 13 • Node-RED with Arduino Uno

● 249

Figure 13.6 Circuit diagram of the project

Node-RED flow program: Figure 13.7 shows the flow program which consists of just 3

nodes: an arduino in node to receive the temperature readings, a function node to for-

mat the data, and a debug node to display the data in the Debug window.

Figure 13.7 Flow program of the project

The steps are:

• Create an arduino in node and configure as shown in Figure 13.8

Figure 13.8 Configure node arduino in

• Create a function node and enter the following statements:

var T = msg.payload * 5000.0 / 1024.0;

var mv = T / 10.0;

msg.payload = "T = " + mv.toFixed(2) + "C";

return msg;

• Create a debug node, join the nodes, click Deploy.

• The temperature will be displayed in the Debug window as shown in Figure 13.9

Programming with Node-RED

● 250

Figure 13.9 Displaying the temperature

13 .5 Project 69 – Displaying the ambient temperature in the dashboard

Description: In this project, the ambient temperature is measured as in the previous pro-

ject and is displayed in node text of the Dashboard.

Aim: The aim of this project is to show how Dashboard nodes can be used in Arduino pro-

jects.

Circuit diagram: The circuit diagram of the project is as in Figure 13.6

Node-RED flow program: Figure 13.10 shows the flow program which consists of just 3

nodes: an arduino in node to receive the temperature readings, a function node to for-

mat the data, and a Dashboard text node.

Figure 13.10 Flow program of the project

Before using a Dashboard node, we have to install the Dashboard Palettes. The steps are:

• Click Menu -> Manage Palette and click Install

• Enter node-red-dashboard and click install

• You should see the Dashboard nodes added to your Node Palette

The steps to develop the flow program are as follows:

• Create an arduino in node as in the previous project

• Create a function node as in the previous project

Chapter 13 • Node-RED with Arduino Uno

● 251

• Create a Dashboard text node and configure it as in Figure 13.11

Figure 13.11 Configure the text node

• Join all nodes and click Deploy. Start the Dashboard by entering the following

into your web browser. You should see the ambient temperature displayed as

shown in Figure 13.12 (notice that the Style is set to Dark in this display):

 127.0.0.1:1880/ui/

Figure 13.12 Displaying the temperature with node text

13 .6 Project 70 – Displaying the ambient temperature as gauge and chart

Description: In this project, the ambient temperature is measured as in the previous pro-

ject and is displayed in the form of a gauge and chart.

Aim: The aim of this project is to show how the Dashboard gauge and chart can be used

in Arduino projects.

Circuit diagram: The circuit diagram of the project is as in Figure 13.6

Node-RED flow program: Figure 13.13 shows the flow program which consists of 4

nodes: an Arduino in node to read the temperature, a function node to format the temper-

ature, a gauge and a chart nodes to display the temperature.

Figure 13.13 Flow program of the project

Programming with Node-RED

● 252

The steps are:

• Create an arduino in node as in the previous project

• Create a function node and enter the following statements:

var T = msg.payload * 5000.0 / 1024.0;

var mv = T / 10.0;

var Temp = mv.toFixed(2);

msg.payload = Temp;

return msg;

• Create a gauge node and configure as shown in Figure 13.14

Figure 13.14 Configure the node gauge

• Create a chart node and configure as shown in Figure 13.15

Figure 13.15 Configure the node chart

• Click Deploy and you should see the temperature displayed in the Dashboard

using a gauge and a chart as shown in Figure 13.16

Chapter 13 • Node-RED with Arduino Uno

● 253

Figure 13.16 Displaying the temperature using gauge and chart

13 .7 Using the Arduino Uno serial port

The readers will find that there is a limited number of nodes when using the Arduino with

Node-RED. For example, at the time of writing this book, there was no LCD node that could

be used with the Arduino. The solution to this problem is as follows:

We can connect the Arduino to one of the USB ports of Raspberry Pi and then write code

using the Arduino IDE. The output can then be sent to Raspberry Pi via the serial port. The

Raspberry Pi can receive the data using the serial node and process it as we have seen in

earlier chapters of this book. This approach, of course, requires code to be developed for

the Arduino.

An example project is given below using this idea.

13 .7 .1 Project 71 – Using the DHT11 with the Arduino

Description: In this project, a DHT11 temperature and humidity sensor are used and

the ambient temperature and humidity data are displayed in the form of a gauge every 5

seconds.

Aim: The aim of this project is to show how the serial node can be used to receive data

from the Arduino Uno.

Circuit diagram: The circuit diagram of the project is shown in Figure 13.17. The DHT11

is connected to digital port pin 3 of the Arduino Uno. The Arduino Uno is connected to one

of the USB ports of Raspberry Pi using a USB cable. The temperature and humidity data

are sent through this cable.

Programming with Node-RED

● 254

Figure 13.17 Circuit diagram of the project

Arduino Uno program: Before using the DHT11 with the Arduino Uno, we have to include

the DHT11 library in our Arduino library. The steps are as follows:

• Start the Arduino IDE

• Click Sketch -> Include Library -> Manage Libraries

• Enter DHT11

• Click to install DHT sensor library by Adafruit Version 1 .3 .8 (or a later

version)

• Close the window

• Close and re-start the Arduino IDE

The Arduino program (program: dht11arduino) is shown in Figure 13.18. At the begin-

ning of the program, pin 3 is assigned to DHT11 and DHT11 is defined as the sensor type

(not DHT22). Inside the setup routine, the serial port is initialized to 9600 Baud and the

DHT11 is initialized. The remainder of the program is executed inside the main program

loop. Here, the humidity and temperature are read from the sensor and are then sent to

the serial port. This process is repeated after 5 seconds.

#include <DHT.h>

#define DHTPin 3 // DHT11 pin

#define DHTType DHT11 // DHT11 type

DHT dht(DHTPin, DHTType); // Initialize

String Humidity, Temperature;

float Hum, Temp;

void setup()

{

 Serial.begin(9600); // Start serial

 dht.begin(); // Initialzie DHT11

Chapter 13 • Node-RED with Arduino Uno

● 255

}

void loop()

{

 Hum = dht.readHumidity(); // Get humidity

 Temp= dht.readTemperature(); // Get temperature

 Humidity = String(Hum); // To string

 Temperature = String(Temp); // To string

 Serial.print(Humidity); // Send to serial port

 Serial.print(","); // Insert comma

 Serial.println(Temperature); // Send to serial port

 delay(5000); //5 seconds delay

}

Figure 13.18 Arduino Uno program

Node-RED flow program: Re-start your Raspberry Pi, and then start Node-RED running

on your Raspberry Pi. Start the Dashboard by entering (enter the IP address of your own

Raspberry Pi) on your PC:

 192.168.1.202:1880

Figure 13.19 shows the flow program which consists of 4 nodes: a serial in node to read the

temperature and humidity data from the Arduino, a function node to format the received

data, two gauges to display the temperature and the humidity.

Figure 13.19 Flow program of the project

The steps are:

• Create a serial in node with the configuration shown in Figure 13.20. Notice

that the Serial Port name is set to /dev/ttyACM0, which is device name of the

Raspberry Pi USB port.

Figure 13.20 Configure node serial

Programming with Node-RED

● 256

• Create a function node with two outputs and enter the following statements (or,

use the split(",") function to extract the humidity and the temperature:

var H = {payload: msg.payload.substr(0,5)};

var T = {payload: msg.payload.substr(6,5)};

return [H, T];

• Create two gauge nodes. For the humidity, node set the Label to Humidity, min

and max values to 0 and 100, and the Units to % respectively. For the temper-

ature, node set the Label to Temperature, min and max values to 0 and 30,

and Units to C

• Join all the nodes, click Deploy, and start the Dashboard by entering your own

IP address:

 192.168.1.202:1880/ui/

• You should see the humidity and temperature displayed as shown in Figure 13.21

Figure 13.21 Displaying the humidity and temperature

13 .8 Summary

In this chapter, we have learned how to use Node-RED with Arduino Uno, and several pro-

jects are given on this topic.

In the next chapter, we will look at how to use Node-RED with ESP32 processors.

Chapter 14 • Using the ESP32 DevkitC with Node-RED

● 257

Chapter 14 • Using the ESP32 DevkitC with Node-RED

14 .1 Overview

ESP32 is one of the popular microcontrollers used currently by students, practicing elec-

tronics engineers, hobbyists, and many other people interested in microcontroller-based

embedded system design. In this chapter, we will be learning how to use Node-RED with

ESP32 microcontrollers. In this chapter, we will use the ESP32 DevKitC development board.

It is assumed that the readers are familiar with the ESP32 processor and the ESP32 DevKitC

development board and have used it in at least one project. In the project in this chapter,

the ESP32 processor is programmed using the Arduino IDE. It is assumed that the Arduino

IDE is loaded with the ESP32 Dev Module software. If this is not the case, then you should

load this software to your Arduino IDE. The steps on installing the ESP32 support to the

Arduino IDE on a Windows PC are given in this section. If you have already installed ESP32

on Arduino IDE then you must delete the Espressif folder from your Arduino directory

before re-installing it.

The steps to install the ESP32 on Arduino IDE are as follows:

• Download and install the latest version of Arduino IDE from the following web

site:

 https://www.arduino.cc/en/Main/Software

• Open your Arduino IDE and click File -> Preferences to open the Preferences

window. Locate text box Additional Board Manager URLs at the bottom of

the window and enter the following text as shown in Figure 14.1. If the text box

contains another URL, add the new URL after separating it with a comma:

 https://dl.espressif.com/dl/package_esp32_index.json

Figure 14.1 Preferences window

• Click OK

Programming with Node-RED

● 258

• Click Tools -> Board -> Board Managers window and search for ESP32 as

shown in Figure 14.2

Figure 14.2 Search for ESP32

• Click the Install button. You should see the Installed message as shown in Fig-

ure 14.3. Close the window.

Figure 14.3 ESP32 installed

• If the software is installed correctly, then you should see the ESP32 Dev Module

which is the board we will be using with our ESP32 DevKitC. Select Tools ->

Board ->ESP32 Dev Module as shown in Figure 14.4.

Figure 14.4 Select the ESP32 Dev Module

As a reminder, Figure 14.5 shows the pin configuration of the ESP32 DevKitC development

board. Interested readers can get a large amount of data on the ESP32 processor from the

Internet:

Chapter 14 • Using the ESP32 DevkitC with Node-RED

● 259

Figure 14.5 ESP32 DevKitC development board

14 .2 ESP32 DevKitC and Node-RED

In this Chapter, we will be running Node-RED on a Raspberry Pi and then communicate

with an ESP32 DevkitC I/O ports using a communications protocol. In practice, we can use

TCP or UDP, or serial communication as shown in Figure 14.6. In the next project, we will

be using serial communication.

Figure 14.6 Raspberry Pi to ESP32 DevKitC interface

14 .3 Project 72 – Controlling an LED connected to ESP32 DevKitC

Description: This is a very simple project. In this project, an LED is connected to one of

the I/O ports of the ESP32 DevKitC through a current limiting resistor. The LED is turned

ON or OFF by clicking inject buttons in Node-RED.

Aim: The aim of this project is to show how the ESP32 DevKitC input/output ports can be

controlled from a Raspberry Pi which is programmed using Node-RED.

Block diagram: The block diagram of the project is shown in Figure 14.7.

Figure 14.7 Block diagram of the project

Programming with Node-RED

● 260

Circuit diagram: Figure 14.8 shows the circuit diagram of the project. The LED is con-

nected to GPIO 21 of the ESP32 DevKitC. Serial port output TXD (GPIO 14, physical pin 8)

of the Raspberry Pi is connected to GPIO 23 of the ESP32 DevKitC. The ESP32 DevKitC has

3 UART pins as follows:

 RXD (U0) GPIO 3

 TXD (U0) GPIO 1

 RXD (U1) GPIO 9

 TXD (U1) GPIO 10

 RXD (U2) GPIO 16

 TXD (U2) GPIO 17

U0 is used by the USB to PC serial communication port. In some devices, U2 is reserved

for the on-board flash and may not be available for serial communication. In general, most

other pins can be configured for serial communication. In this project GPIO, 23 is used.

Figure 14.8 Circuit diagram of the project

ESP32 DevKitc Program: The program listing (program: esp32nodered) is shown in

Figure 14.9, which is written using the Arduino IDE. At the beginning of the program,

HardwareSerial library is included in the program, RXD and TXD (not used in this project)

port pins are defined, and the LED is assigned to GPIO port 21. Inside the setup routine,

the serial port is configured to 9600 Baud, 8 bits, no parity, and 1 stop bit. The LED is

also configured as an output. The remainder of the program is executed in a loop. Inside

this loop, the program waits to receive data from the Raspberry Pi. The received data

is stored in a string variable called buffer. If the received data is ON# (where # is the

terminator character) then the LED is turned ON. If on the other hand, the received data is

OFF# then the LED is turned OFF. The program uses the serial port data receive function

readStringUntil() which reads a string from the serial port until the specified character is

encountered.

#include "HardwareSerial.h"

#define RXD 23

#define TXD 22

HardwareSerial Ser(1);

String buffer;

#define LED 21

Chapter 14 • Using the ESP32 DevkitC with Node-RED

● 261

void setup()

{

 pinMode(LED, OUTPUT);

 Ser.begin(9600, SERIAL_8N1, RXD, TXD);

}

void loop()

{

 while(Ser.available() > 0)

 {

 buffer = Ser.readStringUntil('#');

 if(buffer[0] == 'O' && buffer[1] == 'N')

 digitalWrite(LED, HIGH);

 else if(buffer[0] == 'O' && buffer[1] == 'F' && buffer[2] == 'F')

 digitalWrite(LED, LOW);

 }

}

Figure 14.9 ESP32 DevKitC program listing

Click Sketch -> Compiler/Verify to compile the program. After a successful compilation,

you must press the Boot button on ESP32 DevKitC (the button at the bottom right-hand

side) and keep it pressed and click Sketch -> Upload. When the uploading is complete,

release the Boot button and press the EN button to reset and start the program running

on your ESP32 DevKitC.

Node-RED flow program: Figure 14.10 shows the flow program which consists of just

3 nodes: two inject nodes to send the ON# or OFF# commands to the serial port, and a

serial out port to send the commands to the ESP32 DevKitC. You should disable the console

serial port (/dev/ttyS0) as described in Chapter 11 so that you can use the Raspberry Pi

serial port.

Figure 14.10 Flow program of the project

The steps are as follows:

• Create two inject nodes, set the Payload to ON# in one of them, and to OFF#

in the other one.

• Create a serial out node and configure it as shown in Figure 14.11

Programming with Node-RED

● 262

Figure 14.11 Configure node serial out

• Join all the nodes as in Figure 14.10 and click Deploy.

• Build the circuit as shown in Figure 14.8. Click the button of the inject node

ON#, the LED should turn ON. Click the button of the inject node OFF#, the LED

should turn OFF.

14 .4 Summary

In this chapter, we have learned how to connect the ESP32 DevKitC to Raspberry Pi using

the serial link at 9600 Baud. Node-RED was started on Raspberry Pi. By sending commands

from Raspberry Pi to the ESP32 DevKitC we can easily control the LED. Interested readers

can develop more complex ESP32 processor-based projects using the technique described

in this chapter.

In the next chapter, we will be learning how to use Amazon Alexa in Node-RED based pro-

jects.

Chapter 15 • Using Amazon Alexa in Node-RED projects

● 263

Chapter 15 • Using Amazon Alexa in Node-RED projects

15 .1 Overview

Alexa is a sound-based virtual assistant device developed by Amazon in 2014 and first

used in Amazon Echo and Amazon Echo Dot. Alexa interacts with the user through sound

and it can obey the commands given by a speaker. For example, Alexa can play a piece of

required music, it can provide weather reports, ask questions, give traffic reports, give the

current news, give recipes, translate words to other languages, and many more. Alexa can

also be used to control a device through sound commands and therefore it can be used in

home automation. The device is activated by giving the wake-word Alexa. The user can

then communicate with Alexa. Alexa is connected to the local Wi-Fi router of the user and

it gets the answers to the user questions from the Amazon cloud. The latest model of Alexa

at the time of writing this book was the 3rd generation devices. Figure 15.1 shows the 3rd

Gen Alexa Dot device.

Figure 15.1 3rd Gen Alexa Dot

In this chapter, we will be using Node-RED with Alexa and Raspberry Pi and learn how we

can control the GPIO ports of Raspberry Pi by giving spoken commands to Alexa.

15 .2 Project 73 – Controlling an LED using Alexa

Description: In this project, an LED is connected to one of the Raspberry Pi GPIO ports.

The LED is turned ON and OFF by giving spoken commands to Alexa.

Aim: The aim of this project is to show how Alexa can be used with Node-RED in a Rasp-

berry Pi project to control a device remotely.

Block diagram: The block diagram of the project is shown in Figure 15.2.

Figure 15.2 Block diagram of the project

Programming with Node-RED

● 264

Circuit diagram: In this project, a small LED is connected to port pin GPIO 2 of the

Raspberry Pi through a 470 Ohm current limiting resistor.

Node-RED flow program: Before developing our flow program, we have to install the

Alexa node to our Node Palette. Because the Alexa nodes listen on port 80, it is important

that you start your Node-RED on the Raspberry Pi with a super user command. i,e,

pi@raspberrypi:~ $ sudo node-red-start

Then, the steps to install Alexa are as follows:

• Click Menu -> Manage palette, click Install

• Enter node-red-contrib-amazon .echo and click install

• You should see two new nodes called amazon echo hub and amazon echo

device added to your Node Palette

If you find that your Raspberry Pi GPIO nodes are not listed in the Nodes Palette, you can

re-install them using the following steps:

• Click Menu -> Manage palette, click Install

• Enter node-red-node-pi-gpio and click install

• We are now ready to develop our flow program.

Figure 15.3 shows the flow program which consists of just 4 nodes: an amazon echo hub

node, an amazon echo device node, a function node, and a rpi gpio out node.

Figure 15.3 Flow program of the project

The steps are as follows:

• Create an amazon echo hub node and make sure that the Port is set to 80 and

Process Input is set to No.

• Create an amazon echo device node and set the Name to Bedroom Lights (this

is the name that Alexa will know the LED. You should choose your own name

here).

Chapter 15 • Using Amazon Alexa in Node-RED projects

● 265

• Create a function node and name it as ON/OFF. Enter the following statements

inside this node. This node outputs 1 if the message coming from Alexa is on, or

it outputs 0 is the message coming from Alexa is off:

if(msg.payload == "on")

 out = 1;

else

if(msg.payload == "off")

 out = 0;

msg.payload = out;

return msg;

• Create an rpi gpio out node and name it as LED. Set the Pin to GPIO 2, Type

digital output, and Initialize the pin state to logic 0.

• Join all the nodes as in Figure 15.3 and click Deploy.

To test the project, ask Alexa "Alexa, discover devices". After a minute or so Alexa will

confirm that it has detected your device (Bedroom Lights in this project).

To turn the LED ON, ask Alexa "Alexa, turn on bedroom lights"

To turn the LED OFF, ask Alexa "Alexa, turn off bedroom lights"

The nodes can be used to turn on/off a device or to dim a light and it is supported by the

1st, 2nd and 3rd generation Alexa devices. Notice that we can add as many amazon echo

devices as we wish to our design for the control of various equipment. An example project

is given below where we have added a buzzer to our design.

15 .3 Project 74 – Controlling an LED and a buzzer using Alexa

Description: In this project, an LED and a buzzer are connected to the Raspberry Pi GPIO

ports. The LED and the buzzer are turned ON and OFF by giving spoken commands to Alexa.

Aim: The aim of this project is to show how multiple devices can be controlled by Alexa.

Block diagram: The block diagram of the project is shown in Figure 15.4.

Programming with Node-RED

● 266

Figure 15.4 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 15.5, where the LED

is connected to GPIO 2 and the buzzer is connected to GPIO 3.

Figure 15.5 Circuit diagram of the project

Node-RED flow program: Figure 15.6 shows the flow program. Notice that we have

added another amazon echo device node to our program and named it as Buzzer. This

second node drives another function node which has exactly the same content as the one

in Figure 15.3. The second rpi gpio out node is used to drive the buzzer where its Pin is

set to GPIO 3 and its Type is digital output as before. Because the new amazon echo device

is not known to Alexa, we have to ask Alexa to discover nodes again: "Alexa, discover

devices". After this, we can control the LED and the buzzer by asking the Alexa:

To turn the LED ON, ask Alexa "Alexa, turn on bedroom lights"

To turn the LED OFF, ask Alexa "Alexa, turn off bedroom lights"

To turn the Buzzer ON, ask Alexa "Alexa, turn on buzzer"

To turn the Buzzer OFF, ask Alexa "Alexa, turn off buzzer"

Chapter 15 • Using Amazon Alexa in Node-RED projects

● 267

Figure 15.6 Flow program of the project

Notice that we could have used another Alexa node called node-red-contrib-alexa-

home-skill for more sophisticated Alexa based control tasks. This node, called the Alexa

Home node, requires the user to be registered and have an account before using it. Alexa

Home node supports the following commands (Interested readers can get much more in-

formation from the web link: https://alexa-node-red.bm.hardill.me.uk/docs):

• TurnOnRequest

• TurnOffRequest

• SetPercentageRequest

• IncrementPercentageRequest

• DecrementPercentageRequest

• SetTargetTemperatureRequest

• IncrementTargetTemperatureRequest

• DecrementTargetTemperatureRequest

• GetTemperatureReadingRequest

• GetTargetTemperatureRequest

• SetLockState

• GetLockState

• SetColorRequest

• SetColorTemperatureRequest

Modified program

In the previous project, the LED is turned ON and OFF by sending spoken commands to

Alexa. In some applications we may want to turn the LED ON by sensing a command, then

we may want the LED to turn OFF automatically after some time. For example, before en-

tering a room we may ask Alexa to turn the light ON and after 20 seconds we may want

the light to turn OFF automatically. This can be done easily by adding a trigger node to

Figure 15.3. In the example flow program shown in Figure 15.7, the LED is turned OFF after

15 seconds. The trigger node is configured to send 1 for 15 seconds and then it sends 0.

Figure 15.8 shows the trigger node contents. Notice that the output of the trigger node

is reset if msg.payload is equal to 0 (i.e. if Alexa is asked to turn the Bedroom Lights OFF).

Figure 15.7 Modified flow program

Programming with Node-RED

● 268

Figure 15.8 Configure the trigger node

15 .4 Summary

In this chapter, we have learned how to use Amazon Alexa with Node-RED to control

equipment connected to a Raspberry Pi. Although the projects in this chapter use the Rasp-

berry Pi, there are no reasons why Arduino or the ESP32 DevKitC cannot be used in Alexa

based projects. As described in the earlier chapters, we can connect Arduino or the ESP32

DevKitC to Raspberry Pi and then control their GPIO ports via the Raspberry Pi by sending

commands via Alexa.

In the next chapter, we will be learning how to access Node-RED on Raspberry Pi from

anywhere on earth.

Chapter 16 • Accessing Raspberry Pi Node-RED from anywhere

● 269

Chapter 16 • Accessing Raspberry Pi Node-RED from anywhere

16 .1 Overview

In all of the previous projects, we have been accessing Raspberry Pi Node-RED over a Wi-Fi

link through our Wi-Fi router. There are many cases where we may want to access Node-

RED from anywhere on earth, so that for example appliances in our house can be controlled

and monitored remotely from anywhere on earth. In this chapter, we will learn how this

can be done.

16 .2 The ngrok

We will be using a free service called ngrok in order to create a tunnel to our Raspberry

Pi so that we can access it from anywhere in the world. First of all, we have to change our

default port number from 80 to something else, e.g. 1880 since for some reason ngrok

does not work with port number 80.

The steps to install and use ngrok are as follows:

• Go to the website: https://ngrok.com

• Enter your details as shown in Figure 16.1 to create an account.

Figure 16.1 Enter your details

• Click Auth link at the left-hand side to get your unique Tunnel token as shown in

Figure 16.2. In this example author's tunnel token is (this is modified for security

reasons): gqudoMhDuJeXnLqVGHqv7jyUTtbYpnQzTk3Eb

Programming with Node-RED

● 270

Figure 16.2 Tunnel token

• Select the Linux (ARM) version of the software

• Copy the software to a folder on your Raspberry Pi (e.g. /home/pi). You can if

you wish, download the software to your PC and then use the WinSCP utility to

copy it to your Raspberry Pi. At the time of writing this book, the software was

named: ngrok-stable-linux-arm .zip

• Unzip the software on your Raspberry Pi and save the token in file ngrok .yml by

entering the command shown in Figure 16.3

Figure 16.3 Unzip the software

• Create a secure tunnel with port number 1880:

pi@raspberrypi:~ $./ngrok http 1880

• You will be presented with a screen similar to the one shown in Figure 16.4. Here

we want the part that starts with Forwarding and https, as this is the address

we will be entering into our web browser, i.e.

 https://2353edf8.ngrok.io

Figure 16.4 Raspberry Pi screen

• Start Node-RED on your Raspberry Pi manually (or automatically during the re-

boot time. This is shown in the next section of this Chapter)

Chapter 16 • Accessing Raspberry Pi Node-RED from anywhere

● 271

• You can now access Node-RED remotely by entering the following address into

your web browser. Note that you must not close the ngrok screen (Figure 16.4)

while accessing Node-RED remotely:

 https://2353edf8.ngrok.io

16 .3 Starting Node-RED automatically at reboot time

The following command can be given to automatically start Node-RED after your Raspberry

Pi is started:

pi@raspberrypi:~ $ sudo systemctl enable nodered.service

Similarly, to disable the starting of Node-RED automatically at reboot time, enter:

pi@raspberrypi:~ $ sudo systemctl enable nodered.service

You can enter the following command to check if Node-RED is running:

pi@raspberrypi:~ $ ps axg | grep node-red

16 .4 Summary

In this chapter, we have learned how to access Node-RED from anywhere on Earth.

In the next chapter, we will be looking at how Bluetooth communication can be used with

Node-RED based projects on Raspberry Pi.

Programming with Node-RED

● 272

Chapter 17 • Using Bluetooth with Node-RED

17 .1 Overview

Bluetooth is a wireless communications technology used over short distances. Although it

was originally developed as a wireless alternative to RS232 based serial communication, it

is widely used nowadays to transfer data between two Bluetooth compatible devices. Most

smart mobile phones have built-in Bluetooth hardware and they can be used to transfer data,

e.g. pictures to other PCs and to other compatible mobile phones. Bluetooth operates in the

2.4 to 2.485 GHz frequency range and is managed by the Bluetooth Special Interest Group.

In this chapter, we will learn how to use Bluetooth with Node-RED on a Raspberry Pi. Before

using Bluetooth with Node-RED we have to install it in the Node Palette. The steps are:

• Start Node-RED

• Click Menu -> Manage palette and click Install

• Enter node-red-contrib-bluetooth-serial-port and click install

• You should see two new nodes named bt serial in and bt serial out added to

your Node Palette

Now we have to install Bluetooth on our Raspberry Pi:

pi@raspberrypi:~ $ sudo apt-get install bluez

An example project is given in the next section to show how the Bluetooth node can be

used.

17 .2 Project 75 – Controlling an LED and a buzzer using Bluetooth

Description: In this project, an LED and a buzzer are connected to the Raspberry Pi GPIO

ports. The LED and the buzzer are turned ON and OFF by sending commands from a smart

mobile phone via the Bluetooth interface.

Aim: The aim of this project is to show how Bluetooth can be used with Node-RED on a

Raspberry Pi.

Block diagram: The block diagram of the project is shown in Figure 17.1.

Figure 17.1 Block diagram of the project

Chapter 17 • Using Bluetooth with Node-RED

● 273

Circuit diagram: The circuit diagram of the project is as shown in Figure 15.5, where the

LED is connected to GPIO 2 and the buzzer is connected to GPIO 3 of Raspberry Pi.

Node-RED flow program: Figure 17.2 shows the flow program of the project which con-

sists of 4 nodes: a bt serial in to receive data from the Bluetooth device, a function node

to format the data for the GPIO ports, and two rpi gpio out nodes to control the LED and

the buzzer.

Figure 17.2 Flow program of the project

The steps are as follows:

• Create a bt serial in node. In this project, we are using an Android mobile

phone. We have to find the Bluetooth MAC address of our mobile phone and enter

it into the bt serial in node. The MAC address of the Android mobile phone can

be found as follows:

• Enable Bluetooth on your Android mobile phone

• Click Settings

• Click System

• Click About phone

• Click Status

• Scroll down until you see the Bluetooth address of your Android mobile phone

(see Figure 17.4). The MAC address of the mobile phone in this project was

B4:CD:27:15:68:7B

Programming with Node-RED

● 274

Figure 17.3 Bluetooth MAC address of the Android mobile phone

Figure 17.4 shows how the bt serial in node should be configured.

Figure 17.4 Configure node bt serial in

• Create a function node named ON/OFF and enter the following data into this

node. The data returned by the bt serial in node is in binary and it is converted

into string and stored in variable T. If the command is LON then output 1 is set

to 1, if the command is LOFF then output 1 is set to 0. Similarly, output 2 is set

to 1 and 0 if the commands are BON and BOFF respectively:

var out1 = null;

var out2 = null;

var T = msg.payload.toString();

if(T == "LON")

 out1 = {payload: 1};

else if(T == "LOFF")

 out1 = {payload: 0};

if(T == "BON")

 out2 = {payload: 1};

else if(T == "BOFF")

Chapter 17 • Using Bluetooth with Node-RED

● 275

 out2 = {payload: 0};

return[out1, out2];

• Create two rpi gpio out nodes named LED and Buzzer. Set the Pin to GPIO

2 for the LED and to GPIO 3 for the Buzzer. Set the Type to digital output, and

Initialize the pin to 0 for both nodes.

• Join all the nodes as in Figure 17.3, and click Deploy

We can send data to our Raspberry Pi using a Bluetooth app on our Android mobile phone.

There are many Bluetooth apps in the Play Store. The one used in this project is called

Bluetooth Terminal by Qwerty as shown in Figure 17.5. Install this app on your mobile

phone.

Figure 17.5 Bluetooth Terminal apps

In order to be able to access the Raspberry Pi from a mobile phone app, make the following

changes to your Raspberry Pi from the command line:

• Start nano to edit the following file:

pi@raspberrypi:~ $ sudo nano /etc/systemd/system/dbus-org.bluez.

service

• Add –C at the end of the ExecStart= line. Also add another line after the Exec-

Start line. The final two lines should look like:

ExecStart=/usr/lib/bluetooth/bluetoothd -C

ExecStartPost=/usr/bin/sdptool add SP

• Exit and save the file by entering Ctrl+X and Y

• Reboot the Raspberry Pi 3:

pi@raspberrypi:~ $ sudo reboot

Before sending a command to our Raspberry Pi we need to know the Bluetooth MAC ad-

dress of our Raspberry Pi. This is found by entering the following in the command mode

(your device name will probably be different):

Programming with Node-RED

● 276

pi@raspberrypi:~ $ bluetoothctl

[MyDevice]# show

You will find the Bluetooth MAC address listed at the top of the list. Enter the following

commands to make the Bluetooth discoverable on your Raspberry Pi:

[MyDevice]# agent on

[MyDevice]# discoverable on

[MyDevice]# exit

Now, make sure that Node-RED is running. Start the Bluetooth apps on your mobile phone.

And click the 3 dots at the top right-hand side. Click Make discoverable, then click Con-

nect a device – Insecure, select the Raspberry Pi, and wait until the message connect-

ed: raspberrypi is displayed. You will also see that the message connected is displayed

under node bt serial in your flow program. You are now ready to send commands from

your mobile phone to the Raspberry Pi over the Bluetooth link. Send the following com-

mands (see Figure 17.6):

 LON to turn ON the LED

 LOFF to turn OFF the LED

 BON to turn ON buzzer

 BOFF to turn OFF buzzer

Figure 17.6 Send commands to control the LED

In this project, we have received commands from the mobile phone over a Bluetooth link.

You may like to try and use the bt serial out node to send commands from the Raspberry

Pi back to the mobile phone using the Bluetooth link.

17 .3 Summary

In this chapter, we have learned how to communicate using Bluetooth Node-RED nodes.

We have developed a project where an LED connected to Raspberry Pi can be controlled

by sending commands from a mobile phone using the Bluetooth link. It is possible to use

an Arduino development board or an ESP32 DevKitC together with a Raspberry Pi in order

Chapter 17 • Using Bluetooth with Node-RED

● 277

to control devices connected to Arduino or the ESP32 DevKitC using Bluetooth connectivity

with Node-RED.

In the next chapter, we will be looking at the important topic of MQTT.

Programming with Node-RED

● 278

Chapter 18 • Node-RED and MQTT

18 .1 Overview

MQTT stands for Message Queuing Telemetry Transport. It is a message protocol that was

created for machine-to-machine (M2M) communication, and is based on publishing and

subscribing. MQTT is particularly very useful when it comes to sending data and controlling

information with low bandwidth and high response times. This protocol is especially worth

considering when it is required to send data to actuators and retrieve data from sensors.

MQTT was first developed by IBM in 1999 mainly for satellite communication, and since

then has become the standard communications protocol for the Internet of Things (IoT)

applications. MQTT uses your existing home network to send messages to your IoT devices

and receive a response from them. The official website of MQTT is: http://mqtt.org

MQTT works on top of the TCP/IP protocol and it is faster than sending HTTP requests since

a message can be as small as 2 bytes and there are no headers which is the case with

the HTTP. Additionally, in MQTT messages are distributed automatically to the interested

clients.

18 .2 How MQTT works

It is worthwhile to learn how MQTT works before it is used in projects. In MQTT protocol,

there is a sender called the Publisher, and a receiver called the Subscriber. Between

these two, a server called a Broker is used to act as the intermediary. Figure 18.1 shows

the basic structure of an MQTT based system.

Figure 18.1 Basic MQTT structure

In Figure 18.1, the temperature sensor publishes (or sends) its measured value to the bro-

ker, who accepts and saves the data. The broker then sends this measured value to other

devices that have subscribed to receive this data.

In MQTT there are 5 basic concepts that you should understand:

• Publisher

• Subscriber

• Messages

• Topics

• Broker

Chapter 18 • Node-RED and MQTT

● 279

Publisher: The publisher is the node that sends data or the message on a topic. For exam-

ple, a publisher can be a sensor node that sends ambient temperature values.

Subscriber: The subscriber can be a computer, a smartphone, a microcontroller or any

other processor that subscribes to receive the data or the message. For example, a device

publishes on a topic, another device subscribes to the same topic and receives the pub-

lished message.

Messages: Messages are the information exchanged in the MQTT network. A message

can be data or a command. For example, a message can be the temperature value, or a

command to turn ON a switch.

Topics: Topics are important concepts of MQTT. These are the ways we register interest

for incoming messages, or how we specify where we want to publish the message. i.e. the

message exchange takes place via the topics. Topics in MQTT are represented with char-

acter strings, separated by a forward slash. Each forward slash indicates a topic level. An

example is shown below which creates a topic for an LED in your kitchen:

 home/kitchen/led

In the above example, home, kitchen, and led are the topic levels and they are separated

by the topic level separators. The topics are case sensitive and for example, Home/kitchen/

led is not the same as above.

Single level wildcards: We can use wildcards in topics so that several sensors can be

queried at the same time. A "+" sign is used to identify a single level wildcard. Example is

given below:

 home/+/led topic with singe level wildcard

 home/bedroom/led wildcard replaced with bedroom

 home/livingroom/led wildcard replaced with livingroom

 home/garden/led wildcard replaced with garden

Multi-level wildcards: We can also use a multi-level wildcard, represented by the sign

"#". This must always be used at the end of a topic. An example is given below:

 home/kitchen/# topic with multi-level wildcard

 home/bedroom/led kitchen replaced with bedroom

 home/livingroom/light livingroom and light replaced

Broker: the broker receives all messages, filters them and decides who are interested in

them, and then sends the message to all subscribed clients

Figure 18.2 illustrates the operation of MQTT, which can be summarised as follows:

Programming with Node-RED

● 280

• The processor (and sensor) publishes ON and OFF messages on-topic home/

kitchen/led

• We have a Raspberry Pi that controls an LED. The Raspberry Pi is subscribed to

topic: /home/kitchen/led

• When a new message is published on topic home/kitchen/led, the Raspberry

Pi receives the ON or OFF messages and turns the LED ON or OFF.

Figure 18.2 Operation of MQTT

18 .3 The Mosquitto broker

The broker is one of the important parts of MQTT. There are several brokers that one can

use. In most home automation projects the Mosquitto broker is used. The steps to install

this broker on the Raspberry Pi is as follows:

pi@raspberrypi:~ $ sudo apt-get update

pi@raspberrypi:~ $ sudo apt-get install mosquitto mosquitto-clients

We can make Mosquitto to auto-start on boot by entering the following command:

 pi@raspberry:~ $ sudo systemctl enable mosquitto.service

To test the Mosquitto installation, enter the command mosquitto –v as shown in Figure

18.3. This command displays the version of the Mosquitto running on your system (Don't

worry about the Error: Address already in use).

Figure 18.3 Testing the Mosquitto installation

We can test if our broker is working correctly as follows:

Subscribe to the topic "TestTopic" by entering the following command. Mosquitto_sub tells

that we want to subscribe to a topic, and the name following –t is the topic name. Now,

every time we publish (i.e. send message) to TestTopic, the message will appear in the

window:

Chapter 18 • Node-RED and MQTT

● 281

pi@raspberrypi:~ $ mosquitto_sub –t "TestTopic"

Now, because the terminal is listening for messages from our broker, we have to open an-

other window so that we can publish messages. After opening another window, enter the

following command to publish to TestTopic:

pi@raspberrypi:~ $ mosquitto_pub –t "TestTopic" –m "Hello There!"

Here, the topic name is after –t, and the message is after –m. After hitting the Enter we will

see the message appear on our subscriber terminal as shown in Figure 18.4.

Figure 18.4 Broker example

18 .4 Using MQTT in home automation and in IoT projects

In order to use MQTT in home automation and in IoT projects we need the following:

• A Raspberry Pi

• Node-RED and MQTT

• An Arduino, ESP32, ESP8266, or any other compatible microcontroller

Figure 18.5 shows the basic MQTT system setup. The sensors, actuators, relays, switches,

lamps, LEDs, etc are connected to the system via an Arduino, ESP32, ESP8266, or any

other compatible processor.

Figure 18.5 MQTT system setup

Node-RED offers two MQTT nodes (mqtt in and mqtt out) which can be found in the net-

work palette as shown in Figure 18.6.

Programming with Node-RED

● 282

Figure 18.6 MQTT nodes

We can send a message to the MQTT broker using an inject node as shown in Figure 18.7.

Notice that the small green box under the mqtt out node indicates that the connection

from the mqtt out node to the broker has been established. In Figure 18.7 the topic is

set to TestTopic, and the inject node Payload is set to message Hello From Me!!. This

message is displayed on the MQTT subscriber as shown in the figure. In this flow program,

the mqtt out node Server was set to localhost and the Port number was set to 1883

(network ports 1883 and 8883 are reserved by default):

Figure 18.7 Sending a message to the MQTT broker

Notice that, by using different topics we can send (publish) different messages and these

messages will be received by the subscribers having the same topics.

A very simple example is given below which illustrates how an LED can be controlled using

MQTT.

18 .5 Project 76 – Controlling an LED using MQTT

Description: In this project, we will learn how an LED can be controlled using MQTT.

Aim: The aim of this project is to show how MQTT can be used in a very simple project.

Circuit diagram: In this project, an LED is connected to Raspberry Pi port pin GPIO 2

through a current limiting resistor.

Node-RED flow program: Figure 18.8 shows the flow program of the project. Basically,

two inject nodes are used with the Payloads set to 1 and 0 respectively. When for example

the button of the upper inject node is clicked then a 1 is sent to the broker via the mqtt

out node. The mqtt in node in the lower flow is given the same topic name as the mqtt

out node, and this node drives the rpi gpio out node which controls the LED accordingly.

The Raspberry Pi console displays the data received by the GPIO port since it is subscribed

to the same topic as shown in Figure 18.9.

Chapter 18 • Node-RED and MQTT

● 283

Figure 18.8 Flow program of the project

Figure 18.9 Raspberry Pi console subscribed to the same topic

In more complex and real projects instead of using inject nodes, we usually have proces-

sors with sensors connected to their inputs. The data from these sensors are sent to the

broker via the mqtt out node. The mqtt nodes then receive and process this data (e.g.

display or activate an actuator).

In the next sections, we will learn how to use the ESP8266 NodeMCU development board

as the client in an MQTT application.

18 .6 The ESP8266 processor

The ESP8266 is a low-cost Wi-Fi chip that can be used with or without a microcontroller to

access a Wi-Fi network. The chip has been developed by Shanghai-based Chinese man-

ufacturer Espressif Systems and incorporates full TCP/IP stack. It can be used as a small

microcontroller on its own, or it can be interfaced with a bigger microcontroller develop-

ment system such as the Arduino where it can be used to provide Wi-Fi capability to the

host system.

There are many versions of the ESP8266 chip, available as modules on small boards with

different functionalities and different input/output capacities. The basic specifications of the

ESP8266 chip are summarized below:

• 32-bit RISC CPU: Tensilica Xtensa LX106

• Operation speed 80 to 160 MHz (by overclocking)

• 3.3V operation (+2.5V min to +3.6V max)

• 64 Kbytes program memory, 96 Kbytes data memory

• External QSPI flash memory (up to 16 Mbytes)

• IEEE 802.11 b/g/n Wi-Fi support

• WEP or WPA/WPA2 authentication (or, open network)

• 1 x 10-bit analog-to-digital (ADC) converter

• Up to 16 GPIOs (not +5V tolerant)

• Shared SDIO, SPI, I2C, I2S interface pins

• Integrated TCP/IP protocol stack

• UART on dedicated pins (additional TX only UART on GPIO2 pin)

• Standby power < 10 mW

Programming with Node-RED

● 284

NodeMCU (LoLin) is a small microcontroller development board based on the ESP8266 pro-

cessor. It was first manufactured in 2014 and currently, it is one of the most popular Wi-Fi

development kits based on the ESP8266 chip and it incorporates an on-board USB-to-TTL

adapter, micro USB socket, a large number of GPIOs, PWM, I2C, ADC, +3.3V voltage regu-

lator, UART and so on. Figure 18.10 shows the pin configuration of the NodeMCU.

Figure 18.10 Pin configuration of the NodeMCU

NodeMCU can be programmed using the Arduino IDE. The steps to install the necessary

software on the Arduino IDE are given below:

• Start your Arduino IDE

• Click File -> Preferences and enter the following at the bottom of the screen

as shown in Figure 18.11. If you already have another URL there, separate them

with a comma, and click OK

 http://arduino.esp8266.com/stable/package_esp8266com_index.json

Figure 18.11 Installing the ESP8266 on Arduino IDE

Chapter 18 • Node-RED and MQTT

● 285

• Select Tools -> Board "Arduino/Genuino Uno" -> Boards Manager

• Enter esp8266 and press the install button for ESP8266 by ESP8266 Com-

munity (see Figure 18.12)

Figure 18.12 Enter esp8266

• After a successful installation, you should see the Installed message as in Figure

18.13. Close the screen.

Figure 18.13 Successful installation

Detailed programming of the ESP8266 processor is beyond the scope of this book. A simple

project is given in the next section just to remind the users of how the ESP8266 can be

programmed using the Arduino IDE. It is assumed that the readers are familiar with using

the Arduino IDE.

18 .7 Project 77 – Flashing an LED using ESP8266 NodeMCU

Description: This is a very simple project where an LED is connected to one of the GPIO

ports of the NodeMCU and the LED is flashed every second.

Aim: The aim of this project is to remind the users of how the NodeMCU can be pro-

grammed using the Arduino IDE.

Circuit diagram: Figure 18.14 shows the circuit diagram of the project. The LED is con-

nected to GPIO port 16 of the NodeMCU.

Programming with Node-RED

● 286

Figure 18.14 Circuit diagram of the project

Program Listing: The program listing (program: esp8266led) is shown in Figure 18.15.

The steps to start programming are as follows:

Build the circuit and connect the NodeMCU to your PC through a mini USB cable

• Start Arduino IDE

• Click Tools -> Board -> NodeMCU 1 .0 (ESP-12E Module)

• Select the COM port and click Tools -> Port n where n is the port number

• Enter the program and save it with the name esp8266led:

int LED = 16;

 void setup()

 {

 pinMode(LED, OUTPUT);

 }

 void loop()

 {

 digitalWrite(LED, HIGH); // LED ON

 delay(1000); // Wait one second

 digitalWrite(LED, LOW); // LED OFF

 delay(1000); // Wait one second

 }

Figure 18.15 program esp8266led

• Click Sketch -> Verify/Compiler and make sure there are no compilation errors

• Click Sketch -> Upload and wait until you see the message Done uploading.

• You should see the LED flashing every second

Chapter 18 • Node-RED and MQTT

● 287

Figure 18.16 shows the circuit built on a breadboard.

Figure 18.16 The circuit built on a breadboard

18 .8 Using the ESP8266 NodeMCU with MQTT

In order to get MQTT working on ESP8266, we need to install a library called PubSubCli-

ent. This library can be downloaded from the following link;

 https://github.com/knolleary/pubsubclient/archive/master.zip

The steps are as follows:

• Download the above .zip file (Click Clone or Download and select Download

ZIP). The file is named: pubsubclient-master .zip

• Start Arduino IDE

• Click Sketch -> Include Library -> Add .ZIP Library

• Select the path to the .zip file

• Select File -> Examples -> PubSubClient and you should see a number of

mqtt based example files listed

You should make Mosquitto auto-start on boot by entering the following command:

pi@raspberry:~ $ sudo systemctl enable mosquitto.service

A simple project is given below to illustrate how MQTT can be used with the ESP8266 No-

deMCU.

Programming with Node-RED

● 288

18 .9 Project 78 – Controlling an LED using ESP8266 NodeMCU with MQTT –

LED connected to Raspberry Pi

Description: This is a very simple project where an LED is connected to one of the GPIO

ports of the Raspberry Pi. Additionally, a push-button switch is connected to the ESP8266

NodeMCU. The LED is toggled when the button is pressed.

Aim: The aim of this project is to show how MQTT can be used with the ESP8266 NodeMCU.

Here, the NodeMCU is the client (publisher) and the Raspberry Pi is the subscriber which

receives the messages.

Block diagram: Figure 18.17 shows the block diagram of the project.

Figure 18.17 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 18.18. The button

is connected to port pin GPIO 2 of the ESP8266 NodeMCU. Similarly, the LED is connected

to port pin GPIO 2 of the Raspberry Pi.

Figure 18.18 Circuit diagram of the project

ESP8266 NodeMCU program listing: Figure 18.19 shows the program listing (program:

mqttesp8266). NodeMCU uses the Wi-Fi link to communicate with the Raspberry Pi in

MQTT based applications. Therefore, we need to know the SSID name and the password

of our Wi-Fi router, and the IP address of our Raspberry Pi. In this example we have the

following settings (you will have to enter your own settings):

Chapter 18 • Node-RED and MQTT

● 289

 SSID: BTHomeSpot-XNH

 Password: 49350baeb

 Raspberry Pi IP address: 192.168.1.202

We have to enter these values into our program. Notice that the button is connected to

port pin GPIO 2:

#include <ESP8266WiFi.h>

#include <PubSubClient.h>

const char* ssid = "BTHomeSpot-XNH";

const char* password = "49350baeb";

const char* mqtt_server = "192.168.1.202";

const byte Button = 2;

const char *ID = "Example_Button";

bool SwitchState = 0;

In this example, we have chosen the MQTT topic as kitchen/light

const char *Topic = "kitchen/light/"

We have to set up a Wi-Fi client, and a PubSubClient:

WiFiClient wclient;

PubSubClient client(wclient);

Inside the setup routine, we will initialize the Arduino IDE Serial Monitor at 115200 Baud so

that we can see trace the execution of the code easily. We will also have to configure port

pin GPIO 2 where the switch is connected to as input and enable the pull-up resistor, and

enable the Wi-Fi on our ESP8266 NodeMCU:

//

// The setup routine

//

void setup()

{

 Serial.begin(115200);

 pinMode(Button, INPUT);

 digitalWrite(Button, HIGH);

 delay(100);

 setup_wifi();

 client.setServer(mqtt_server, 1883);

 }

The Wi-Fi is setup inside the setup routine as follows (readers who used the ESP8266 be-

fore should be familiar with the following code):

Programming with Node-RED

● 290

 //

 // Connect to local Wi-Fi router

 //

 void setup_wifi()

 {

 Serial.print("\nESP32 NodeMCU connecting to: ");

 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED)

 {

 delay(500);

 Serial.print(".");

 }

 Serial.println("\nConnected to Wi-Fi");

 }

The main program loop attempts to reconnect to the client by calling function reconnect if

the connection is lost, and reads the status of the button to check if it is pressed.

The reconnect code is:

 //

 // Reconnect to client if the connection is lost

 //

 void reconnect()

 {

 while (!client.connected())

 {

 Serial.print("Attempting MQTT connection...");

 if (client.connect(ID))

 {

 Serial.println("Connected");

 Serial.print("Publishing to: ");

 Serial.println(Topic);

 Serial.println('\n');

 }

 else

 {

 Serial.println(" Trying to connect again in 5 seconds");

 delay(5000);

 }

 }

Chapter 18 • Node-RED and MQTT

● 291

The main loop code is:

 void loop()

 {

 if (!client.connected()) reconnect();

 client.loop();

 if(digitalRead(Button) == 0) // If button is pressed

 {

 ButtonState = !ButtonState; // Toggle ButtonState

 if(ButtonState == 1) // ON

 {

 client.publish(Topic, "on");

 Serial.println((String)Topic + " is ON");

 }

 else

 {

 client.publish(Topic, "off");

 Serial.println((String)Topic + " is OFF");

 }

 while(digitalRead(Button) == 0) // Wait switch to release

 {

 yield();

 delay(20);

 }

 }

Figure 18.19 mqttesp8266 program listing

Node-RED flow program: Figure 18.20 shows the flow program for the Raspberry Pi

which consists of just 3 nodes: an mqtt in node, a function node, and a rpi gpio out

node.

Figure 18.20 Flow program of the project

The steps are as follows:

• Create an mqtt in node and set its Server to localhost, Port to 1883, and the

Topic to kitchen/light/

Programming with Node-RED

● 292

• Create a function node names ON/OFF and enter the following statements in-

side this function:

if(msg.payload == "on")

 msg.payload = 1;

else if(msg.payload == "off")

 msg.payload = 0;

return msg;

• Create a rpi gpio out node and set the Pin to GPIO 2, Type to digital output,

and Initialize to 0.

• Connect all the nodes as in Figure 18.20 and click Deploy.

Testing

The project can be tested as follows:

• Power on the ESP8266 NodeMCU and open the Serial Monitor and set its Baud

rate to 115200.

• You should see messages on the Serial Monitor saying that the NodeMCU is con-

nected to your Wi-Fi (see Figure 18.21) and that it can publish to MQTT with the

topic kitchen/light/

Figure 18.21 Connection messages on the Serial Monitor

• Press the button. You should see the following message displayed on the Serial

Monitor (see Figure 18.22). At the same time the LED will turn ON:

kitchen/light/ is ON

• Release the button and press again. You should see the following message dis-

played on the Serial Monitor. At the same time the LED will turn OFF:

kitchen/light/ is OFF

Chapter 18 • Node-RED and MQTT

● 293

Figure 18.22 Messages on the Serial Monitor

• If you subscribe your Raspberry Pi console to topic kitchen/light/ then you should

see the messages displayed there as well (see Figure 18.23)

Figure 18.23 Messages on the Raspberry Pi console

18 .10 Project 79 – Controlling an LED using ESP8266 NodeMCU with MQTT –

LED connected to ESP8266 NodeMCU

Description: This project is similar to the previous one but here the LED is connected to

the NodeMCU and the button is connected to the Raspberry Pi. As before, the LED is toggled

when the button is pressed.

Aim: The aim of this project is to show how the client (NodeMCU in this project) can be

configured as a subscriber so that it can receive messages using MQTT. Raspberry Pi is a

publisher in this project.

Block diagram: Figure 18.24 shows the block diagram of the project.

Figure 18.24 Block diagram of the project

Programming with Node-RED

● 294

Circuit diagram: The circuit diagram of the project is shown in Figure 18.25. The button

is connected to port pin GPIO 2 of the Raspberry Pi. Similarly, the LED is connected to port

pin GPIO 2 of the NodeMCU through a current limiting resistor.

Figure 18.25 Circuit diagram of the project

ESP8266 NodeMCU program listing: Figure 18.26 shows the program listing (program:

esp8266mqtt). The program is very similar to the one given in Figure 18.19 except the

following changes:

The statement client.subscribe(Topic) is added to the setup routine so that the NodeMCU is

configured as an MQTT subscriber.

The main program loop has been modified so that the loop only re-connects if the connec-

tion is lost.

A new function called callback is added to the program. This function is called every time a

message is received by the NodeMCU. At the beginning of the function, the message New

message arrived is displayed together with the MQTT topic name. The function then dis-

plays the received message. Character array payload[0] stores the first character of the

received message which is either '1' or '0' in this project. If '1' is received then the LED is

turned ON, otherwise, the LED is turned OFF. The contents of this function are as follows.:

 void callback(char *topic, byte* payload, unsigned int length)

{

 Serial.print("New message arrived - Topic:");

 Serial.println(Topic);

 for(int j = 0; j < length; j++)

 {

 Serial.print((char)payload[j]);

 }

 Serial.println();

 if((char)payload[0] == '1')

 {

 digitalWrite(LED, HIGH);

 }

 else

 {

 digitalWrite(LED, LOW);

Chapter 18 • Node-RED and MQTT

● 295

 }

}

/**

 * ESP8266 NodeMCU MQTT PROGRAM

 * ============================

 * In this program a push-button switch is conencted to port

 * GPIO 2 of the Raspberry Pi. Similarly, an LED is connected

 * to port GPIO 2 of the NodeMCU. Pressing the button toggles

 * the LED.

 *

 * Author: Dogan Ibrahim

 * File : esp8266mqtt

 * Date : December 2020

 *

 **/

#include <ESP8266WiFi.h>

#include <PubSubClient.h>

const char* ssid = "BTHomeSpot-XNH"; // WiFi SSID

const char* password = "49345abaeb"; // WiFi password

const char* mqtt_server = "192.168.1.202"; // Raspberry Pi IP

const byte LED = 2; // LED pin

const char *ID = "Example_LED";

const char *Topic = "kitchen/light/"; // MQTT TOPIC

WiFiClient wclient;

PubSubClient client(wclient);

//

// Connect to local Wi-Fi router. This function connects the

// NodeMCU to the local WiFi router. Because the Serial Monitor

// is enabled, we can see the progress in the monitor

//

void setup_wifi()

{

 Serial.print("\nESP32 NodeMCU connecting to: ");

 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED)

 {

 delay(500);

 Serial.print(".");

 }

 Serial.println("\nConnected to Wi-Fi");

Programming with Node-RED

● 296

}

//

// This is the setup routine. Here the Serial Monitor is enabled,

// Button is configured as digital input, and the WiFi is setup.

// Notice that the MQTT server (Raspberry Pi) operate on port 1883

// The callback routine is called callback

//

void setup()

{

 Serial.begin(115200); // Enable Serial Monitor

 pinMode(LED, OUTPUT); // Button is input

 delay(100); // Small delay

 setup_wifi(); // Setup WiFi

 client.setServer(mqtt_server, 1883); // Define client

 client.setCallback(callback);

}

//

// Reconnect to client if the connection is lost

//

void reconnect()

{

 while (!client.connected())

 {

 Serial.print("Attempting MQTT connection...");

 if (client.connect(ID))

 {

 Serial.println("connected");

 Serial.print("Publishing to: ");

 Serial.println(Topic);

 Serial.println('\n');

 client.subscribe(Topic);

 }

 else

 {

 Serial.println(" Trying to connect again in 5 seconds");

 delay(5000);

 }

 }

}

//

// This is the callback routine. The program jumps here when a message

Chapter 18 • Node-RED and MQTT

● 297

// is received by the NodeMCU (subscriber). Turn ON/OFF the LED based

// on the received message (i.e. command)

//

void callback(char *topic, byte* payload, unsigned int length)

{

 Serial.print("New message arrived - Topic:");

 Serial.println(Topic);

 for(int j = 0; j < length; j++)

 {

 Serial.print((char)payload[j]);

 }

 Serial.println();

 if((char)payload[0] == '1')

 {

 digitalWrite(LED, HIGH);

 }

 else

 {

 digitalWrite(LED, LOW);

 }

}

//

// Main program loop. If client gets disconnected, re-connect

//

void loop()

{

 if (!client.connected()) reconnect();

 client.loop();

}

Figure 18.26 esp8266mqtt program listing

Node-RED flow program: Figure 18.27 shows the flow program for the Raspberry Pi

which consists of just 3 nodes: a rpi gpio in node to read the button status, a function

node, and an mqtt out

Figure 18.27 Flow program of the project

Programming with Node-RED

● 298

The steps are as follows:

• Create a rpi gpio in node to read the button status and set the Pin to GPIO 2

and Resistor to pullup

• Create a function node named ON/OFF and enter the following statements in-

side this function. The function returns "1" if the button is pressed (msg.payload

= "0"), and "0" if the button is not pressed:

if(msg.payload == "0")

 msg.payload = "1";

else

 msg.payload = "0";

return msg;

• Create an mqtt out node and set its Server to localhost, Port to 1883, and the

Topic to kitchen/light/

• Join all 3 nodes and click Deploy

Testing

The project can be tested as follows:

• Power on the ESP8266 NodeMCU and open the Serial Monitor and set its Baud

rate to 115200.

• You should see messages on the Serial Monitor saying that the NodeMCU is con-

nected to your Wi-Fi and that it can publish to MQTT with the topic kitchen/light/

• Press the button. You should see the following message displayed on the Serial

Monitor (see Figure 18.28). At the same time the LED will turn ON:

New message arrived - Topic:kitchen/light/

1

• Release the button. Now, you should see the following message displayed on the

Serial Monitor. At the same time the LED will turn OFF:

New message arrived - Topic:kitchen/light/

0

Chapter 18 • Node-RED and MQTT

● 299

Figure 18.28 Messages on the Serial Monitor

If you publish from Raspberry Pi console to topic kitchen/light/ then you should see the LED

turning ON or OFF and the messages displayed on the Serial Monitor (see Figure 18.29)

Figure 18.29 Publishing on the Raspberry Pi console

18 .11 Summary

In this chapter, we have learned how to install and use MQTT with Node-RED. The projects

given in this Chapter are based on the ESP8266 NodeMCU development board. There are

no reasons why other development boards such as the ESP32 DevKitC cannot be used in

MQTT based applications. This is left as an exercise for the readers.

In the next chapter, we will be learning how to use Node-RED HTTP nodes in projects.

Programming with Node-RED

● 300

Chapter 19 • Using HTTP in Node-RED projects

19 .1 Overview

The node-red palette includes nodes for HTTP request, HTTP response, and HTTP in. The

http request node is a core node that can be used for making http requests. Using this node

we can retrieve web pages from a website, send and receive JSON data to a website, make

API requests and so on. The following configuration is supported by the node:

• GET, POST, PUT, and DELETE methods

• URL of the resource

• Authentication

• SSL

• Response

HTTP is a text-based request and response protocol which uses the client-server model of

communication. A request consists of a command, some optional headers, and optional

body content. Similarly, a response consists of a status code, optional headers, and op-

tional body content. A web browser may be the client that submits an HTTP request to the

server.

Whenever we enter a URL in the address box of a browser, this URL is translated into a re-

quest message. For example, the URL http://www.test.com/doc/index.html may be trans-

lated into a request of the following format:

GET /doc/index.html HTTP/1.1

Host: www.test.com

Accept: image/gif, image/jpeg. */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0

Here, GET is the method and /doc/index .html is the path and HTTP/1 .1 is the protocol

version.

The response status code can have several values. Code 200 is the code for success.

In this section, we will learn how to use the http request node in Node-RED based projects.

19 .2 Using HTTP GET

The GET request is used to request data from a specified web address. It is one of the most

common HTTP methods. Node-RED node http request can be used to make a web request.

An example flow program is shown in Figure 19.1 which uses node http request to make a

request to the following URL (this is an example domain):

 http://example.com/hi/there?hand=wave

Chapter 19 • Using HTTP in Node-RED projects

● 301

Figure 19.1 Flow program of using http request

 this flow program, we have an inject node, an http request node with the Method is

set to GET and the URL is set as above. A debug node is used to display the output in the

Debug window. Figure 19.2 shows the output displayed.

Figure 19.2 Output in the Debug window (only part of the output is shown)

We can insert a html node inbetween the http request node and the debug node and set

its Selector to div to extract the div types, and its Output to display only the text content

of the elements, as a single message containing an array. The output is then shown in Fig-

ure 19.3 together with the flow program.

Figure 19.3 Flow program and the output

19 .3 Web server

A web server is a program that uses HTTP (Hypertext Transfer Protocol) to serve web pag-

es to users in response to their requests. These requests are forwarded by HTTP clients.

Programming with Node-RED

● 302

By using the HTTP server/client pair we can control any device connected to a web server

processor over the web.

Figure 19.4 shows the structure of a web server/client setup. In this figure, Raspberry Pi is

the webserver processor and the PC (or a laptop, tablet or smart mobile phone) is the web

client. The device to be controlled is connected to the webserver processor. The operation

of the system is as follows:

• The web server is in the listen mode, listening for requests from the web client

• The web client makes a request to the web server by sending an HTTP request

• In response, the webserver sends an HTTP code to the web client which is acti-

vated by the web browser by the user on the web client and is shown as a form

on the web client screen.

• The user sends commands (e.g. ticks buttons on a web client form) and this

sends code to the webserver so that the webserver can carry out the required

operations.

Figure 19.4 Webserver/client structure

A project is given in the next section to illustrate how a Node-RED based web server can

be used to control relays.

19 .4 Project 80 – Controlling 4 Relays using web server

Description: In this project, a relay module consisting of 4 relays is connected to the

Raspberry Pi. These relays are activated and de-activated from a PC (or a smart mobile

phone) by clicking buttons on a web browser form.

Aim: The aim of this project is to show how a web server application can be designed using

Node-RED on a Raspberry Pi.

Chapter 19 • Using HTTP in Node-RED projects

● 303

Background information: In this project, a 4-channel relay board (see Figure 19.5) from

Elegoo (www.elegoo.com) is used. This is an opto-coupled relay board having 4 inputs, one

for each channel. The relay inputs are at the bottom right-hand side of the board while the

relay outputs are located at the top side of the board. The middle position of each relay

is the common point, the connection to its left is the normally closed (NC) contact, while

the connection to the right is the normally open (NO) contact. The relay contacts support

AC250V at 10A and DC30V 10A. IN1, IN2, IN3, and IN4 are the active LOW inputs, which

means that a relay is activated when a logic LOW signal is applied to its input pin. Relay

contacts are normally closed (NC). Activating the relay changes the active contacts such

that the common pin and NC pin become the two relay contacts and at the same time the

LED at the input circuit of the relay board corresponding to the activated relay is turned

ON. The VCC can be connected to either +3.3V or to +5V. Jumper JD is used to select

the voltage for the relay. Because the current drawn by a relay can be in excess of

80mA, you must remove this jumper and connect an external power supply (e .g .

+5V) to pin JD-VCC.

Figure 19.5 4-channel relay board

Block diagram: Figure 19.6 shows the block diagram of the project.

Programming with Node-RED

● 304

Figure 19.6 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 19.7. IN1, IN2, IN3

and IN4 inputs of the relay board are connected to Raspberry Pi GPIO pins 2, 3, 4, and 17

respectively. Also, GND and +3.3V pins of the development board are connected to GND

and VCC pins of the relay board. You must make sure that jumper JD is removed from the

board. Connect an external +5V power supply to the JD-VCC pin of the relay board.

Figure 19.7 Circuit diagram of the project

Node-RED flow program: Figure 19.8 shows the flow program of the project which con-

sists of 8 nodes: a http in node to get the HTTP request, a template node to store the

HTML code, a http out node, a function node to format the data for the output, and 4 rpi

gpio out nodes to control the 4 relay inputs.

Figure 19.8 Flow program of the project

Chapter 19 • Using HTTP in Node-RED projects

● 305

The steps are as follows:

• Create a http in node and configure as shown in Figure 19.9. Here, the URL is

named as /relay . The operation of the project is as follows: When the user en-

ters the URL 192 .168 .1 .202:1880/relay from a web browser, a GET request is

sent to the Raspberry Pi node http in. This node then activates node template

which displays a form on the user screen. This form contains buttons that the

user can click to activate/de-activate a chosen relay. When a button is clicked, a

command is received by node http in. This command is passed to node function

which extracts the appropriate part of the command and outputs code to activate

the correct rpio gpio out node, which in turn controls the relay connected to

that node.

Figure 19.9 Configure the http in node

• Create a template node and enter the HTML code shown in Figure 19.20 into this

node. At the beginning, the heading Node-RED RELAY CONTROL is displayed.

The next line displays the sub-heading Web Server Example With 4 Relays.

The remainder of the HTML code displays a form with the names of the relays as

RELAY1 ON and RELAY1 OFF to RELAY4 ON and RELAY4 OFF where the ON

states are displayed in green colour and the OFF states in red colour. The form

elements are buttons that can be clicked. One line of the code is shown below. In

this code, the button is named RELAY1 ON and it is green colour. Similar code is

repeated for all the relays.

<button name="RELAY1" button style="background:green", value="ON"

type="submit">RELAY1 ON</button>

Figure 19.10 HTML code for the template node

When the GET request is received by node http in (i.e. when the user enters:

192.168.1.202:1880/relay), the form shown in Figure 19.21 is displayed on the

user screen.

Programming with Node-RED

● 306

Figure 19.11 Form displayed on the user screen

• Create a function node named CONTROL having 4 outputs, and enter the fol-

lowing statements inside this node:

var var1 = null;

var var2 = null;

var var3 = null;

var var4 = null;

var T = msg.req.url;

switch (T)

{

 case "/relay?RELAY1=ON":

 var1 = {payload: 0};

 break;

 case "/relay?RELAY1=OFF":

 var1 = {payload: 1};

 break;

 case "/relay?RELAY2=ON":

 var2 = {payload: 0};

 break;

 case "/relay?RELAY2=OFF":

 var2 = {payload: 1};

 break;

 case "/relay?RELAY3=ON":

 var3 = {payload: 0};

 break;

 case "/relay?RELAY3=OFF":

 var3 = {payload: 1};

 break;

 case "/relay?RELAY4=ON":

 var4 = {payload: 0};

 break;

 case "/relay?RELAY4=OFF":

 var4 = {payload: 1};

 break;

}

return[var1, var2, var3, var4];

Chapter 19 • Using HTTP in Node-RED projects

● 307

When a button is clicked on the form, a command is sent to the web server in

addition to some other data. Here, we are only interested in the actual command

sent. Variable msg.req.url is loaded with the command received by node http in

when a button is clicked. The following are the commands received:

 Button Pressed Command sent to web server

 RELAY1 ON /relay?RELAY1=ON

 RELAY1OFF /relay?RELAY1=OFF

 RELAY2 ON /relay?RELAY2=ON

 RELAY2 OFF /relay?RELAY2=OFF

 RELAY3 ON /relay?RELAY3=ON

 RELAY3OFF /relay?RELAY3=OFF

 RELAY4 ON /relay?RELAY4=ON

 RELAY4 OFF /relay?RELAY4=OFF

The function uses a switch statement to check the message received. For exam-

ple, if button RELAY 1 ON is clicked then msg .req .url will be loaded with the

data /relay?RELAY1=ON. Variable var1 is then loaded with 0 (remember that

a relay is activated if its input is at logic 0) to activate Relay 1, connected to GPIO

2. Similarly, if RELAY 1 OFF is clicked then msg .req .url will be loaded with the

data /relay?RELAY1=OFF. Variable var1 is then loaded with 1 to de-activate

Relay 1.

• Create 4 rpio gpio out nodes. Set the Pins of these nodes to GPIO 2, GPIO 3,

GPIO 4, and GPIO 17, corresponding to relay inputs IN1, IN2, IN3, and IN4 re-

spectively. Set the Types to digital output and Initialize pin states to High (1) so

that all the outputs are at logic 1 when the program starts. This ensures that all

the relays are de-activated at the beginning of the program.

• Join all nodes and click Deploy.

Testing

• Connect the relay module to the Raspberry Pi as shown in Figure 19.7.

• Open a web browser on your PC and enter: 192 .168 .1 .202:1880/relay

• You should see the form shown in Figure 19.21 displayed on your PC screen

• Click button RELAY1 ON. You should hear relay 1 activated, and the LED corre-

sponding to this relay will turn ON on the relay module. Try turning ON/OFF other

relays to make sure that they all work. Figure 19.22 shows the URL when relay

1 is activated.

Figure 19.12 Relay 1 is activated

Programming with Node-RED

● 308

• You can also control the relays from your smartphone. Enter the URL:

192 .168 .1 .202:1880/relay as shown in Figure 19.23 and you will be present-

ed with the form to control the relays

Figure 19.13 Controlling the relay from your smart phone

19 .5 Summary

In this chapter, we have learned how to use the HTTP request node to request a web page.

Also, an example project is given to show how a web server can be designed to control 4

relays from a web browser.

Appendix A • The function node

● 309

Appendix A • The function node

A .1 Overview

The function node is one of the most useful nodes in Node-RED and it is based on JavaScript

(JS). In this Appendix, we will look at how to write statements inside functions, and also

learn the very important topics of string manipulations, built-in string, and mathematical

functions, conditional statements, repetition, etc that can be used in function nodes.

A .2 Variables

The nice thing about JS is that it does not care about the data types. Variables are declared

using the var keyword. Every statement must be terminated with a semicolon. Some ex-

ample variables are:

 var name = "John Smith"; // string variable

 var count = 10; // integer variable

 var cnt = "20"; // string variable

Variables in JS can be:

• Numeric e.g. integer and float

• String e.g. enclosed in " " or in ' '

• Boolean e.g. true or false

• Object e.g. JSON objects enclosed in { }

• Null e.g. empty or unassigned

An integer number has no decimal point such as x = 25. A floating point number has deci-

mal point such as x = 25.322. Numbers can be written in scientific format as shown below:

 x = 345e2 // x = 34500

or

x = 345e-2 // x = 3.45

All variables are destroyed except the 3 types of variables: global, context, and flow.

global variables: these variables retain their values across all flows. An example is given

below where integer 10 is stored in variable XYZ, and then variable abc is assigned the

value of XYZ:

global.set('XYZ', 10);

var abc = global.get('XYZ');

context variables: these variables retain their values in function nodes where they are

declared only. An example is given below where variable cnt is initialized to 0 if it does not

already exist. Then, it is incremented by one and stored back in cnt. Therefore, each time

the function is run the value of cnt will be incremented by one:

Programming with Node-RED

● 310

var cnt = context.get('cnt') || 0;

cnt++;

context.set('cnt', cnt);

flow variables: these variables retain their values in the same flow. An example is given

below where again integer 10 is stored in XYZ, and then variable abc is assigned the value

of XYZ.

flow.set('XYZ', 10);

var abc = flow.get('XYZ');

The following basic mathematical operations can be performed in JS:

Valid arithmetic operators: +, -, *, /, **, %, ++, --

Valid logical operators: <, >, =>, <=, !=

Valid assignment operators: =, +=, *=, -=, /=, %=

Valid comparison operators: ==, ===, !=, !==, >, <, >=, <=

Valid logical operators are: &&, ||, !

Valid bitwise operators are: &, |, ~, <<, >>, ^

Note the difference between the == and the === comparison operators. == is used to

compare two variables where the type of the variable (e.g string or number) is not consid-

ered. On the other hand, === is used to compare two variables including their types. For

example, if a = 10, then a == 10 is true and a == 5 is false. Also, a === 10 is true, but

a === "10" is false.

A .3 Multiple outputs

It is sometimes necessary for a function to have more than one output. This can be done

as shown in the following example:

var msg1 = { payload: "Message for output 1" };

var msg2 = { payload: "Message for output 2" };

return [msg1, msg2];

A .4 String manipulation

String manipulation is one of the most important operations in JS. Examples of commonly

used string manipulation operations are given in this section.

Number

Converts a string to a number.

var x = "10"; // string "10"

var y = Number(x); // y is numeric 10

Appendix A • The function node

● 311

String

Converts a number to a string

var x = 10; // x is number 10

var y = String(x); // y is string "10"

Other string functions

Assuming that:

var x = "my name, is John, I am, 20 years old";

var y = "John Smith";

Then:

var L = y.length; // y is the length of the string (L = 10

 // in this case)

var pos = x.indexOf("name"); // first occurrence of name, starting from

 // 0 (pos = 3). If the text is not found

 // then -1 is returned

var pos = x.indexOf("name", 12); // look for name, starting from position

 // 12. pos = -1

var pos = x.search("name"); // search for name and return its position

 // (pos = 3)

var str = x.slice(3, 7); // extract string starting from position 3

 // and ending with position 7 (str =

 // name). End position is not included

 // (i.e. 3 to 6)

var str = x.slice(-8, -6); // count from the end. Extract from

 // position 6 to 8. str = ea

var str = y.slice(2); // extract from 2 to the end (str = hn

 // Smith)

var str = x.substr(3, 4); // extract starting from position 3, and

 // take 4 characters str = name

var str = y.substr(3); // extract starting from position 3 to the

 // end str = n Smith

Programming with Node-RED

● 312

var str = y.substr(-3); // extract counting from the end.

 // str = ith

var r = y.replace("Smith", "Jones"); // replace string. r = John Jones.

 // Only the first occurrence is

 // replaced

var r = y.replace(/h/g, "s"); // replace all occurences of h with

 // s. r = Josn Smits

var u = y.toUpperCase(); // change to upper case. u = JOHN SMITH

var s = y.toLowerCase(); // change to lower case. s = john smith

var c = x.concat(" ", y); // join x and y.

 // c = my name, is John, I am, 20 years

 // old John Smith

var c = x + " " + y; // join x and y.

 // c = my name, is John, I am, 20 years

 // old John Smith

var t = y.trim(); // remove leading and trailing spaces.

 // t = John Smith

var r = y.charAt(0); // return character at position. r = J

var s = x.split(","); // split the string on commas

 // s[0] = my name

 // s[1] = is John

 // s[2] = I am

 // s[3] = 20 years old

var s = y.split(""); // split individual characters

 // s[0] = J

 // s[1] = o

 // s[2] = h

 // s[3] = n

 // s[4] =

 // s[5] = S

 // s[6] = m

 // s[7] = i

 // s[8] = t

 // s[9] = h

Appendix A • The function node

● 313

var s = y.repeat(2); // repeat string y twice.

 // s = John Smith John Smith

var n = y.endsWith("Smith"); // check if string y ends with Smith.

 // n becomes true

var n = y.startsWith("Smith"); // check if string y starts with Smith.

 // n becomes false

var n = y.includes("John"); // check if string y includes "John".

 // n becomes true

A .5 Mathematical functions

The following mathematical functions are commonly used. All of these functions must be

preceded by the keyword Math . For example, Math .abs(x):

var x = sqrt(64); // square root. x = 8

var p = PI; // p = 3.14159

var s = sin(r); // trigonometric sine, r in radians

var c = cos(r); // trigonometric cosine, r in radians

var t = tan(r); // trigonometric tangent, r in radians

To convert degrees to radians, multiply by Pi and divide by 180. For example, to calculate

sin 30 degrees:

var s = Math.sin(30*Math.PI/180.0); // s = 0.5

var x = abs(y); // absolute value of y

var x = ceil(y); // y rounded upwards to nearest integer

var x = floor(y); // y rounded downwards to nearest integer

var y = exp(x); // exponentiation of x, y=ex

var r = pow(x, y); // r = xy

var y = round(x); // round x to the nearest integer

var y = trunc(x); // return integer part of x

var y = log(x); // y = Lne(x)

Programming with Node-RED

● 314

var y = LN10(x); // y = Ln10(x)

var y = asin(x); // returns arcsine of x in radians

var y = acos(x); // returns arccosine of x in radians

var y = atan(x); // returns arctangent of x

var r = atan2(x, y); // returns arctangent of y/x

Hyperbolic functions such as sinh, cosh, tanh, asinh, acosh, and atanh are also supported.

A .6 Number conversions and checking numbers

The following number manipulations can be made:

Assuming x = 123.47, z = 25, and q = "45"

Number.isInteger(x); // if x is an integer number. Returns false

var y = x.toFixed(1); // 1 digits after decimal point. y = 123.4

var y = x.toFixed(4); // 4 digits after decimal point. y = 123.4700

var y = x.toPrecision(3); // Format to length 2. y = 123

var y = x.toPrecision(4); // y = 123.5

var y = x.toPrecision(7); // y = 123.4700

var s = z.toString(); // convert number to string. s = "25"

var s = z.toString(2); // convert with base 2. s = 11001

var s = z.tostring(16); // convert with base 16. s = 10

var n = parseInt(q); // parse string and return integer. n = 45

 // spaces are ignored and only the first number

 // is returned. A radix can be specified

var n = parseFloat(q); // parse string and return float. n = 45

 // spaces are ignored and only the first number

 // is returned, A radix can be specified

var n = eval("2 * z"); // evaluate expression. n = 50

Appendix A • The function node

● 315

A .7 Date

Date functions are useful when we want to include the date and/or time in our function

nodes. Some of the commonly used date functions are given in this section. Data objects

are created with new Date(). Some commonly used functions are:

var dt = new Date(); // get date. e.g. Thu Dec 26 2019 10:52:02

 // GMT+0000 (Greenwich Mean Time)

var d = dt.getDate(); // day of the month. eg. d = 26

var d = dt,getDay(); // day of the week (Monday = 1). e.g. d = 4

var d = dt.getFullYear(); // year, e.g. d = 2019

var d = dt.getHours(); // hours, e.g. d = 22

var d = dt.getMinutes(); // minutes, e.g. d = 40

var d = dt.getSeconds(); // seconds, e.g. d = 20

var d = dt.toDateString(); // today's date as string, d = Thu Dec 26

 // 2019

Additionally, the date and time can be set using functions: setHours(), setMinutes(), set-

Seconds() etc.

A .8 Arrays

Arrays are very useful in all programming languages as it enables related items to be col-

lected and accessed under a name. In JS arrays are indexed starting from 0.

Assuming that we have the array declaration:

var cities = ["London", "Paris", "Ankara"];

var counties = ["UK", "France", "Turkey"];

We can use the following functions (only the commonly used functions are given here):

var all = cities.concat(countries); // join arrays. all = ["London",

 // "Paris", "Ankara", "UK", "France",

 // "Turkey"]

var all = Array.from("xyz"); // create array from string. all =

 // ["x", "y", "z"]

var n = cities.includes("Paris"); // check if array cities includes

 // Paris. n becomes true

Programming with Node-RED

● 316

var n = cities.indexOf("Paris"); // return position of Paris in cities.

 // n = 1. If the string is not found

 // then -1 is returned

var s = cities.join(); // join the array as a string separated

 // with commas. s =

 // "London,Paris,Ankara"

var n = cities.length; // length of array cities. n = 3

var s = cities.pop(); // remove last element of array cities

 // and then return it. s = "Ankara"

var s = cities.shift(); // remove first element of array cities

 // and then return it. s = "London"

var s = cities.push("Cairo"); // add a new element Cairo to the end

 // of array cities and returns the new

 // length of cities

var s = cities.reverse(); // reverse the elements of array

 // cities. s = ["Ankara", "Paris",

 // "London"]

var s = cities.sort(); // sort array cities. s = ["Ankara",

 // "London", "Paris"]

var s = cities.slice(1, 2); // return selected elements of array

 // cities, starting from position 1 to

 // 2. s = ["Paris"]

A .9 Conditional statements

Conditional statements are used when a choice is to be made in a program. JS supports the

following conditional statements:

if . .else . .elseif

This is one of the commonly used conditional statements. An example is given below. If

multiple statements are used inside a condition they must be enclosed in a curly bracket:

if(x > 10)

{

 a= 0;

 b = 0;

}

else if(x < 10)

{

 a = 1

Appendix A • The function node

● 317

 b = 1;

}

else

 c = 0;

switch

The switch statement is used to select one of many conditions. An example is given below:

switch(n)

{

 case 1:

 text = "you selected 1";

 break;

 case 2:

 text = "you selected 2";

 break;

 case 3:

 text = "you selected 3";

 break;

 default:

 text = "you selected something else";

}

A .10 Repetition (loops)

Repetition statements are used when it is required to create loops in programs. JS supports

the following repetition statements:

do . .while

an example is given below where the loop is repeated 5 times. At the end of the loop, k = 5

var k = 0;

do

{

 k++;

}while(k < 5);

for

repeat the loop a number of times. In the following example the loop is repeated 5 times

and the value of j = 5 at the end of the loop:

var k;

var j = 0;

for(k = 0; k < 5; k++)

{

 j++;

}

Programming with Node-RED

● 318

while

Loop through while a condition is true. In the following example, the loop is repeated while

k < 5. At the end of the loop, k = 5

var k = 0;

while (k < 5)

{

 k++;

}

for . .of

Loop through the values of an array. An example is given below. At the end of the loop,

variable y = "LondonParisAnkara":

var cities = ["London", "Paris", "Ankara"];

var k;

var y = "";

for (k of cities)

{

 y = y + k;

}

break

Used to exit from a loop when a condition becomes true. In the following example, the loop

terminates when k = 3. At the end of the loop j = 4

var k;

var j = 0;

for(k = 0; k < 10; k++)

{

 j++;

 if(k == 3)

 break;

}

continue

Skip the loop when a condition becomes true. In the following example, the sum of num-

bers from 0 to 10 are calculated. When k = 5, the loop continues but misses this value. At

the end of the loop, j = 50 and not 55

var k;

var j = 0;

for(k = 0; k <= 10; k++)

{

 if(k == 5)continue;

Appendix A • The function node

● 319

 j = j + k;

}

A .11 Functions

Functions are useful when a certain operation is to be repeated several times in a program.

Functions are also used to breakdown a complex program into smaller more manageable

sections. In JS a function is declared with the keyword function, followed by the name of the

function. A function can have optional parameters inside brackets. The body of a function

must be enclosed inside curly brackets.

In the following example, a function called Add is created which has 2 arguments. The func-

tion adds these arguments and returns the result to the calling program:

function Add(a, b)

{

 return a + b;

}

Call the function as follows:

 y = Add(3, 4)

Where y takes the value of 7

A .12 Examples

Some examples are given below to show how some of the built-in functions can be used in

function nodes.

Example

Figure A.1 shows a flow diagram with a function node and a debug node. Assuming the

input to the function node is:

T = 15, 500, 752

Write a function with 3 outputs to extract 15, 50, and 75. Display the results in the Debug

window.

Figure A.1 Flow program of Example 1

Programming with Node-RED

● 320

Solution

The function should have the following statements. split() function is used to extract the

elements:

 var F = msg.payload.split(",");

 var1 = {payload: F[0]};

 var2 = {payload: F[1]};

 var3 = {payload: F[2]};

 return [var1, var2, var3];

Figure A.2 shows the data displayed in the Debug window.

Figure A.2 Data displayed in the Debug window

Appendix B • Flow programs used in the book

● 321

Appendix B • Flow programs used in the book

A .1 Overview

The web site of the book includes all the flow programs used in this book. The programs are

stored as word documents and are given the name of the Project that they belong to, e.g.

Project 29. Some flow programs do not belong to a project and for these, the name of the

figure they belong to is given. e.g. Figure 12.14

A .2 Using the flow programs

The steps to use the flow programs from the book web site are as follows:

• Select the required flow program from the web site

• Open the program and copy it to the Clipboard

• Start Node-RED Dashboard and click Menu -> Import

• Paste the program to the opened window and click Import

• You should see the flow program added to the Node-RED workspace

• Click Deploy

Programming with Node-RED

● 322

Appendix C • Components used in the book

Processors:

Raspberry Pi 4, ESP32 DevKitC, ESP8266 NodeMCU, Arduino Uno

Components:

• 4 x Red LED

• 4 x 470 Ohm resistor

• 1 x Green LED

• 1 x Orange LED

• 1 x 10K pot

• 1 x 220 Ohm resistor

• 2 x 1K resistors

• 2 x 2K resistors

• 1 x Buzzer

• 1 x Button

• 1 x I2C LCD

• 1 x Parallel LCD

• 1 x DHT11

• 2 x Ultrasonic sensors

• 1 x MCP3002 ADC

• 1 x TMP36DZ sensor

• 1 x GPS Click board

• 2 x tRF Click Board

• 2 x Antenna for tRF

• 1 x Sense HAT

• 1 x 4 Relay module (Elegco)

Index

● 323

Index

A

Acceleration, 230

ADC, 147

Advanced nodes, 58

Alexa, 263

Amazon Alexa, 263

Analog sensor, 146

Analysis nodes, 58

Arduino, 199, 245

Arrays, 315

Atmospheric pressure, 76

Auto-pan, 213

B

Bar chart, 157

Baud rate, 198

Bluetooth, 272

Break, 318

Broker, 279

Button, 106

Button node, 163

Buzzer, 92, 135

C

Cat, 34

Chart, 156

Chat, 184

Comment node, 106

Context variable, 87, 309

Compass heading, 229

Conditional statements, 316

Continue, 318

Copying node, 55

Core nodes, 55

CSI port, 16

D

Dashboard, 153

Dashboard nodes, 153

Date and time, 47

DELETE, 300

DevKitC, 257

DHT11, 124, 253

DHT22, 124

Disk usage, 39

Distance sensor, 129

DSI port, 16

Duty cycle, 111

E

Email, 74, 93

Email in, 93

Email out, 97

ESP32, 257

ESP8266, 283

Etcher, 21

Event counter, 122

Exporting, 54

F

File operation, 33

File permission, 28

Firmata, 247

Flashing LED, 85

Flow variables, 309

Functions, 319

Function nodes, 57, 309

G

Gauge, 154, 251

GET, 300

GPIO connector, 80

GPIO pins, 81

GPS, 204

GPS click, 206

Gyroscope, 227

H

Halt, 40

HC-SR04, 129

HD44780, 137

HDMI, 16

Horizontal bar chart, 158

HTTP, 300

HTTP request, 57

Humidity, 120

I

Ifconfig, 42

Importing, 54

Programming with Node-RED

● 324

Input nodes, 55

ISM, 222

J

Jason, 72

Joystick, 233

L

Latitude, 208

LCD, 113

LCD character set, 148

LED colours, 235

LED matrix, 234

Line chart, 156

LM35DZ, 201

Logic level converter, 217

Longitude, 208

M

Map, 212

Mark, 110

Mathematical functions, 313

MCP3002, 142

Mean, 67

Micro SD card, 17

MOSFET, 216

Mosquitto, 280

Motion events, 229

MQTT, 278

MQTT in, 281

MQTT out, 281

Multiple GPIO, 98

Multiple gauge, 160

Multiple inputs, 62

Multiple LED, 173

Multiple outputs, 65

N

Ngrok, 269

NodeMCU, 285

Node-RED configuration, 78

O

Openweathermap, 71, 91

Orientation, 231

Output nodes, 56

P

Parallel LCD, 137

Ping, 187

Pitch, 232

PoE port, 16

Pressure, 242

Ps, 39

POST, 300

Publisher, 279

Push button, 106

PUT, 300

Putty, 23

PWM, 110

R

Random node, 121

Random number, 60

Raspberry Pi nodes, 58

Raspbian Buster, 18

Remote access, 22

Repetition, 317

RF radio, 222

Roll, 232

Rotate screen, 243

S

SCL, 113

Scrolling data, 242

SDA, 113

Send UDP, 178

Sense Hat, 225

Sense Hat nodes, 226

Serial communication, 198

Shutdown, 40

Slider node, 161

Smooth node, 67

Social nodes, 58

Space, 110

SPI, 143

SSH, 23

Storage nodes, 58, 190

String manipulation, 310

Subscriber, 279

Switch node, 109

Super user, 37

Switch, 317

Index

● 325

Switch node, 165

T

Talking weather forecast, 166

TCP, 170

Temperature conversion, 52

Text node, 165

TightVNC, 26

Timestamp, 190

TMP36, 146

Topics, 279

Traffic lights, 102

Trf click, 223

Trigger node, 86. 104

Twitter, 76

Twitter in, 76

Twitter out, 76

U

UDP, 170

UDP receive, 176

Ultrasonic, 129

Unit conversion, 62

URL, 301

USB keyboard, 17

USB port, 220

Utf-8, 195

V

Variables, 309

VNC, 25

VNC server, 25

Voltmeter, 144

W

Weather, 70

Web server, 301

Websocket, 56

While, 318

Whoami, 36

WiFi, 170

Wildcard, 33

Y

Yaw, 232

Programming with Node-RED

● 326

Design IoT Projects with Raspberry Pi, Arduino and ESP32Design IoT Projects with Raspberry Pi, Arduino and ESP32

Programming with Node-RED
Dogan Ibrahim

The Internet of Things (IoT) is becoming a major application

area for embedded systems. As a result, more and more

people are becoming interested in learning about embedded

design and programming. Technical colleges and universities

are moving away from legacy 8 and 16-bit microcontrollers

and are introducing 32-bit embedded microcontrollers to their

curriculums. Many IoT applications demand precision, high

processing power, and low power consumption.

Produced by IBM, Node-RED is an open-source visual editor

for wiring the Internet of Things. Node-RED comes with a

large number of nodes to handle a multitude of tasks. The

required nodes are selected and joined together to perform a

particular task. Node-RED is based on flow type programming

where nodes are configured and joined together to form an

application program. There are nodes for performing complex

tasks, including web access, Twitter, E-mail, HTTP, Bluetooth,

MQTT, controlling GPIO ports, etc. One particularly nice aspect

of NodeRED is that the programmer does not need to learn

how to write complex programs. For example, an email can be

sent by simply joining nodes together and writing only a few

lines of code.

The aim of this book is to teach how Node-RED can be used in

projects. The main hardware platform used with most of the

projects in this book is Raspberry Pi 4. Chapters are included

to show how Node-RED can be also be used with Arduino Uno,

ESP32 DevKitC, and the ESP8266 NodeMCU microcontroller

development boards.

Prof. Dr. Dogan Ibrahim is

a Fellow of the Institution

of Electrical Engineers.

He is the author of over

60 technical books,

published by publishers

including Wiley, Butter-

worth, and Newnes.

He is the author of over

250 technical papers,

published in journals, and

presented in seminars

and conferences.

lektor

Elektor International Media BV

www.elektor.com

ISBN 978-1-907920-88-2

